
XRate: a fast prototyping, training and annotation tool for

phylo-grammars

Supplementary material

P.S.Klosterman, I.H.Holmes et al

Department of Bioengineering

University of California, Berkeley

1 Rate and probability functions

Formally, we construct the sets of allowable rate and probability functions in an xgram grammar file as
follows. Suppose that λ denotes any rate parameter, p any probability parameter, k a nonnegative real
constant and θ = {λ, p, . . .} the set of all rate and/or probability parameters. Then the set of allowable
probability functions is constructed as follows:

• f(θ) = k is an allowable probability function;

• f(θ) = p is an allowable probability function;

• If f(θ) and g(θ) are allowable probability functions, then h(θ) = f(θ)g(θ) is an allowable probability
function;

• If f(θ) and g(θ) are allowable probability functions, then h(θ) = f(θ)+g(θ) is an allowable probability
function.

The set of allowable rate functions is constructed as follows:

• f(θ) = λ is an allowable rate function;

• If f(θ) is an allowable rate function and g(θ) is an allowable probability function, then h(θ) = f(θ)g(θ)
is an allowable rate function;

• If f(θ) and g(θ) are allowable rate functions, then h(θ) = f(θ) + g(θ) is an allowable rate function.

Allowable probability functions may be used in place of probability-like constants in the grammar (i.e.
probabilities for grammar rules & initial state occupancies for rate matrices). Allowable rate functions may
be used in place of rate-like constants in the grammar (i.e. substitution rates).

2 Experimental methods

2.1 The M0 codon model

The parameters used for the M0 mechanistic model of codon evolution were ω= 0.2 and κ = 2.5.

1

2.2 The PROT3 grammar

The HOMSTRAD database is grouped into ten secondary structure classes and contains no two sequences
with greater than 90% sequence identity. The 1032 alignments in the HOMSTRAD database were converted
to Stockholm format. The DSSP secondary structure annotation was converted into a consensus annotation
containing the three secondary structure states using the same mapping as described in the GTJ paper. The
consensus was determined by majority; ie, the annotation within a column with the greatest frequency was
declared the consensus.

The GTJ program and associated files were downloaded from the GTJ FTP site. The GTJ program and
xrate were both evaluated on the xylanase alignment, here referred to as gtjxyl. In addition they were both
evaluated on the “glycosyl hydrolases family 10” (referred to here as ghf10) alignment from HOMSTRAD
(data not shown). This alignment is in the alpha-beta barrel class and includes the endo-1,4-beta-xylanase
A protein from P. fluorescens. This alignment is very similar to the psefl alignment and so was used as
an additional test of the performance of the GTJ method and xrate. The ghf10 alignment is part of the
beta-glycanase SCOP family which also includes the ghf5 and ghf17 alignments in HOMSTRAD. All three
alignments were removed when creating the training databases. Furthermore, the training databases were
queried using BLAST to ensure that no homologs to the test sequences were found.

In order to train on the databases, xrate was first used to estimate a phylogenetic tree for each alignment.
These trees were estimated by neighbor-joining followed by EM to optimize the branch lengths. A point
substitution rate matrix, estimated from a 200-family subset of PFAM, was used for this step. This point
substitution matrix was also used as the “seed” for training the rate matrices of the PROT3 grammar.

For most of the EM training, the “mininc” parameter was set to the default value of 0.001, so that for
each iteration of EM, the fractional increment in the log-likelihood was required to be at minimum 0.001 if
xrate was to regard the increase as an improvement. The “forgive” parameter was set to 5, meaning that
xrate would allow five iterations without such an improvement before terminating.

The exact training set used by GTJ was not available, but a closely similar dataset was used for the
purposes of comparison.

The model parameters used by the GTJ program were converted to phylo-grammar format. The sub-
stitution rates were scaled so that the average substitution rate for the loop state is 1, as per GTJ. The
secondary structures predicted by xrate and the GTJ program were compared to the annotated “true”
secondary structure. Statistics were calculated for the sensitivity and specificity of the predictions for the
three secondary structure states as well as overall prediction accuracy.

2.3 The PFOLD grammar

We attempted to replicate the Pfold program using xrate by inputting the Pfold phylo-grammar (which
consists of the SCFG, its production probabilities, the initial frequencies and substitution rates of base pairs
and unpaired nucleotides, and a parameter denoting that the model is reversible) to xrate as a file in the
S-expression format, then using xrate with this grammar to perform secondary structure annotation on a
testing set containing multiple sequence alignments from Rfam. The results were compared with annotation
done by the Pfold program (2003 version).

The annotation of the data by a stochastic grammar is often determined from the most optimal parse of
the data according to the grammar. In the case of SCFGs, this parse is computed by the CYK algorithm.
However, Pfold uses posterior decoding theory to find the annotation containing the highest expected number
of correct predictions, summed over all parses. Our benchmarks indicate that this approach produces a
greater basepair PPV, but lower sensitivity, than the CYK approach (data not shown). To enable consistent
testing, we modified Pfold to revert to outputting the secondary structure using CYK, as xrate does.
Conceivably, xrate could be modified to produce an annotation in some manner other than CYK. However,
due to the limitless variety of objective functions which can be used to do posterior decoding, we have opted
not to implement any single posterior decoding method, but rather included an option to print out the entire
table of column posterior probabilities in the xrate output. This allows such methods to be implemented
as an additional layer on top of the xrate software.

For both Pfold and xrate, a phylogeny tree is required for each alignment showing the evolutionary
relationship among the sequences. These trees and their branch lengths were estimated by xrate using

2

the Jukes-Cantor model. We then used these trees for both the Pfold and the xrate predictions. Pfold
implements a slightly different tree construction method; we use this model here for simplicity and consistency
between the two methods.

One final measure of data preparation must be done to make Pfold and xrate perform similarly enough
for a benchmark: the difference in their handling of alignment columns containing gaps must be taken into
account. Pfold employs a heuristic where columns containing gaps in 25% of the sequences or more are not
considered for annotation, which generally increases PPV, but lowers sensitivity of base pair predictions.
For consistency, we removed all such columns before showing the alignment data to xrate or Pfold.

