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1 Calculating the variance of ε

The set O is a mixture of three types of TISs T, Fu and Fd, we have

Ŵ
(O)
O = αTŴ

(O)
T + αFuŴ

(O)
Fu

+ αFd
Ŵ

(O)
Fd

, (1)

where the superscript (O) refers to PWMs obtained from the set O and three PWMs Ŵ
(O)
T ,

Ŵ
(O)
Fu

and Ŵ
(O)
Fd

are virtually calculated from the three types of TISs in the set O. Since we
don’t know these three PWMs, we use three other PWMs obtained from the set I to replace
them, and an error ε is generated

Ŵ
(O)
O = αTŴ

(I)
T + αFuŴ

(I)
Fu

+ αFd
Ŵ

(I)
Fd

+ ε, (2)

Here we arrange the 4× (l + r) matrices in row order to 4(l + r)-dimension vectors. Conse-
quently, Wj(µ) (in main text) becomes W (4(j − 1) + µ), j = 1, 2, ..., l + r and µ = 1, 2, 3, 4.

Thus the error term ε can be explicitly written as

ε =
3∑

i=1

αi(Ŵ
(O)
i − Ŵ

(I)
i ), (3)

where the index i=1,2,3 refer to the three sets T, Fu and Fd, respectively. The “homogeneity
assumption” (see the paper) says that Ŵ

(O)
i and Ŵ

(I)
i are independent finite-sample estima-

tions of the same PWM Wi. Therefore,

E(ε) =
∑

i

αi(E(Ŵ
(O)
i )− E(Ŵ

(I)
i )) =

∑

i

αi(Wi −Wi) = 0, (4)

and the variance of ε can be written as

V ar(ε) =
∑

i

α2
i (V ar(Ŵ

(O)
i ) + V ar(Ŵ

(I)
i )). (5)

We further assume that the nucleotide frequencies at different positions in the PWM are in-
dependent (Staden, R. (1984) Computer methods to locate signals in nucleic acid sequences.
Nucleic Acids Res, 12 :505-519). Thus, for position j and position k (where j, k=1, 2, . . . ,
l + r), we have

Cov(Ŵ
(O)
i (4(j − 1) + µ), Ŵ

(O)
i (4(k − 1) + ν))

=
Wi(4(j − 1) + µ)δµ,ν −Wi(4(j − 1) + µ)Wi(4(k − 1) + ν)

αiΩO
δj,k

(6)
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and

Cov(Ŵ
(I)
i (4(j − 1) + µ), Ŵ

(I)
i (4(k − 1) + ν))

=
Wi(4(j − 1) + µ)δµ,ν −Wi(4(j − 1) + µ)Wi(4(k − 1) + ν)

Ωi

δj,k,
(7)

where µ, ν=1, 2, 3, 4, denoting nucleotide A, C, G, T, respectively. This yields

V ar(Ŵ
(O)
i ) =

1

αiΩO
Σi (8)

and

V ar(Ŵ
(I)
i ) =

1

Ωi

Σi, (9)

where Σi is a block diagonal symmetric matrix and the number of blocks is determined by
the number of positions of the PWM alignment. An block according to position j is shown
as below:



Wi(4j − 3)−W 2
i (4j − 3) −Wi(4j − 3)Wi(4j − 2) −Wi(4j − 3)Wi(4j − 1) −Wi(4j − 3)Wi(4j)

· Wi(4j − 2)−W 2
i (4j − 2) −Wi(4j − 2)Wi(4j − 1) −Wi(4j − 2)Wi(4j)

· · Wi(4j − 1)−W 2
i (4j − 1) −Wi(4j − 1)Wi(4j)

· · · Wi(4j)−W 2
i (4j)




.

