
Appendix

In this Additional file we provide a detailed description of the algorithms involved in

implementing the three probabilistic models components of our comparative method.

Here we give the most general description of the scoring/parsing algorithms. We in-

dicate at some different points how to obtain some simplifications that are part of the

software implementation.

Assume we have two aligned sequences X and Y from two related organisms of

respective lengthsn andm. Unprimed coordinates “i” (with 0 ≤ i < n) will describe

positions in sequence X, and primed coordinates “i′” (with 0 ≤ i′ < m) will describe

positions in sequence Y.

The IID Model algorithm

TheIID model is used to report the probability scores of theOTH, COD, andRNA models

in a log-odds version. TheIID model allows us to emit two sequencesX, Y of varying

length independently from each other. TheIID model is the aggregation of two single

HMMs as described in Figure 4. The probability of sequencesX andY being emitted

by theIID model in Figure 4 is

P (X,Y | IID) = η2(1− η)n+m
n−1∏
i=0

PX(ai)
m−1∏
i′=0

PY (bi′), (1)

where the single nucleotide emission probabilities are the ones defined in (??) and (??).

Because the sequences are emitted independently,P (X,Y | IID) can be factorized.

Introduce the following quantities,

FXη (i, j) = η(1− η)(j−i+1)

j∏
k=i

PX(ak), for i ≤ j, (2)
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FYη (i′, j′) = η(1− η)(j′−i′+1)

j′∏
k′=i′

PY (bk′), for i′ ≤ j′. (3)

Use the initialization conditions,

FXη (−1,−1) = η,

FXη (i, i− 1) = η, (4)

FXη (−1, i) = FXη (0, i), 0 ≤ i < n.

(5)

Perform a similar construction forFYα , with α = ηL, ηR, ηJ . In this notation, we have

for the IID model,

P (X,Y | IID) = FXη (0, n− 1)FYη (0,m− 1) ≡ Fη(~0, (n− 1,m− 1)). (6)

The IID is identical in design to the flanking models (FL, FR, andFJ ) that we use

to generate local alignments in theOTH, COD, andRNA models.

OTH Model Forward algorithm

Using the vectorial notation introduced previously in Section 2.3.3 of the paper, the

pair-HMM OTH model Forward algorithm can be cast into the form,

TFL(~ı) = FL(~0,~ı);

TFJ (~ı) = (1− η)
~ı∑
~k=~0

E(~k)FJ(~k +~1,~ı);

B(~ı) = ξTFL(~ı) + TFJ (~ı);

XY (~ı) = PXY (~s~ı) [(1− 2κ)B(~) + (1− 2δ − τ)XY (~)+

(1− ε− τ − γ)X(~) + (1− ε− τ − γ)Y (~)] ,
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with ~ ≡~ı− (1, 1);

X(~ı) = PX(sx~ı ) [κB(~) + δXY (~) + εX(~) + γY (~)] ,

with ~ ≡~ı− (1, 0); (7)

Y (~ı) = PY (sy~ı ) [κB(~) + δXY (~) + γX(~) + εY (~)] ,

with ~ ≡~ı− (0, 1);

E(~ı) = τ [XY (~ı) +X(~ı) + Y (~ı)] ;

TFR(~ı) =
~ı∑
~k=~0

[
(1− ξ)TFL(~k) + ηE(~k)

]
· FR(~k +~1,~ı).

The initialization conditions are

XY (−~1) = 0, (8)

in addition to

XY (i,−1) = Y (i,−1) = 0, 0 ≤ i < n; (9)

XY (−1, i′) = X(−1, i′) = 0, 0 ≤ i′ < m.

To obtain the Viterbi algorithm, one just has to replace all sums in (7) with a maxi-

mization operation.

The probability that sequencesX andY are related according to theOTH model by

any local alignmentXY is

P (X,Y | OTH) =
∑
XY

P (XY | OTH) = TFR(~ı = (n,m)), (10)

for a sequenceX of lengthn and a sequenceY of lengthm.

The log-odds ratios of theOTH model respect to theIID model (1) are given by

LOD(X,Y, OTH) = log2

P (X,Y | OTH)
P (X,Y | IID)

. (11)

3



This general algorithm has a cost O(nm) in storage and a cost O(n2m2) in time, for

two sequences of lengthn andm.