The training set and testing set of multiple sequence alignments were prepared from Rfam version 7
as follows. 148 alignments of RNA families, including only experimentally-determined secondary structure
annotations curated from published articles in the literature, were partitioned into 13 superfamilies according
to the Rfam grouping: cis-reg (frameshift, IRES, riboswitch, thermoregulator, other) and gene (antisense,
miRNA, ribozyme, rRNA, guide snRNA, splicing snRNA, sRNA, other). Note that tRNA and Group I
catalytic intron alignments (Rfam IDs RF00005 and RF00028, respectively) were not part of these sets
because they only had one alignment per superfamily. Alignments in each of the 13 superfamilies were
randomly partitioned into two sets, with one added to the training set, the other added to the testing set.
Pseudoknots, comprising a small fraction (175 of the 5780 base pairs) of the two sets, were removed from
all annotations. Additionally, alignment RF00061 (containing 98 base pairs after pseudoknot removal) was
removed from the test set because it was causing Pfold’s implementation of the CYK algorithm to crash.
Lastly, because Pfold’s SCFG cannot generate single-nucleotide hairpin loops, the only instance of such a
loop in the two sets – in RF00232 – was changed to a hairpin loop of 3 unpaired nucleotides by removing
the annotation for the closing base pair.

The above procedure yielded a training set of 71 alignments and a testing set of 77 alignments.
Trees for each alignment/family in the training set and testing set were estimated with xrate using the

Jukes-Cantor model of nucleotide substitution.
Various pseudocounts (for the EM update statistics) and EM convergence criteria were tried to prevent

division-by-zero errors and to maximize accuracy of the Rfam-trained Pfold phylo-SCFG. Empirically, we
found that adding a pseudocount of 0.001 to start times and mutation counts gave the best results.

As the EM algorithm requires an initial substitution rate matrix (or, as in this case, matrices) to improve
upon over its iterations, a seed phylo-grammar must be created. For the seed, we chose rate matrices where
the mutation rates are all equal but low, so that the total mutation rate from any state is � 1; empirically,
we find that “low-balling” the seed like this improves the rate of convergence, as fewer spurious mutations
are estimated in the initial rounds of EM.

xrate and Pfold predict slightly different basepair sets. xrate predicts 490 base pairs that Pfold does
not, Pfold predicts 698 base pairs that xrate does not, and both predict 1487 same base pairs. The accuracy
of the methods is nonetheless comparable.

3 The Phylo-EM algorithm

This appendix covers the spectral theory of continuous-time finite Markov chains (reversible and irreversible)
for comparative sequence analysis, including calculations of the matrix exponential (using either Taylor
series or Padé approximant with scaling and squaring, or eigenvector decomposition), Felsenstein’s pruning
and peeling algorithms for phylogenetic trees, and the Expectation Maximisation algorithm for maximum
likelihood parameterisation.

3.1 Notation

Vectors are written in bold-face and lower-case (p, q) with single-subscripted elements in normal-face (pi,
qj).

Matrices are written in bold-face and upper-case (Q, R) with double-subscripted elements in normal-face
(Qij , Rkl).

3

3.2 The state space

In this section, “state” refers to a state of a continuous-time Markov chain, rather than a nonterminal symbol
in a stochastic grammar (for which the term “state” is occasionally also used, particularly if the stochastic
grammar is a Hidden Markov Model).

Suppose there are N states. (We assume for now that the state space is finite, though this can be relaxed.
The state space must always, however, be discrete.) Let σ(t) be the state of the system at time t.

Examples of finite state spaces include the set of all nucleotides at a given site in an RNA sequence
(N = 4), the set of all dinucleotide pairs (N = 42), the set of all tetranucleotides (N = 44) or the set of all
stems of length L (N = 42L).

Examples of infinite state spaces include the set of all nucleotide sequences and the set of all RNA
secondary structures.

3.3 The rate matrix and the equation of state

Let Qij be the instantaneous rate of mutation from state i to state j, where i 6= j. Let −Qii =
∑

j 6=iQij be
the exit rate from state i. Note that Qii is negative. The N ×N matrix, Q, is called the rate matrix.

Let pi(t) = P (σ(t) = i) be the probability that, at time t, the system is in state i. The N -element vector,
p, is called the state vector.

We will be right-multiplying p by Q, forming the product pQ rather than the product Qp. This is a
result of the way we have chosen to order Q (the rate from i to j is Qij rather than Qji). Consequently we
must treat p as a row vector rather than a column vector.

The equation of state for the continuous-time discrete-state Markov chain is

d

dt
p = pQ (1)

This is a matrix ODE (ordinary differential equation). Expanding this for the j’th state, we obtain
d
dtpj =

∑

i6=j(piQij − pjQji). The first term represents mutations entering state j, while the second term
represents mutations leaving state j.

3.4 Discrete-time analogy

We can get some insight into the behaviour of the equation of state (1) if we consider breaking up the time
axis into short discrete steps of size ∆t. Let σ(m) be the state at the m’th step, i.e. at time T = m∆t, and let
p(m) be the state vector. The process σ(m) is a discrete-time Markov chain, which may be more familiar as
it is similar in some ways to the kind of Hidden Markov Model (HMM) that is used for bioinformatic sequence
analysis (although in bioinformatics, the time variable actually means “position along the sequence”).

If ∆t is small, the probability of transiting from state i to a different state j in one time-step is Rij =
Qij∆t, while the probability of staying in state i is Rii = 1−∑j 6=iQij∆t = 1 +Qii∆t. Thus, the discrete
version of the equation of state is

p(m+ 1) = p(m)R

with R = I + Q∆t, where I is the identity matrix. Here R is the discrete-time transition probability
matrix for short time intervals ∆t.

(Note that R = I+Q∆t is the first-order Taylor series approximation to the true discrete-time transition
matrix, which is exp(Q∆t); see section 3.5. The approximation will be best for small ∆t.)

The general solution to the discrete equation of state is p(m) = p(0)Rm. Note that the continuous-time
matrix exponential exp(Qt) is replaced by Rm = (I + Q∆t)m in the discrete case. An implication of this is
that we can define the matrix exponential as the following continuous-time limit

exp(QT) = lim
∆t→0

(I + Q∆t)T/∆t

where we have used m = T/∆t. We will revisit this continuous-time limit later, in the context of
parameter estimation.

4

3.5 The matrix exponential

By analogy with the corresponding scalar ODE, we can write the solution to the equation of state as
p(t) = p(0)M where M = exp(Qt) is the matrix exponential.