With Eq. 5, Eq. 8 and Eq. 9, we finally obtain the variance of ε

V ar(ε) =
∑

i

(
α2

i

Ωi

+
αi

ΩO
)Σi (10)

Then we reduce data redundancy in the PWM to make V ar(ε) full rank with a Z-transformation
as below (Zhang, C.T. and Zhang, R. (1991) Analysis of distribution of bases in the coding
sequences by a diagrammatic technique. Nucleic Acids Res, 19 :6313-6317)





V (3j − 2) = W (4j − 3) + W (4j − 2)−W (4j − 1)−W (4j)

V (3j − 1) = W (4j − 3)−W (4j − 2) + W (4j − 1)−W (4j)

V (3j) = W (4j − 3)−W (4j − 2)−W (4j − 1) + W (4j).

Consequently,
V̂O =

∑

i

αiV̂i + ε′. (11)

The variance of ε′ has a similar form with ε

V ar(ε′) =
∑

i

(
α2

i

Ωi

+
αi

ΩO
)Σ′

i, (12)
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where Σ′
i = HΣiH

T and H is a block diagonal matrix with each block being




1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




.

Ŵi is used as an estimate of Wi to calculate Σ′
i. The effect of this approximation is of high

order in our model if the samples are sufficient, for example over 50. In the following part,
V ar(ε′) will be denoted by Σ′ for convenience.

2 Minimizing the weighted sum of squared errors ε′TΣ′−ε′

In the main text we mentioned that α is estimated by minimizing the weighted sum of square
errors

f(α1, α2, α3) = (V̂O −
3∑

i=1

αiV̂i)
T Σ′−(V̂O −

3∑

i=1

αiV̂i) (13)

, where the index i=1,2,3 refer to the three sets T, Fu and Fd respectively.

Substitute α3 with

α3 = 1−
2∑

i=1

αi (14)

and Eq. 13 can be written as

f(α1, α2) = (S −
2∑

i=1

αiTi)
T Σ′−(S −

2∑

i=1

αiTi) (15)

where

S = V̂O − V̂3 (16)

and

Ti = V̂i − V̂3, i = 1, 2 (17)

To minimize f(α1, α2), we let the partial derivatives be zero

∂f

∂αj

= −2T T
j Σ′−(S −

2∑

i=1

αiTi)− (S −
2∑

i=1

αiTi)
T Σ′− ∂Σ

∂αj

Σ′−(S −
2∑

i=1

αiTi) = 0 (18)

Eq. 18 can be simplified to
2∑

i=1

Kijαi = Lj, j = 1, 2 (19)

where

Kij = T T
j Σ′−Ti, i, j = 1, 2 (20)
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and

Lj = T T
j Σ′−S +

1

2
(S −

2∑

i=1

αiTi)
T Σ′− ∂Σ′

∂αj

Σ′−(S −
2∑

i=1

αiTi). j = 1, 2 (21)

There are 2 equations and 2 variables. The equations can be solved iteratively. First we set

α
(0)
i = 1/3, i = 1, 2 (22)

Then we calculate Σ′(0) and ∂Σ′(0)/∂αj by Eq. 12 ,K
(0)
ij andL

(0)
j by Eq. 20 and Eq. 21, and

then obtain α(1) by solving
2∑

i=1

K
(0)
ij α

(1)
i = L

(0)
j , j = 1, 2 (23)

Then α
(1)
i is used to calculate α

(2)
i and the process is repeated until

∑2
i=1 |α(n)

i − α
(n−1)
i | <

10−6.

It’s difficult to prove that this iteration process will always converge, but in practice it
converges quite fast. For instance, when to estimate the accuracy of RefSeq annotation for
E. coli K12, the algorithm converge in less than 10 steps (Fig. 1); we also show the iteration
process of another 12 randomly selected genomes in Fig. 2.

[Fig. 1 about here.]

[Fig. 2 about here.]
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Fig. 1. The convergency of the optimization algorithm (shown on E. coli K12).
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Fig. 2. The convergency of the optimization algorithm (shown on 12 randomly selected genomes).

6


