
Supplementary Material for Biclustering via Optimal Re-ordering

of Data Matrices

Case Study 1: Biclustering Results for Metabolite Concentration Data

The optimally re-ordered metabolites for region A for OREO result in a dense group-

ing of the amino acids and biosynthetic intermediates under the conditions of nitrogen

starvation in S. cerevisiae. One should note the almost monotonic behavior of the con-

centration profile, which groups the decreasing concentrations at the top and the in-

creasing concentrations at the bottom of the matrix. The twelve amino acids glycine,

asparigine, serine, alanine, methionine, threonine, histidine, aspartate, tryptophan,

phenylalanine, isoleucine, and valine are found in a cluster of 26 metabolites. There is

also a strong aggregation of the biosynthetic intermediates carbamoyl-aspartate, or-

nithine, dihydrooroate, N-acetyl-ornithine, IMP, cystathionine, and orotic acid in the

first nine rows of the data matrix. This supports the observation that most biosyn-

thetic intermediates decrease in concentration over all starvation conditions based on

the hypothesis that the cells turn off de novo biosynthesis as an early, strong, and

consistent response to nutrient deprivation [1]. One should also note that carbamoyl-

aspartate and dihydrooroate, separated by only two positions in the final ordering,

are both on the pyrimidine pathway [1].

Case Study 1: Results for Other Biclustering Methods for Metabolite

Concentration Data

The results for Cheng and Church’s Algorithm [2] reported a total of 10 biclusters. A

bicluster of 30 metabolites contained 15 of the 18 metabolites assigned to the amino

acid category [1] over various conditions related to carbon and nitrogen starvation in

E. coli and S. cerevisiae. The longest consecutive ordering of amino acids within this

bicluster are serine, methionine, threonine, glutamate, and alanine, which is exactly

the same as that reported in the hierarchical clustering results. The majority of the

other metabolites in this bicluster are biosynthetic intermediates. The remaining nine
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biclusters do not result in any consistent grouping of related metabolites, although

three biclusters contain only nitrogen starvation conditions and two biclusters con-

tain only two nitrogen starvation conditions for E. coli and S. cerevisiae. In fact,

one of the biclusters contains all of the nitrogen starvation conditions for E. coli.

Only one bicluster was reported from the ISA algorithm [3]. The four metabolites

in this bicluster are acetyl-coa, aspartate, ADP, and cAMP, under the conditions of

carbon starvation in E. coli. Acetyl-coa is a TCA cycle compound and aspartate is

categorized as a amino acid metabolite [1], so there is no direct relationship between

the metabolites identified in this bicluster. The OPSM Algorithm [4] produced a

bicluster that contained the amino acid metabolites valine, isoleucine, alanine, phos-

phoenolpyruvate, ATP, proline, asparigine, and glutamate under the conditions of

nitrogen and carbon starvation in S. cerevisiae and E. coli. The other OPSM biclus-

ters revealed little correlation among the metabolites grouped together. The BiMax

Algorithm [5] resulted in several biclusters of increased concentration and many of

the metabolites were assigned to at least three biclusters. However, little relation

among the metabolites in the BiMax biclusters was found. The SAMBA Algorithm

[6] was also applied to the metabolite concentration data and resulted in a total of

three biclusters with little overlap of the metabolites. No apparent grouping of related

metabolites was observed for these biclusters.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]
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Case Study 2: Image Reconstruction (Lenna Image)

When optimally re-ordering the replicated data matrix using OREO, we see in Figure

S.8 that we do recover a stretched version of the original image. In Figure S.8, we see

that the Memetic algorithm [7] was also able to recover the elongated image, whereas

the two hierarchical clustering methods and CLICK [8] could not. The agglomerative

hierarchical clustering algorithm [9] recovers most of the image but misplaces an entire

subsection near the top. The European Bioinformatics Initiative (EBI) hierarchical

clustering algorithm [10] and CLICK partition the image into choppy subsections

with no continuity between them.

[Figure 8 about here.]

In the original study [11], it was also shown that re-ordering over the 100 adjacent

columns centered in the region of the eyes proved to be the most difficult task for all of

the clustering methods. In Figure S.9 we present the results for all of the algorithms,

where it can be seen that only OREO and the Memetic algorithm recover the original

image. Note that in contrast to the previous examples, agglomerative hierarchical

clustering performs significantly worse and partitions the original image into several

subclusters, as do EBI hierarchical clustering algorithm and CLICK.