This should not seem strange—since, for example, the scalar exponential x = exp(kt) is often (formally)
defined as the solution to the equation dx

dt = kx with boundary condition x(0) = 1. We have just done the
same thing, but with a matrix Q instead of a scalar k. Of course, writing down a symbolic solution is one
thing; in practise we have to figure out some means of computing the actual entries of M.

One way of doing this is via the Taylor series. For scalars, this is the following infinite series.

x(t) = exp(kt) = 1 + kt+
1

2
(kt)2 +

1

6
(kt)3 + . . . =

∞
∑

n=0

1

n!
(kt)n

It can be verified that this satisfies the scalar ODE dx
dt = kx. Furthermore, this remains true when the

scalars x, k are replaced with matrices M,Q.
Of course, we can’t evaluate an infinite series in finite compute time. However, if kt (or |Qt|) is small,

then only the first few terms in the Taylor series will contribute much to the result. We can think of the
n’th term, 1

n! (Qt)
n, as representing the effect of n successive mutations in the time interval [0, t]. If t is

small compared to 1/ρ, where ρ is the expected mutation rate, then only a few mutations are likely to have
occurred. Thus, we can expect the Taylor series to converge at quite small n.

In the case where kt (or |Qt|) is not small, we use the method of scaling and squaring, as described
in Moler and Van Loan’s Nineteen Dubious Ways to Compute the Exponential Matrix. This exploits a
fundamental property of the exponential function: eA = (eA/m)m. m is chosen to be a power of two for
which eA/m can be efficiently computed; (eA/m)m is computed by repeated squaring. In practice, the Padé
approximant is more efficient than the Taylor series; Gerton Lunter has kindly provided an implementation
of matrix exponentiation using the Padé approximant with scaling and squaring.

In general, each matrix multiplication (& hence each term of the series) takes compute time O(N3).
However, if the rate matrix Q is sparse, this can be improved on.

3.6 Diagonalising the rate matrix

There is an exact way of evaluating the matrix exponential M = exp(Qt), by diagonalising the rate matrix.
To do this we first need to find the eigenvalues and eigenvectors of Q. This is a straightforward application
of matrix algebra.

An eigenvalue and the associated (right) eigenvector of the matrix Q are a scalar µ and a column vector
u satisfying Qu = µu. This implies that (Q− µI)u = 0 where I is the identity matrix. Therefore

|Q− µI| = 0

where |X| represents the determinant of matrix X. This is the characteristic equation. In general the
polynomial in this equation (the characteristic polynomial) has degree N , so there are N solutions and hence
N eigenvalues (though some of these may be identical, or degenerate).

Once we have found an eigenvalue, by solving the characteristic equation or by other means, we can
find the corresponding eigenvector. Let D be the diagonal matrix whose on-diagonal entries are the N
eigenvalues, µk, and let U be the matrix whose columns are the corresponding (right) eigenvectors, u(k). It
follows that QU = UD.

We here consider diagonalizable matrices Q, for which the inverse of U, U−1, exists. The rows of U−1

are left eigenvectors of Q.
Using the identities Q = UDU−1 and UU−1 = I, we can rewrite the equation of state as follows

d

dt
p = pUDU−1 ⇒ d

dt
pU = pUD

Let us change co-ordinates to q(t) = p(t)U. (Hence p(t) = q(t)U−1.) In this co-ordinate scheme,

5

d

dt
q = qD

This separates out into N independent scalar ODEs of the form

d

dt
qk(t) = µkqk(t)

where we recall that µk is the k’th eigenvalue. Clearly the solution is qk(t) = qk(0) exp(µkt). We can
write this in matrix form as q(t) = q(0) exp(Dt) if we recognise exp(Dt) as the diagonal matrix whose
on-diagonal elements are obtained by exponentiating the diagonal elements of Dt.

We conclude this analysis by right-multiplying q(t) by U−1 to recover p(t) = q(t)U−1 = q(0) exp(Dt)U−1 =
p(0)U exp(Dt)U−1. Thus, in general,

M(t) = exp(Qt) = U exp(Dt)U−1

or, in other words,

Mij(t) =
N
∑

m=1

Uim exp(µmt)U
−1
mj (2)

which is the analytic result we sought.
We have chosen to obtain M(t) by diagonalization (as described in this section) rather than by the Padé

approximant with scaling and squaring (section 3.5). We need to exponentiate a given matrix at several
different timepoints t; the algebraic expression provided by diagonalization can be manipulated for increased
efficiency, such as the eigenbasis projection described below. The Taylor and Padé approaches are more
universal, since they do not require that the rate matrix be non-singular (have an inverse); singular rate
matrices are not biologically meaningful.

3.6.1 Reversible models, equilibrium transformation and symmetry

Things become considerably simpler if Q is a symmetric matrix, i.e. QT = Q; then U = U−1T
, so the left

and right eigenvectors are the same. Furthermore, the eigenvalues are real (sketch of proof: let x∗ be the

complex conjugate of x; then show that
∑

ij u
(k)
i Qiju

(k)
j = µk

∑

i u
(k)∗
i u

(k)
i is real, by taking the complex

conjugate of the LHS). The eigenvectors can also be chosen to be real.
Symmetry of Q means that Qij = Qji for all i, j. In practise, this is rare. A slightly less restrictive

constraint is that πiQij = πjQji, where π is the equilibrium state vector (satisfying πQ = 0); this is called
the detailed balance condition and implies that the model is time-reversible. In this case, Q is related
to a symmetric matrix by a simple co-ordinate transformation, so that the abovementioned benefits of a
symmetric matrix can still be obtained.

Phylogeny also becomes easier for time-reversible models, since (as Felsenstein showed) we can then use
the so-called pulley principle to slide the root node around at will, without affecting the likelihood of the
tree. However, the irreversible model is more general and more realistic, and algorithms that work with an
irreversible model can still be used with a reversible model.

The equilibrium co-ordinate transformation goes as follows. Let Sij = Qij

√

πi/πj . We can also write

this as S = P
1

2 QP− 1

2 where P is a diagonal matrix whose nonzero elements are Pii = πi. Suppose that
S = WDW−1 is the diagonalization of S (it’s straightforward to prove that S’s diagonal matrix D is the
same as Q’s). Then

WDW−1 = P
1

2 UDU−1P− 1

2

from which, by inspection, we can infer that U = P− 1

2 W and U−1 = P
1

2 W−1.

6

3.7 Trees

We now extend the treatment to phylogenetic trees, describing the pruning and peeling algorithms of Felsen-
stein and others. In the context of machine learning theory, these can be viewed as message-passing algo-
rithms on a Bayesian edge-labeled graphical model (the tree itself).