The implemented version of the algorithm usually holds an input alignment fixed,

instead of allowing the model to optimally align the input sequences. This simplified

version can be obtained from the previous description simply by eliminating the vecto-

rial character of the recursions in (7), by imposing the constraintsi = i′ andj = j′. In

its fixed–alignment (diagonal) version theOTH model parsing algorithm becomes cost

O(L) in storage and cost O(L2) in time, for an alignment of lengthL.

A further simplification of theOTH model that renders its cost linear both in time

and memory requires trivializing the pass by theFJ meta-state,

FJ(~ı,~ı) = η2(1− η)2, FJ(~ı,~) = 0 if ~ı 6= ~. (12)

In this way, no unaligned nucleotide is emitted outside the two flanking ends of the

alignment.

Generalization of the OTH model Forward algorithm

In the previous section we have introduced the Forward algorithm for theOTH model

assuming that we score both sequences from beginning to end. We need to generalize

the algorithm so we can score sequences from a given start position(i0, i′0) to an end

position(j0, j′0) with 0 ≤ i0 ≤ j0 < n and0 ≤ i′0 ≤ j′0 < m.

We will need this generalization in the algorithms of theCOD andRNA models.

The generalization of the forward algorithm in (7) when we score between position
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i0 → i in sequence X and positionsi′0 → i′ in sequence Y is,

T
~i0
FL

(~ı) = FL(~i0,~ı),

T
~i0
FJ

(~ı) = (1− η)
~ı∑

~k=~i0

E
~i0(~k)FJ(~k +~1,~ı), (13)

T
~i0
FR

(~ı) =
~ı∑

~k=~ı0

[
(1− ξ)T ~i0FL(~k) + ηE

~i0(~k)
]
· FR(~k +~1,~ı).

The Fl, FR, andFJ functions are the ones defined in (6). Formally the recursions

for B ~i0(~ı), XY ~i0(~ı), X ~i0(~ı) andY ~i0(~ı) are identical to the ones in (7). However the

initialization conditions are a little different

XY (~ı0 −~1) = 0, (14)

in addition to

XY (i, i′0 − 1) = Y (i, i′0 − 1) = 0, i0 ≤ i < j0; (15)

XY (i0 − 1, i′) = X(i0 − 1, i′) = 0, i′0 ≤ i′ < j′0.

The probability that sub-sequencesX : (i0, j0) andY : (i′0, j
′
0) are related accord-

ing to theOTH model byany local alignment is

P (i0, i′0 → j0, j
′
0 | OTH) = T

~i0
FR

(~ı = (j0, j′0)), (16)

for a sequenceX of lengthn and a sequenceY of lengthm.

To obtain the Viterbi algorithm, one just has to replace all sums in (13) with a

maximization operation.

For a fixed start(i0, i′0) and stop positions(j0, j′0), the complexity of this gen-

eralized algorithm is the same as that described before for theOTH model, simply

substitutingn→ j0 − i0 + 1 andm→ j′0 − i′0 + 1.
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COD Model Forward algorithm

Let us define the following quantities:

COB(~ı) = P (0, 0→ i, i′ | OB),

COE(~ı) = P (i, i′ → n− 1,m− 1 | OE), (17)

COJ(~ı,~) = P (i, i′ → j, j′ | OJ).

Where the probabilities are calculated as in equation (16) with the transition probabili-

ties appropriate for eachOTH model:OB ,OE , andOJ .

The Forward algorithm for thisCOD pair-HMM is,

TOB (~ı) = COB(~ı),

CE(~ı) =
∑
α,β

ξα,β · Pα,β(xi−α · · ·xi−1, yi′−β · · · yi′−1)CB(i− α, i′ − β),

TOJ (~ı) = (1− η)
~ı∑
~k=~0

CE(~k) · COJ(~k +~1,~ı), (18)

CB(~ı) = ϕTOB (~ı) + TOJ (~ı),

TOE (~ı) =
~ı∑
~k=~0

[
(1− ϕ)TOB (~k) + ηCE(~k)

]
· COE(~k +~1).

To obtain the Viterbi algorithm, one just has to substitute all sums in (17) and (18) with

a maximization operation.