[Figure 9 about here.]

Case Study 3: Synthetic Data with Implanted Biclusters

In Figures S.10 through S.17 we present the average bicluster relevance and average

module recovery for the results of OREO for the synthetic data set with implanted

biclusters presented in [5].

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]
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[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

Cancer Study 4: Colon Cancer Data

The exact classification of the tissues are presented in Table S.1 for the method

presented in Alon et al. and OREO for colon cancer data set [12].

[Table 1 about here.]

Case Studies 1, 4, and 5: Plots of Correlation Values for Biclustering

Results

In Figures S.18 through S.29, we present the average correlation among the rows and

columns as a function of (1) the bicluster area (the number of rows times the number

of columns in a bicluster), (2) the number of rows per bicluster, and (3) the number

of columns per bicluster for the (a) metabolite concentration data, (b) colon cancer

data, and (c) breast cancer data sets. Discussions for these figures are provided in

the main text of the article.

[Figure 18 about here.]

[Figure 19 about here.]

[Figure 20 about here.]

[Figure 21 about here.]

[Figure 22 about here.]
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[Figure 23 about here.]

[Figure 24 about here.]

[Figure 25 about here.]

[Figure 26 about here.]

[Figure 27 about here.]

[Figure 28 about here.]

[Figure 29 about here.]

Case Study 6: Curated Gene Ontology Network and nsNMF Results for

Yeast Segregant Gene Expression Data

We examined biological processes from a curated gene ontology network for S. cere-

visiae as judged by a panel of expert scientists [13]. From this curated data set of

295 biological processes, we extracted those that are annotated to at least ten or

more genes. This screening process resulted in a total 130 biological processes for

subsequent analysis. Out of the 6216 genes analyzed in the experiment, 4152 are

annotated to at least one of these 130 selected processes. For the remaining genes

that were not annotated to any of the 130 processes, we created an “un-annotated”

process to analyze their placements relative to the annotated genes.

The metric presented in Equation 16 in the text avoids bias towards processes

that are annotated to a large number of genes in the experiment. For instance,

processes such as translation and ribosomal biogenesis and assembly that are anno-

tated to 683 and 331 genes, respectively, are more likely to be found grouped together

random than processes that are annotated to a small subset of genes, like aldehyde

metabolism (annotated to 21 genes) and carbohydrate transport (annotated to 36

genes). Equation 16 effectively accomplishes the task of properly weighting the en-

richment contributions of processes annotated to only a small number of genes but

are considered important [13] like aldehyde metabolism and carbohydrate transport.
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We also queried the top 200 genes from nsNMF after sorting on the basis con-

ditions using the Gene Ontology Term Finder (http://db.yeastgenome.org/cgi-bin/-

GO/goTermFinder.pl) to examine if enrichment was achieved for specific biological

processes. Sorting on factor 1 resulted in a significant grouping of genes annotated to

the energy reserve metabolic process (P-value = 3.81 × 10−13). The genes based on

sorting on factor 2 were significantly annotated to the RNA-mediated transposition

process (P-value = 1.50× 10−18) and the richest annotation of genes was found from

sorting on factor 3 for the amino acid metabolic process (P-value = 8.04 × 10−22).

Sorting the genes based on the fourth factor resulted in a significant grouping that

was annotated to the telomere maintenance via recombination process (P-value =

1.40× 10−4). This indicates that although the orderings of genes provided by the in-

dividual factors for nsNMF do not result in a significant overall enrichment (presented

in Figure 4), they do produce significant groupings of genes related to important bi-

ological processes.

Additional Gene Expression Data Set: Budding Yeast Gene Expression

Data

Another data set commonly studied in the literature is an aggregation of experiments

on budding yeast, consisting of 6,222 genes and 80 experimental conditions [9]. In

the original study, hierarchical clustering was applied to the 2,4567 genes that had

a functional annotation in the Saccharomyces Genome Database. It was shown that

genes of similar function cluster together, and in particular genes encoding: (a) ribo-

somal proteins, (b) respiration, (c) ATP synthesis and oxidative phosphorylation, (d)

components of the proteasome, (e) DNA replication, (f) the tricarboxylic acid cycle

and oxidative phosphorylation, (g) glycolytic enzymes, and (h) protein synthesis [9].