The tree has K nodes, numbered 1 . . . K with children lower than parents (what Knuth calls postorder).
Thus node K is the root. Each node n of the tree has an associated state φn.

For a given node n, let Cn be the set of its children (if the tree is binary, this set will have zero or two
members) and let (p, g) be the parent and grandparent of n, respectively. For two adjoining nodes m,n, let
tmn be the branch length from m to n (i.e. the evolutionary timespan separating m and n).

Let Tn represent the subtree containing node n and all its descendants. Let Tn be the complement of Tn,
i.e. all nodes except n and its descendants.

We also have to specify some initial probability distribution over states for the root node of the tree. Let
π be this initial state vector. For time-reversible models, we often take π = s where s is the equilibrium state
vector, but this is not a requirement in general.

3.8 Pruning

A typical situation is that we observe the state of the leaf nodes (having performed some sequencing exper-
iments) but we don’t know the state of the ancestral internal nodes. Felsenstein’s pruning algorithm allows
us to find the likelihood of the observed data at the leaves of the tree, summing over all possible states of
the missing data at the internal nodes. This is achieved by a kind of dynamic programming on the tree (it
can be viewed as an instance of belief propagation on the underlying graphical model).

Define α
(n)
b to be the likelihood of the subtree Tn (i.e. node n and all its descendants) conditioned on

node n being in state b. This likelihood is summed over all possible states at the internal nodes. Felsenstein
computes this recursively

α
(n)
b =

δbj if n is a leaf node in state j
∏

c∈Cn

∑

k

Mbk(tnc)α
(c)
k otherwise (3)

The α
(n)
b are computed in ascending node order, i.e. starting with α

(1)
b and ending with α

(K)
b .

The summed-over-internal-states likelihood of the observed states at the leaf nodes is given by

L =
∑

b

πbα
(K)
b (4)

3.9 Peeling

We can also find the posterior probability that a particular node (or branch) was in a particular state. Again,
this is achieved by a dynamic programming algorithm, called peeling.

Recall that Tn represents all nodes except n and its descendants. For n < K, Tn contains at least one
member: p, the parent of n.

Define β
(n)
a to be the likelihood of Tn, again summed over all states at the internal nodes, with node p in

state a.

β(n)
a =

∏

c∈Cp,

c 6=n

∑

j

Maj(tpc)α
(c)
j

×

πa if p is root
∑

i

β
(p)
i Mia(tgp) otherwise (5)

This time, the β
(n)
a are filled in descending order, i.e. from root-to-leaves. Because of the fill order, we

sometimes refer to the α(n) as the “up likelihoods” and the β(n) as the “down likelihoods”.

We can now write down the posterior probability q
(n)
ab of a given branch (p, n) being in states (a, b)

7

q
(n)
ab =

1

Lβ
(n)
a Mab(tpn)α

(n)
b

3.10 Parameter estimation and EM

Having observed a sequence alignment, and assuming some prior over trees and rate matrices, Bayes’ theorem
implies a posterior probability distribution over rate matrices Q. Such a distribution can be described
algebraically for pairwise sequence analysis (it’s a gamma-like distribution), but gets more complex for
multiple sequences. Here, we consider the simpler compromise of a single point estimate for Q. A more
rigorous inference, yielding confidence limits for Q, can be obtained by MCMC.

The challenge we address is as follows. Given some set of observations of the state of the system at the
leaves of the tree (e.g. a multiple alignment of present-day sequences), what is the best rate matrix Q that
explains these observations?

The traditional approach (used by Dayhoff et al to construct the PAM matrices) is to take a pairwise
alignment of two closely related sequences, count the number of instances Cij of each aligned residue-pair
(i, j), estimate the evolutionary distance ∆t separating the two sequences, and then set Qij ← Cij/∆t.

Because this approach ignores multiple substitutions at the same site (e.g. back-substitutions), it requires
that only closely related sequences can be considered. (Effectively, the approach is using the discrete-time
approximation introduced in section 3.4.) This means that a lot of information in the multiple alignment
gets thrown away, as the sequences are too distant to consider. There are also problems with over-counting
sequences.

A better, more recently popularised approach is to use maximum likelihood (ML); that is, to seek the
rate matrix Q that maximises the Felsenstein likelihood of equation (4). This is the approach that will now
be described.

In general, we can’t write down an analytic formula for the ML rate matrix, because the choice of rate
matrix Q affects our imputation of the state of the system at the ancestral nodes in the tree. In other words,
suppose we start with some initial guess at Q. From this, we can use the above-described peeling algorithm
to make some probabilistic estimate of the missing ancestral sequences; let’s call this estimate ψ. Now,
given ψ, we could make an improved guess at the rate matrix; call this improved guess Q′. However, if we
then plug this new Q′ into the peeling algorithm, we’ll end up with a different estimate ψ′ of the ancestral
sequences. We could use this new ψ′ to estimate another rate matrix Q′′, and thence another ψ′′, and so
on. It seems the best we can hope for is to keep iterating this procedure and hope that it converges.

It turns out that the iterative procedure just described does converge, and that it’s a case of the Ex-

pectation Maximisation (EM) algorithm. In the following sections, we will describe how this works in more
detail.

One should note that there are other methods of estimating rate matrices, based e.g. on resolvents (c.f.
Vingron et al). We prefer EM for several reasons. First, the resolvent method is not a maximum likelihood
method; it’s an approximation. Second, the EM method plays better with the EM algorithms we already
use to train HMMs and stochastic context-free grammars (SCFGs). Third, we think EM is more intuitive:
it is basically just the same as the Dayhoff method, except that it uses unbiased posterior estimates of the
counts, Cij (more on this below). Fourth, EM extends naturally to ML parameterisation of more complex
evolutionary models, including (for example) indel events on whole sequences.

3.11 EM approach: discrete-time case

We can get some insight into how EM works for rate matrices by revisiting the discrete-time setup of
section 3.4. Recall that, in the discrete-time case, the evolutionary problem is similar to the HMM problem
in that it assumes a partial observation of a discrete-time Markov process. Therefore, we can re-use the
well-known version of EM for HMMs: namely, the Baum-Welch training algorithm.