We use hexamer-dependent statistics for theCOD model. An approximation analo-

gous to the one introduced for the emission of two base pairs in theRNA model (equa-

tion (6) of paper)) can be used to incorporate dicodon probabilities for theCOD model.

If we assume that codonsA andB (in sequences X and Y respectively) are aligned,

and preceded by the aligned codonsÃ, B̃, we can write

P (AB | ÃB̃ t) ' PCOD(AB | t)
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×1
2

[
Phex
X (ÃA)

P (Ã | t)P (A | t)
+

Phex
Y (B̃B)

P (B̃ | t)P (B | t)

]
, (19)

wherePhex
X (ÃA) andPhex

Y (B̃B) are the64 × 64 dicodon frequencies for the rele-

vant two species under comparison, which we assume are time independent.

The probability that sequencesX andY are related according to theCOD model by

any local alignment is

P (X,Y | COD) = TOE (n,m), (20)

for a sequenceX of lengthn and a sequenceY of lengthm. The log-odds ratios of the

COD model respect to theIID model given by (1) are

LOD(X,Y, COD) = log2

P (X,Y | COD)
P (X,Y | IID)

. (21)

This general algorithm has a cost O(n2m2) in storage and a cost O(n3m3) in time, for

two sequences of lengthn andm. The fixed–alignment (diagonal) version theCOD

model parsing algorithm becomes cost O(L2) in storage and cost O(L3) in time, for

an alignment of lengthL. The actual implemented version in the programs uses the

linear-cost version for theOTH modelsOB , OE , OJ , which reduces the complexity of

the implementedCOD algorithm to cost O(L2) in storage and cost O(L2) in time.

RNA Model Forward/Inside algorithm

Let us define the following quantities,

ROB(~ı) = P (0, 0→ i, i′ | OB),

ROE(~ı) = P (i, i′ → n− 1,m− 1 | OE), (22)

ROJ(~ı,~) = P (i, i′ → j, j′ | OJ),
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where the probabilities are calculated as in equation (16) with transition probabilities

appropriate for eachIND model:OB ,OE , andOJ .

The algorithm for theRNA model is,

TOB (~ı) = ROB(~ı),

RNA(~ı) =
~ı∑
~d=~0

W (~ı− ~d,~ı) · {φTOB (~ı− ~d−~1) + TOJ (~ı− ~d−~1)},

TOJ (~ı) = (1− θ)
~ı∑
~k=~0

RNA(~k) ·ROJ(~k +~1,~ı), (23)

TOE (~ı) =
~ı∑
~k=~0

[
(1− φ)TOB (~k) + θRNA(~k)

]
·ROE(~k +~1).

To obtain the “best-alignment” algorithm, one just has to substitute all sums in (22) and

(23) by a maximization operation.

The probability that sequencesX andY are related according to theRNA model by

any local alignment is

P (X,Y | RNA) = TOE (n,m), (24)

for a sequenceX of lengthn and a sequenceY of lengthm. The log-odds ratios of the

RNA-alignment model respect to theIID model given by (1) are

LOD(X,Y, RNA) = log2

P (X,Y | RNA)
P (X,Y | IID)

. (25)

The RNA model is an SCFG. The SCFG-like part of the algorithm hides in the cal-

culation of probabilitiesW (~, ~d). That is, the probability of having a RNA structure

between positions~ı = ~ − ~d and~. The recursions involved in the calculation of the

Inside algorithm forW (~, ~d) are,
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W (~, ~d) = tLW ·
∑
~e

PRNA(~e ∗ ~s~ı) ·W (~, ~d− ~e)

+ tRW ·
∑
~e

PRNA(~e ∗ ~s~) ·W (~− ~e, ~d− ~e)

+ tPW ·
∑
~e1,~e2

PRNA(~e1 ∗ ~s~ı, ~e2 ∗ ~s~) · V (~− ~e2, ~d− ~e1 − ~e2) (26)

+ tbifW ·
∑
~d1

W (~ı+ ~d1, ~d1) ·W (~, ~d− ~d1 − 1),

for 1 ≤ j ≤ m, 1 ≤ j′ ≤ n, 0 ≤ d ≤ j, 0 ≤ d1 ≤ d, 0 ≤ d1 + d2 ≤ d,

and similarly for primedd’s. Herem andn are the respective lengths of the two

sequences to be aligned. The vector~e can take three different values:(1, 1), (1, 0) and

(0, 1) that correspond to moving one position in at least one of the two sequences. The

star product defined as~e ∗ ~s ≡ (exsx, eysy) produces a “gap”—a zero instead of a

nucleotide—when there is no movement for one of the sequences.