This data set was analyzed in another study [11] by a Memetic and hierarchical

clustering algorithm, where several clusters annotated to specific functional groups

were presented. Specifically, the Memetic and hierarchical clustering algorithm were

applied to the 3,222 genes without missing values and the clusters that were reported
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were annotated to the functions “protein synthesis” (similar to (h)) , “protein degra-

dation” (similar to (d)), “ATP synthesis + oxidative phosphorylation + TCA cycle”

(combinations of (c) and (f)), and “sterol metabolism”. We optimally reordered the

3,222 genes using OREO (results available as another file in Supplementary Material)

and compared our results to the previous findings [9, 11].

We observed a large clustering of genes encoding “protein synthesis” (78 genes),

which is consistent with all the other methods, as each was able to find a clustering of

at least 70 of these terms. The most variability in the results was found in the cluster-

ing of the smaller functional groups. Note that the functional groups for the clusters

presented for the Memetic algorithm [11] are very similar to the ones described in the

original study (namely “protein degradation” and “ATP synthesis + oxidative phos-

phorylation + TCA cycle”) . Our method also uncovers clusters enriched in these

molecular functions, where our clusters for “oxidative phosporylation” are separated

into “ATP + oxidative phosphorylation” (8 genes) and “TCA + oxidative phospho-

rylation” (7 genes), which is consistent with the findings of the original study [9]. The

hierarchical clustering algorithm also produced this partitioning of the genes encoding

“oxidative phosphorylation”. Another consistency with the original study is that our

cluster of genes associated with the function “protein degradation” (12 genes) was

found to be rich in those genes encoding the components of the proteasome. The

“protein degradation” cluster for the Memetic algorithm was found to have a similar

number of proteasome genes (14 genes), whereas the hierachical clustering algorithm

was able to cluster together 18 proteasome genes [7].

The only functional group reported by [11] that was not presented in the original

study was “sterol metabolism”, where the Memetic algorithm, hierarchical clustering

algorithm, and OREO reported clusters of 7, 4, and 5 genes annotated to this func-

tion, respectively. Several other clusters were found by OREO that were consistent

with the findings in the original study, such as “glycolysis” (8 genes), “DNA replica-

tion” (5 genes), and “spindle pole body assembly and function” (8 genes). We also

analyzed our results for clusters associated with more interesting molecular functions
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not reported in the earlier studies. For instance, we discovered a tight cluster con-

taining all 6 histone genes in consecutive ordering, which is similar to the histone

cluster presented in the original study, except our cluster also contains Histone H1.

There is another interesting cluster containing 7 genes associated with the functions of

MRNA and TRNA splicing, processing, and exporting. When searching the entire set

of genes, there are only 14 functional annotations associated with membrane proteins

and our method produces a tight cluster consisting of 4 genes corresponding to mem-

brane protein functions, 3 of which are vacuolar proteins. Of the 8 genes associated

with peroxisome biogenesis, we found a cluster of 4 within a span of 13 genes, whereas

these genes were scattered in the original hierarchical clustering results. There are

also two clusters in which genes associated with asparagine utilization (4 genes in

cluster, 7 in total data set) and allantoin utilization (3 genes in cluster, 4 in total

data set) are consecutively ordered. Lastly, there is an interesting cluster of 6 genes

associated with various amino acid biogenesis functions (arginine, isoleucine and va-

line, threonine and methionine, and histidine biosynthesis) that were not found when

examining the results of the original study.

Table S.2 - Ontology results for Alon et al. colon cancer data for all

biclustering algorithms

Ontology results obtained for the biclustering algorithms Cheng and Church, ISA,

OPSM, xMotif, OREO, nsNMF, and SAMBA using Onto-Express for the Alon et

al. colon cancer data set. A hypergeometric distribution was used and the reference

array was specified to be the 2,000 genes analyzed. Biclusters are only reported for

each method if they have a p-value less than 0.01.