Let’s forget about phylogenetic trees for the moment, and suppose that we make two observations of the
process, initially at time 0 and then at the later time T = m∆t. Let the initial observation be σ(0) = a and
the later observation be σ(m) = b.

In Baum-Welch training, the underlying iterative procedure is as follows:

8

• E-step: Given the observed data (a, b,m) and the current estimate of the (discrete-time) transition
probability matrix, R, estimate the counts matrix C, where Cij is the expected number of times that
the Markov model made a transition from state i to state j.

• M-step: Set Rij ← Cij/
∑

k Cik.

• Iterate until convergence.

Recall that the relationship between the discrete-time transition probability matrix R and the continuous-
time rate matrix Q is (for small ∆t)

R = I + Q∆t

Thus, given a Baum-Welch estimate of R, we can obtain Q by setting Qij ← Rij/∆t (for i 6= j) and
Qii = −∑j 6=iQij . In terms of Q, the Baum-Welch-like algorithm for estimating transition rates therefore
goes something like this:

• E-step: Given the observed data (a, b,m) and the current Q, estimate the counts matrix C.

• M-step: Set

Qij ←
Cij

∆t
∑

k Cik
(6)

if i 6= j, and Qii = −∑j 6=iQij .

• Iterate until convergence.

3.12 EM approach: continuous-time limit

Now think about what happens when we take the continuous-time limit ∆t → 0 while keeping the overall
time interval T constant. The number of time-steps is m = T/∆t. Thus, as ∆t → 0, we have m → ∞: as
the size of the time-step tends to zero, the number of discrete steps required to span the time interval tends
to infinity.

For two distinct states i, j (with i 6= j), the expected number Cij of i→ j transitions should not depend
too much on ∆t. This is because Cij represents something “real” (the number of times that an i mutated
to a j), which is independent of the time-step.

However, if we look at the expected number of self-transitions, Cii, we find a problem. Namely, Cii ∼
T/∆t, so that as ∆t→ 0, the number of self-transitions will blow up. This is because Cii does not represent
a “real” quantity. What it represents is the number of time-steps during which the system stayed in state i
and did not mutate, and this totally depends on the size we have chosen for the time-step, which of course
is an artificial quantity (and one we hope to eliminate).

To fix this, let us define wi = ∆tCii, the expected amount of time that the system spent in state i. Let’s
call this the wait time for state i. We expect that the wait time will not, ultimately, depend on ∆t.

If we now look at the denominator on the right-hand-side of equation (6), we see that the continuous-time
limit lim∆t→0 ∆tCik is equal to 0 if i 6= k, and wi if i = k. In other words, the continuous-time limit of the
Baum-Welch M-step is

Qij ←
Cij

wi

if i 6= j, with Qii = −∑j 6=i Cij/wi.
The interpretation of this is that the best estimate for the rate from i to j is equal to Cij , the expected

number of i → j mutations, divided by wi, the expected amount of time spent in state i. This is exactly
equivalent to the Dayhoff approach, except that Cij and wi are now unbiased posterior estimates of the
mutation count and the wait time, rather than naive (biased) counts.

9

3.13 Estimating the counts and the wait times

It remains to be shown how to estimate the mutation counts C and wait times w. In this section we show
how to do this for a single pair of observations using the eigenvector decomposition of Q.

Recall our observed data are σ(0) = a and σ(T) = b. The likelihood of such an observation is Mab(T).
Suppose that a mutation i→ j occurs at a particular time t, where 0 ≤ t ≤ T . The probability of going

from a to i in time t is Mai(t); the probability of the mutation i → j occuring in a time interval of size dt
is Qijdt; and the probability of going from j to b in time T − t is Mjb(t). Dividing by Mab(T) to obtain the
posterior probability of this mutation, and integrating over all times t, we obtain

Cij =
1

Mab(T)

∫ T

0

Mai(t)QijMjb(T − t)dt

Now suppose that the process is in state i at time t, and no mutation occurs. The probability of going
from a to i in time t is Mai(t) and the probability of going from i to b in time T − t is Mib(t). This instant
contributes dt to the total wait-time in state i. Therefore

wi =
1

Mab(T)

∫ T

0

Mai(t)Mib(T − t)dt

We can write these results as

Cij =
Qij

Mab(T)
Iab

ij (T) , wi =
Cii

Qii

where we have introduced the new function Iab
ij (T) =

∫ T

0
Mai(t)Mjb(T − t)dt. Plugging in the definition

of Mij(t) from equation (2), we obtain

Iab
ij (T) =

N
∑

k=1

UakU
−1
ki

N
∑

l=1

UjlU
−1
lb Jkl(T) (7)

where J (T) is the following kernel matrix

Jkl(T) =
T exp (µkT) if µk = µl
exp (µkT)−exp (µlT)

µk−µl
if µk 6= µl

(8)

3.14 Putting it together: EM for rates on trees

In this section, we outline how to combine the results of sections 3.9, 3.12 and 3.13 to estimate Q by EM
from a multiple alignment.

The algorithm proceeds as follows.

• Set C← 0.

• For each column c in the multiple alignment:

– Use the peeling algorithm of section 3.8 to compute the posterior probability q
(n)
ab for each adjoining

pair of nodes (p, n) of the tree being in states (a, b).

– For each branch (p, n) with length T = Tpn and each a, b, i, j ∈ {1 . . . N}:
∗ Set Cij ← Cij + q

(n)
ab

Qij

Mab(T)Iab
ij (T).

• Calculate the next estimate of the rate matrix, Q′, as follows:

– Let wi = Cii/Qii.

– For all i, j 6= i, set Q′
ij ← Cij/wi.

10

– For all i, set Q′
ii ← −(

∑

j 6=i Cij)/wi.

• Set Q← Q′.

• Repeat until the joint likelihood, L, converges.

As with the Baum-Welch algorithm, we can inform the parameter estimation using prior distributions.
With Baum-Welch, one typically uses (mixtures of) Dirichlet distributions, as these are naturally conjugate
to the multinomial distribution underlying the counts. With the rate EM algorithm, the natural conjugate
priors are (mixtures of) gamma distributions over the Qij (which can, equivalently, be viewed as a gamma
distribution for the exit rates −Qii combined with a Dirichlet distribution over the probabilities −Qij/Qii).