The symbolV again denotes the state we are in after emitting one pair in each sequence.

The recursion for stateV is,

V (~, ~d) = tIS1
V · IS1(~, ~d)

+ tIS2
V ·

∑
~d1,~d2

∑
~e1,~e2

[
IS2(~ı+ ~d1 − 1, ~d1 − 1;~− ~d2 + 1, ~d2 − 1)·

PRNA(~e1 ∗ ~s~ı+~d1
, ~e2 ∗ ~s~−~d2

)V (~− ~d2 − ~e2, ~d− ~d1 − ~d2 − ~e1 − ~e2)
]

+ tbifV ·
∑
~d1

WB(~ı+ ~d1, ~d1) ·WB(~, ~d− ~d1 − 1), (27)

for 1 ≤ j ≤ m, 1 ≤ j′ ≤ n, 0 ≤ d ≤ j, 0 ≤ d1 ≤ d, 0 ≤ d1 + d2 ≤ d,

and similarly for primedd’s.

The recursions for the states that take care of length distributions for hairpin loops
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(IS1) and stems, bulges and internal loops (IS2) are,

IS1(~, ~d) = t
~d+1
IS1 ·G

IS1(~, ~d),

IS2(~1, ~d1;~2, ~d2) = t
~d1+~d2+2
IS2 ·GIS2(~1, ~d1) ·GIS2(~2, ~d2), (28)

IS2(0) = t
(0,0)
IS2 ,

where0 ≤ d, d′, d1, d
′
1, d2, d

′
2 ≤ maxloop−1. Here the functionsGISx (for x = 1, 2)

are given by the general expression,

GISx(~, ~d) =
∑
k

∑
~e1,...,~ek

P ISx(~e1 ∗ ~s~)P ISx(~e2 ∗ ~s~−~e1)

P ISx(~e3 ∗ ~s~−~e1−~e2) . . . P ISx(~ek ∗ ~s~−∑k−1

s=1
~es

). (29)

The number of additive terms in this function reflects the number of possible align-

ments, and it verifies the condition
∑k
s=1 ~es = ~d+ 1. The initialization conditions are

sx(−1,j) =“gap”, andsy(j,−1) =“gap”.

For the transition probabilitiesttransstate , we have

∑
trans∈state

ttransstate = 1, ∀ state. (30)

For the particular grammar at hand, the previous conditions translate to

tLW + tRW + tPW + tbifW = 1,

tLWB
+ tRWB

+ tPWB
+ tbifWB

= 1,

tIS1
V + tIS2

V + tbifV = 1,
maxloop∑
l,l′=1

t
(l,l′)
IS1 = 1, (31)

maxloop∑
l,l′=0

t
(l,l′)
IS2 = 1.
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These transition probabilities are calculated using a training set of RNA motifs that

includes rRNAs and tRNAs [26, 27].P IS1(~s~ı) andP IS2(~s~ı) are the mutation proba-

bilities in hairpin loops and internal loops respectively [which we set to be equal to the

OTH model probabilities defined in equaiton (4) of the paper].

Notice that theRNA model can be aligned by either Forward or Viterbi with respect

to the HMM part of the model; however, we always use the Inside algorithm to evaluate

the SCFG part of the pair grammar. This is necessary to assure that theRNA score is

comparable to theCOD andOTH scores (by removing the conditioning on one partic-

ular structure out of the combinatorially enormous number of possible structures), and

also to avoid undesirable effects associated with choosing a best path when we have a

grammar with ambiguity (R. Giegerich, personal communication).

This is the algorithm used when we allow the model to generate its own alignments.

This general algorithm has a cost O(n2m2) in storage and a cost O(n3m3) in time, for

two sequences of lengthn andm. For the scoring system in which a predetermined

alignment is scored locally, since we are not adding additional gaps in the pairwise

alignment, the algorithm loses its vectorial character (j = j′, d = d′), the vector~e

takes always the value(1, 1), and the memory and time complexity of the algorithm

reduces to O(n2) storage and O(n3) time.
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