Cheng and Church’s Biclusters
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Cluster No. No. genes molecular function biological process

2 72 peroxiredoxin activity repsonse to oxidative stress

3 11 deoxyguanosine kinase activity guanosine metabolic process

4 6 tyrosine 3-monooxygenase activity catecholamine biosynthetic process

5 5 single-stranded RNA binding RNA destabilization

6 3 GDP-dissociation inhibitor activity G-protein signaling

10 3 fucosyltransferase activity L-fucose catabolic process

ISA Biclusters
Cluster No. No. genes molecular function biological process

1 128 transmembrane receptor protein negative regulation of protein

tyrosine phosphatase activity kinase activity

2 111 cAMP-dependent protein transcription

kinase activity

3 98 threonine endopeptidase activity ubiquitin-dependent protein

catabolic process

4 130 vinculin binding transforming receptor signaling pathway

growth factor beta

5 97 threonine endopeptidase activity ubiquitin-dependent protein

catabolic process

6 96 nucleotide binding ubiquitin-dependent protein

catabolic process

7 81 cadmium ion binding none

8 148 ligase activity regulation of small GTPase

mediated signal transduction

9 147 ligase activity regulation of small GTPase

mediated signal transduction

10 87 transcription activator ubiquitin-dependent protein

catabolic process

OPSM Biclusters
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Cluster No. No. genes molecular function biological process

2 3 mRNA 3’-UTR binding cell differentiation

3 4 formlytetrahydrofolate 10-formyltetrahydrofolate

dehydrogenase activity catabolic process

4 6 phosphatase binding cell-cell adhesion

5 11 3’-5-’ exonuclease activity regulation of cell

redox homeostasis

6 25 none mRNA catabolic process

7 48 DNA binding regulation of small GTPase

mediated signal transduction

8 94 nucleotide binding protein amino acid phosphorylation

9 226 ATP binding protein amino acid phosphorylation

10 456 actin binding Wnt receptor signaling pathway

xMotif Biclusters
Cluster No. No. genes molecular function biological process

1 562 nucleotide binding cell migration

2 505 none cell migration

3 494 none immune response

4 491 identical protein binding none

5 480 extracellular matrix structural constituent translation

6 473 none notch signaling pathway

7 473 protein serine/threonine kinase activity cell migration

8 471 receptor binding immune response

9 467 nucleotide binding immune response

10 467 none immune response

11 467 none immune response

12 462 none immune response

OREO Biclusters
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Cluster No. No. genes molecular function biological process

1 97 structural constituent of ribosome translation

2 41 structural constituent of ribosome translation

3 114 structural constituent of ribosome translation

4 69 structural constituent of ribosome translation

5 153 structural constituent of ribosome translation

7 575 structural molecule activity establishment and/or

maintenance of cell polarity

8 1687 structural constituent of ribosome translation

9 289 structural constituent of ribosome translation

nsNMF Biclusters
Cluster No. No. genes molecular function biological process

Factor 1 100 structural constituent of ribosome translation

Factor 2 100 structural constituent of ribosome antigen processing and presentation

SAMBA Biclusters
Cluster No. No. genes molecular function biological process

15 16 zinc ion binding regulation of cell growth

18 10 receptor activity axon guidance

25 17 structural constituent of ribosome translation

26 16 structural constituent of ribosome translation

27 22 structural constituent of ribosome translation

28 22 structural constituent of ribosome translation

29 15 structural constituent of ribosome translation

30 16 structural constituent of ribosome translation

31 16 structural constituent of ribosome translation

32 16 structural constituent of ribosome translation

33 22 structural constituent of ribosome translation

34 28 structural constituent of ribosome translation

35 20 structural constituent of ribosome translation

36 19 structural constituent of ribosome translation

37 20 structural constituent of ribosome translation
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Table S.3 - Ontology results for van’t Veer et al. breast cancer data for all

biclustering algorithms

Ontology results obtained for the biclustering algorithms Cheng and Church, ISA,

OPSM, xMotif, OREO, nsNMF, and SAMBA using Onto-Express for the van’t Veer

et al. breast cancer data set. A hypergeometric distribution was used and the refer-

ence array was specified to be the 5,000 genes analyzed. Biclusters are only reported

for each method if they have a p-value less than 0.01. Note that xMotif was unable to

produce any biclusters as the number of samples (98) was too large for the method.