3.15 Accumulating the counts in eigenvector space

The inner loop of the algorithm in section 3.14 is over four state variables (a, b, i, j) each of which takes N
values. If Iab

ij (Tpn) is not cached (which would take O(N4) memory per branch and so is impractical) then
a further loop over two state variables (m,n) is required. The complexity of all of these loops together is
O(N6), as is evident from the following expanded expression for Cij

Cij =
∑

A

∑

c∈A

∑

(p,n)∈T (c)

N
∑

a,b

q
(n)
ab

Qij

Mab(Tpn)

N
∑

k

UakU
−1
ki

N
∑

l

UjlU
−1
lb Jkl(Tpn)

where A represents each multiple alignment, c each column of A and T (c) the tree of states corresponding
to column c.

We can’t eliminate this O(N6) time hit, but we can rearrange the sums in a more efficient form.

Cij =
N
∑

k

U−1
ki

N
∑

l

Ujl

∑

A

∑

c∈A

∑

(p,n)∈T (c)

N
∑

a,b

q
(n)
ab

Qij

Mab(Tpn)
UakU

−1
lb Jkl(Tpn)

This can be described as accumulating the counts in eigenvector space, then transforming back. Finally

we can use the expression for q
(n)
ab

q
(n)
ab =

1

Lc
β(n)

a Mab(Tpn)α
(n)
b

where Lc is the likelihood of column c. Substituting this into the equation for Cij , and rearranging, gives

Cij = Qij

N
∑

k

U−1
ki

N
∑

l

Ujl

∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k Jkl(Tpn) U (n)

l

where U and D are (respectively) the left and right eigenbasis projections of the “up” and “down” peeling
likelihoods, α and β.

U (n)
l =

N
∑

b=1

α
(n)
b U−1

lb D(n)
k =

N
∑

a=1

β(n)
a Uak

In practice the projections U and D are calculated at the same time that the peeling likelihoods α and
β are; the tree need only be traversed up and down once per EM cycle.

Finally, we can rewrite the expression for Cij as

Cij = Qij

N
∑

k

U−1
ki

N
∑

l

UjlEkl (9)

Ekl =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k Jkl(Tpn) U (n)

l (10)

where E is the matrix of “eigencounts”.

11

3.16 Complex eigensystems

Recall that the characteristic equation

|Q− µI| = 0

is a degree-N polynomial with real coefficients (since the Qij) are real.
It follows that the roots of this polynomial must either be real, or complex conjugate pairs (sketch of

proof: complex conjugativity is distributive over multiplication and addition, therefore if x is a zero of the
characteristic then x∗ must also be a zero. Intuitively, there is no way the real coefficients can “distinguish”
between two conjugate roots ±

√
−1.)

Let k be the index of an eigenvalue, µk. If µk is complex, then let the index of the conjugate eigenvalue
be k′. Likewise let l be the index of a (possibly different) eigenvalue and l′ the index of the conjugate (if µl

is complex). Since each of µk and µl can be either real or complex, there are four possibilities for complex
conjugate symmetries:

Condition Eigenvalues Eigenvectors Eigenprojections Kernel Eigencounts Summary

µk real, (both real) Uik, U
−1
ki real U (n)

l real Jkl real Ekl real (real)

µl real; Uil, U
−1
li real D(n)

k real

µk real, µl = µ∗
l′ Uik, U

−1
ki real U (n)

l = (U (n)
l′)∗ Jkl = (Jkl′)

∗ Ekl = (Ekl′)
∗ l↔ l′

µl complex; Uil = U∗
il′ D(n)

k real (k, l)↔ (k, l′)
U−1

li = (U−1
l′i)∗

µk complex, µk = µ∗
k′ Uik = U∗

ik′ U (n)
l real Jkl = (Jk′l)

∗ Ekl = (Ek′l)
∗ k ↔ k′

µl real; U−1
ki = (U−1

k′i)
∗ D(n)

k = (D(n)
k′)∗ (k, l)↔ (k′, l)

Uil, U
−1
li real

µk complex, µk = µ∗
k′ Uik = U∗

ik′ U (n)
l = (U (n)

l′)∗ Jkl = (Jk′l′)
∗ Ekl = (Ek′l′)

∗ k ↔ k′

µl complex. µl = µ∗
l′ U−1

ki = (U−1
k′i)

∗ D(n)
k = (D(n)

k′)∗ Jk′l = (Jkl′)
∗ Ek′l = (Ekl′)

∗ l↔ l′

Uil = U∗
il′ (k, l)↔ (k′, l′)

U−1
li = (U−1

l′i)∗ (k′, l)↔ (k, l′)

Write the following complex expansions

µk = κk + ıλk

U = V + ıW

U−1 = X + ıY

where ı =
√
−1, κk, λk are real and V,W,X and Y are real N ×N matrices.

Using the identities (xyz)∗ = x∗y∗z∗ and x+ x∗ = 2Re [x], we can write equation (2) as

Mij(t) =

N
∑

m=1

Uim exp(µnt)U
−1
mj

=
∑

m:λm=0

Vim exp(κmt)Xmj + 2Re

[

∑

m:λm>0

(Vim + ıWim) exp((κm + ıλm)t)(Xmj + ıYmj)

]

=
∑

m:λm=0

VimcmXmj + 2
∑

m:λm>0

(cm(VimXmj −WimYmj)− sm(VimYmj +WimXmj)) (11)

12

where
ck = exp(κkT) cos(λkT) and sk = exp(κkT) sin(λkT) (12)

The complex form of Jkl(T), from equation (8), is as follows. For repeated eigenvalues, µk = µl:

Jkl(T) = T exp (µkT)

= T (ck + ısk)

For unique eigenvalues, µk 6= µl:

Jkl(T) =
exp (µkT)− exp (µlT)

µk − µl

=
(ck + ısk)− (cl + ısl)

(κk + ıλk)− (κl + ıλl)

=
((ck − cl) + ı(sk − sl)) ((κk − κl)− ı(λk − λl))

(κk − κl)2 + (λk − λl)2

=
((ck − cl)(κk − κl) + (sk − sl)(λk − λl)) + ı ((sk − sl)(κk − κl)− (ck − cl)(λk − λl))

(κk − κl)2 + (λk − λl)2

=
(cklκkl + sklλkl) + ı(sklκkl − cklλkl)

κ2
kl + λ2

kl

where ckl = ck − cl, skl = sk − sl, κkl = κk − κl and λkl = λk − λl.

3.17 Implementation of complex matrix algebra

The following is a fairly detailed discussion of an implementation of the concepts described above. This
section may not be of great interest to a general audience; it was written as a guide to aid in code maintenance.

Our implementation has made heavy use of Gerton Lunter’s EISPACK-based matrix diagonalization and
matrix exponentiation code. This code returns the eigenvalues and eigenvectors in a condensed fashion,
implicitly using the fact that complex eigenvalues of real matrices come in conjugate pairs. The eigenvalues
are contained in a single vector; for complex eigenvalue µk, the real part of the pair is in position k and
the positive imaginary part in position k + 1. The corresponding pair of conjugate (right) eigenvectors are
similarly returned in columns k (real part) and k+ 1 (positive imaginary part) of the eigenvector matrix U.

The second matrix returned, U−1, which in the real case is the inverse of the eigenvector matrix and
contains left eigenvectors as rows, does not directly correspond to the complex matrix inverse; it is simply
the inverse of the eigenvector matrix, viewed as real. The procedure to determine the actual complex inverse
matrix from U−1 is straightforward. Rows corresponding to real eigenvalues µk are correct. As before,
rows corresponding to complex eigenvalues µk are treated as pairs, k and k + 1, with row k containing the
real and k + 1 the imaginary part. In addition, these real and imaginary parts must be divided by two;
the sign of the imaginary part must also be reversed, i.e., the imaginary value in row k + 1 corresponds to
the eigenvalue with negative imaginary part. This translation procedure is easily validated by calculating
the product matrix, (UU−1)ik =

∑N
j=1 UijU

−1
jk using the compaction rules. Entries corresponding to real

eigenvalues contribute UijU
−1
jk ; entries corresponding to a conjugate pair of eigenvalues j and j+1 contribute

2UijU
−1
jk −2Ui,j+1U

−1
j+1,k, which gives the desired result upon dividing by 2 and reversing the sign of U−1

j+1,k.
The following describes how we use this code in calculating the matrix exponential, equation (2), making

use of an intermediate matrix Zmj as defined here. This procedure is equivalent to equation(11) after

13

converting U−1 to the actual complex inverse.

Mij(t) =
∑N

m=1 UimZmj

Zmj = exp(µmt)U
−1
mj eigenvalue µm real

Zmj = cmU
−1
mj + smU

−1
m+1,j eigenvalue µm complex

Zm+1,j = −smU
−1
mj + cmU

−1
m+1,j ”

with cm and sm as defined in equation (12).
We also need to calculate the complex form of the “eigencounts” matrix E. The complex forms of the

left and right eigenbasis projections U and D of the “up” and “down” peeling likelihoods α and β, described
in section 3.15, and the kernel matrix Jkl, are written as follows:

U (n)
l = Ur(n)

l + ıU i(n)
l D(n)

k = Dr(n)
k + ıDi(n)

k Jkl = J r
kl + ıJ i

kl

where Ur(n)
l , U i(n)

l , Dr(n)
k , Di(n)

k , J r
kl and J i

kl are all real.
The complex form of equation (10) is

Ekl = =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

(Dr(n)
k + ıDi(n)

k) (J r
kl(Tpn) + ıJ i

kl(Tpn)) (Ur(n)
l + ıU i(n)

l)

=
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

(

Dr(n)
k [J r

kl(Tpn)Ur(n)
l − J i

kl(Tpn)U i(n)
l]−Di(n)

k [J r
klU

i(n)
l + J i

klU
r(n)
l]

+ı
{

Di(n)
k [J r

kl(Tpn)Ur(n)
l − J i

kl(Tpn)U i(n)
l] +Dr(n)

k [J r
klU

i(n)
l + J i

klU
r(n)
l]

}

)

The conjugate symmetries make it both possible and advantageous to store the complex vectors and
arrays in condensed form; in the vectors the entries corresponding to complex eigenvalue µk have real
part in position k and the imaginary part corresponding to the eigenvalue with positive imaginary part in
position k + 1. The complex arrays Jkl(T) and Ekl have slightly more interesting conjugate symmetry in
the case where both µk and µl are complex. Here, e.g. for Ekl, the conjugate pairs are Ekl ↔ Ek+1,l+1 and
Ek+1,l ↔ Ek,l+1. We adopt the convention that, in the (real) tables used in the implementation, entries
Ekl and Ek+1,l contain the real part of the pair; entries Ek+1,l+1 and Ek,l+1 contain the imaginary part
corresponding to the eigenvalue with positive imaginary part.

The implementation includes four distinct cases, one for each of the possible combinations of real and
complex µk and µl. If both are real, there is only one corresponding Ekl table entry:

Ekl =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k Jkl(Tpn)U (n)

l

If µk is real and µl is complex, we calculate two table entries together: Ekl, containing the real part of the
corresponding conjugate pair, and Ek,l+1, containing the imaginary part of the complex entry corresponding
to the eigenvalue µl with positive imaginary part:

Ekl =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k (Jkl(Tpn)U (n)

l − Jk,l+1(Tpn)U (n)
l+1)

Ek,l+1 =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k (Jkl(Tpn)U (n)

l+1 + Jk,l+1(Tpn)U (n)
l)

As one might expect, the case where µk is complex and µl is real is similar:

14

Ekl =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

(D(n)
k Jkl(Tpn)−D(n)

k+1Jk+1,l(Tpn))U (n)
l

Ek+1,l =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

(D(n)
k+1Jkl(Tpn) +D(n)

k Jk+1,l(Tpn))U (n)
l

In the case where µk and µl are both complex, there are two real parts: Ekl for the Ekl ↔ Ek+1,l+1 pair
and Ek+1,l for the Ek+1,l ↔ Ek,l+1 pair, and two imaginary parts: Ek+1,l+1 for the former pair and Ek,l+1

for the latter.