Cheng and Church’s Biclusters

Cluster No. No. genes molecular function biological process

2 44 4-alpha-glucanotransferase meiotic spindle organization

and biogenesis

4 37 aminomethyltransferase activity C21-steroid hormone metabolic process

5 26 acetyl-CoA transporter activity positive regulation of endothelial

cell differentitation

6 34 none regulation of cytoskeleton

organization and biogenesis

7 34 glycine dehydrogenase activity generation of precursor

metabolites and energy

8 32 ceramide kinase activity icosanoid biosynthetic process

9 30 3-galactosly-N-acetylglucosaminide axial mesoderm morphogenesis

4-alpha-L-fucosyltransferase activity

10 31 cytokine activity macroautophagy

ISA Biclusters
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Cluster No. No. genes molecular function biological process

1 207 heparin binding cell motillity

2 206 heparin binding Notch signaling pathway

3 206 structural constituent of ribosome chromosome organization and biogenesis

4 203 heparin binding angiogenesis

5 215 GDP binding G-protein signaling, adenylate

cyclase inhibiting pathway

6 210 vitamin D receptor binding chromosome organization and biogenesis

7 207 oxygen binding oxygen transport

8 207 metabotropic glutamate, nucleosome assembly

GABA-B like receptor activity

9 203 vitamin D receptor binding C21-steroid hormone biosynthetic process

10 197 DNA binding chromosome organization and

biogenesis (sensu Eukaryota)

11 196 DNA binding chromosome organization and

biogenesis (sensu Eukaryota)

12 259 mRNA binding DNA damage response, signal

transduction by p53 class mediator

13 192 none zinc ion transport

14 244 ErbB-3 class receptor binding tricarboxylic acid cycle

15 180 metal ion binding very-long-chain fatty

acid metabolic process

OPSM Biclusters
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Cluster No. No. genes molecular function biological process

1 2 receptor signaling protein activity none

2 3 MHC class II protein binding regulation of macrophage activation

3 5 interleukin-3 receptor activity signal transduction

4 10 chemoattractant activity regulation of progression

through S phase

5 16 interleukin-10 receptor activity signal transduction

6 35 C-C chemokine receptor activity immune response

7 59 guanyl-nucleotide exchange immune response

factor activity

8 115 C-C chemokine receptor activity immune response

9 221 chemokine activity immune response

10 455 MHC class I receptor activity immune response

11 995 chemokine activity immune response

12 2007 transmembrane receptor activity immune response

OREO Biclusters
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Cluster No. No. genes molecular function biological process

1 116 proteasome activator activity immune response

2 248 isopentenyl-diphosphate positive regulation of

delta-isomerase activity alpha-beta T cell proliferation

5 1027 MHC class II receptor activity antigen processing and presentation of

peptide or polysaccharide antigen

via MHC class II

hline 6 31 chemokine activity immune response

8 28 MHC class II receptor activity antigen processing and presentation of

peptide or polysaccharide antigen

via MHC class II

hline 12 380 structural constituent of ribosome glycolysis

14 271 structural constituent of ribosome translation

17 23 MHC class I rececptor activity antigen processing and presentation

of peptide antigen via MHC class I

33 480 3-chloroallyl aldehyde intracellular signaling cascade

dehydrogenase activity

41 584 structural constituent of ribosome translation

39 807 MHC class II receptor activity antigen processing and presentation of

peptide or polysaccharide antigen

via MHC class II

nsNMF Biclusters
Cluster No. No. genes molecular function biological process

Factor 1 200 sugar binding immune response

Factor 2 200 symporter activity fatty acid biosynthetic process

SAMBA Biclusters
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Cluster No. No. genes molecular function biological process