Ekl =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k (Jkl(Tpn)U (n)

l − Jk+1,l+1(Tpn)U (n)
l+1)−D

(n)
k+1(Jkl(Tpn)U (n)

l+1 + Jk+1,l+1(Tpn)U (n)
l)

Ek+1,l =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k (Jkl(Tpn)U (n)

l − Jk,l+1(Tpn)U (n)
l+1) +D(n)

k+1(Jkl(Tpn)U (n)
l+1 + Jk,l+1(Tpn)U (n)

l)

Ek,l+1 =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k+1(Jkl(Tpn)U (n)

l − Jk,l+1(Tpn)U (n)
l+1)−D

(n)
k (Jkl(Tpn)U (n)

l+1 + Jk,l+1(Tpn)U (n)
l)

Ek+1,l+1 =
∑

A

∑

c∈A

1

Lc

∑

(p,n)∈T (c)

D(n)
k+1(Jkl(Tpn)U (n)

l − Jk+1,l+1(Tpn)U (n)
l+1) +D(n)

k (Jkl(Tpn)U (n)
l+1 + Jk+1,l+1(Tpn)U (n)

l)

In the final calculation, of Cij , the conjugate symmetries lead to a simpler form. Since the sums in
equation (9) include both entries of conjugate pairs, the imaginary part is zero, as expected for transition
counts. In practice, the double sum (9) is calculated as a single nested sum

Cij = Qij

N
∑

k

N
∑

l

U−1
ki EklUjl (13)

Because the elements of the inverse matrix U−1 are left eigenvectors as rows, the U−1
ki entries for a given k

contain either strictly real elements, in the case of a real eigenvector µk, or either the real part (row k) or
the imaginary part (row k+ 1) in the case of a complex µk, regardless of subscript i. Similarly the elements
of matrix U are (right) eigenvectors as columns, so the Ujl entries for a given l are also either strictly real,
for real µl, or either the real or imaginary part of a complex pair l and l + 1 for complex µl, regardless of
subscript j. This means that the evaluation of expression (13) need only be concerned with whether indices
k and l correspond to real or complex µk or µl and not with i or j.

In evaluating the sum, we again have four distinct cases. If both µk and µl are real, we include in the
sum only the term:

U−1
ki EklUjl

For µk real and µl complex, we calculate terms for indices l and l + 1 together, which contribute the
following (remembering that we have taken into account the relationship between the U−1

ki entries and the
actual complex matrix inverse, which here removes a factor of two):

U−1
ki (EklUjl − Ek,l+1Uj,l+1)

The expression for µk complex and µl real is similar; here we process terms k and k + 1 together. The
translation of the U−1

k+1,i entry reverses the sign of the second term:

(U−1
ki Ekl + U−1

k+1,iEk+1,l)Ujl

In the calculation in the case where both µk and µl are complex, we process together terms k and k+ 1,
l and l + 1, which together give:

U−1
ki (Er

klUjl − Ei
klUj,l+1) + U−1

k+1,i(E
i
klUjl + Er

klUj,l+1)

15

where Er
kl and Ei

kl are the sum of the real and imaginary Ekl terms, respectively:

Er
kl = Ekl + Ek+1,l Ei

kl = Ek+1,l+1 + Ek,l+1

In this calculation the pesky signs are easily validated: the product of two imaginary terms gives a factor
of −1, as does the term U−1

k+1,i.

3.18 Application to phylo-grammars

Notationally, the application of the above EM algorithm to phylo-grammars is slightly involved, but the gist
is as follows.

The “standard” biological formulation, as described in e.g. the textbook by Durbin et al, of the dynamic
programming algorithm for aligning sequences to a hidden Markov model (HMM) or stochastic context-free
grammar (SCFG), can be sketched (non-rigorously) as follows:

• For each subsequence S of the full sequence, iterating from shortest to longest:

– For each nonterminal φ in the grammar:

∗ Let E denote the final residue(s) of S and let S′ denote the remainder of S.

∗ (∗) Calculate the likelihood of emitting residues E from state φ.

∗ Multiply this by the max (or sum) of all incoming transitions from S′.

∗ Store this result in cell (φ, S).

Note that the emission E is not restricted to be a single residue. Examples of models that typically make
use of multi-residue emissions are RNA structure (the two nucleotides of a base-pair) and protein-coding
genes (the three nucleotides of a codon). In the single-sequence grammar, it is not essential to aggregate these
emissions to a single state: one can achieve the same effect by staggering the multi-residue emission over
several states (an emission of N correlated residues from an alphabet of size A requires ∼ AN−1 “memory”
states, each emitting one symbol). This trick doesn’t work for phylo-grammars, where we are interested in the
likelihood of not just one N -mer but rather multiple observations of this N -mer in homologous sequences,
correlated according to some underlying phylogenetic tree. Thus, while many implementations of single-
sequence grammars allow at most one residue to be emitted per state without loss of generality (see e.g.
Durbin et al, “Biological Sequence Analysis”). implementations of phylo-grammars must allow multi-residue
emissions.

To adapt the above kind of algorithm for phylo-grammars, it suffices merely to modify the emit likelihood
calculation, flagged with an asterisk (∗) in the above text. Specifically, the emission E is no longer a residue
(or residues), but rather an alignment column (or columns). Instead of calculating the likelihood of emitting
a single symbol (or a set of covariant symbols) one must now calculate the likelihood of an entire alignment
column (or set of covariant columns). This is easily achieved using the phylogenetic “pruning” algorithms
of section 3.7.

The Inside-Outside and Forward-Backward algorithms are similarly easy to modify. Indeed the calculation
of posterior probabilities is unchanged; it is only the accumulation of counts that must be modified. Again
sacrificing exactness for brevity, the single-sequence case may be written as follows:

• Let C(φ,E) be the expected number of times that state φ emitted residue(s) E.

• Initialise all C(φ,E)← 0.

• For each subsequence S of the full sequence:

– For each nonterminal φ in the grammar:

∗ Let E denote the final residue(s) of S and let S′ denote the remainder of S.

∗ Calculate p, the posterior probability that E was emitted by state φ.

∗ (∗) Set C(φ,E)← C(φ,E) + p.

16

The step that must be modified is again flagged with an asterisk (∗). Again, for the phylo-grammar E
represents a column (or set of columns) rather than a single residue (or set of residues). Rather than simply
incrementing a single count, one now runs the phylo-EM algorithm of section 3.13 on column E in order
to estimate a full set of expected substitution transitions and wait times (the Cij and wi of section 3.13).
These counts, weighted by the posterior probability p, are then added to running totals for Cij and wi for
state φ. These running totals are used to update the rate matrix for φ in the M-step of EM.

17