20 78 extracellular matrix structural constituent phosphate transport

24 76 aminoacyl-tRNA ligase activity tRNA aminoacylation for

protein translation

27 87 chemokine activity immune response

3 124 chemokine activity immune response

30 137 wide-spectrum protease inhibitor activity homophilic cell adhesion

31 146 serine-type endopeptidase activity homophilic cell adhesion

34 77 chemokine activity immune response

36 34 double-stranded DNA specific cell division

5’-3’ exodeoxyribonuclease activity

77 88 extracellular matrix structural constituent phosphate transport

78 34 structural molecule activity epidermis development

82 35 steroid binding very-long-chain fatty

acid metabolic process

84 39 unspecific monooxygenase activity electron transport

87 135 unspecific monooxygenase activity pigmentation

93 51 unspecific monooxygenase activity electron transport

94 45 unspecific monooxygenase activity electron transport
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Figure S.1: Biclustering Results for Cheng and Church’s Algorithm
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Figure S.2: Biclustering Results for Cheng and Church’s Algorithm: Enlarged
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Figure S.3: Biclustering Results for Cheng and Church’s Algorithm: Enlarged
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Figure S.4: Biclustering Results for ISA Algorithm
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Figure S.5: Biclustering Results for OPSM Algorithm
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Figure S.6: Biclustering Results for BiMax Algorithm
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Figure S.7: Biclustering Results for SAMBA Algorithm
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Figure S.8: The clustering results for OREO, a Memetic algorithm, EBI hierarchical
clustering, agglomerative hierarchical clustering, and CLICK for the Lenna image
replicated row-wise ten times. Note that the only two methods able to recover the
correct ordering are OREO and the Memetic algorithm.
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Figure S.9: The clustering results for OREO, a Memetic algorithm, EBI hierarchical
clustering, agglomerative hierarchical clustering, and CLICK for the partial Lenna
image replicated row-wise ten times. Note that the only two methods able to recover
the correct ordering are OREO and the Memetic algorithm.
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Figure S.10: Average bicluster relevance for OREO for constant, non-overlapping
biclusters.
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Figure S.11: Average module recovery for OREO for constant, non-overlapping bi-
clusters.
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Figure S.12: Average bicluster relevance for OREO for additive, non-overlapping
biclusters.
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Figure S.13: Average module recovery for OREO for additive, non-overlapping bi-
clusters.
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Figure S.14: Average bicluster relevance for OREO for constant, overlapping biclus-
ters.
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Figure S.15: Average module recovery for OREO for constant, overlapping biclusters.
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Figure S.16: Average bicluster relevance for OREO for additive, overlapping biclus-
ters.
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Figure S.17: Average module recovery for OREO for additive, overlapping biclusters.
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Figure S.18: Absolute value of average correlation values among rows for metabolite
concentration data as a function of bicluster area.
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Figure S.19: Absolute value of average correlation values among rows for metabolite
concentration data as a function of bicluster row size.
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Figure S.20: Absolute value of average correlation values among columns for metabo-
lite concentration data as a function of bicluster area.
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Figure S.21: Absolute value of average correlation values among columns for metabo-
lite concentration data as a function of bicluster column size.
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Figure S.22: Absolute value of average correlation values among rows for colon cancer
data as a function of bicluster area.
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Figure S.23: Absolute value of average correlation values among rows for colon cancer
data as a function of bicluster row size.
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Figure S.24: Absolute value of average correlation values among columns for colon
cancer data as a function of bicluster area.
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Figure S.25: Absolute value of average correlation values among columns for colon
cancer data as a function of bicluster column size.
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Figure S.26: Absolute value of average correlation values among rows for breast cancer
data as a function of bicluster area.

46



101 102 103

Number of Rows in Bicluster

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
bs

o
lu

te
V

al
ue

of
A

ve
ra

ge
C

or
re

la
tio

n
of

R
ow

s

CC
ISA
OPSM
OREO
SAMBA

Figure S.27: Absolute value of average correlation values among rows for breast cancer
data as a function of bicluster row size.
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Figure S.28: Absolute value of average correlation values among columns for breast
cancer data as a function of bicluster area.
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Figure S.29: Absolute value of average correlation values among columns for breast
cancer data as a function of bicluster column size.
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List of Tables

S.1 Separation of Tumor and Normal Tissues for Alon et al. and OREO
for colon cancer data set. The entries in bold indicate a misclassification. 51
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Method Tumor Rich Tissues Normal Rich Tissues
Alon et al. T16, T28, T13, T9, T21, T35, N9, T30, T36, N6, T33,

T10, T27, T8, T5, T4, T1, N11, N1, N39, N28, N35,
T15, T26, T39, T11, T6, T19, N32, N4, N33, N7, T37,
T12, T22, T34, T7, N8, T3, N5, N27, N3, N2, N40,

N12, T17, T25, T18, T23, T31, N36, T2, N29, N10
T20, N34, T24, T29, T38, T14,

T40, T32
OREO T2, T37, T25, T17, T14, T15, T7, T3, N36, T40, N40

T18, T4, T1, T11, T19, T23, N33, N27, N35, T36, N28,
T16, T5, T10, T34, T24, T26, N29, T30, N32, N39, T33,
T12, T9, T21, T6, T20, T29, N1, N6, N2, N11, N5,
T31, T32, T8, T13, T22, T38, N4, N3, N10, N9, N12

T28, T35, N34, T27, T39,
N8, N7

Table S.1: Separation of Tumor and Normal Tissues for Alon et al. and OREO for
colon cancer data set. The entries in bold indicate a misclassification.
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