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Supplementary Figure 1. Synthetic gene regulatory network. This synthetic model 
structure is designed to mimic a miniature gene regulatory network, with several major 
features. First the network contains a number of variables, 9 variables in total, 3 of which 
are independent and 6 dependent. Second, the variables are assembled into a hierarchy of 
regulatory relationships, with independent variable mimicking regulators and cofactors, 
and dependent variables mimicking target genes. Third, the complexity of the network is 
controlled in that dependent variables have 1-3 parents, mostly 2 or 3, and each 
regulator/cofactor controls a set of targets. Targets may share regulators and thus may 
have different levels of coregulation/coexpression, which can lead to confounding models. 
Fourth, a diverse set of continuous non-linear and logical relationships among variables 
were encoded by the algebraic formulas in Supplementary Table 1 to describe a realistic, 
yet complicated regulatory network. 

u6

u1 

u5

u2

u4
u3



 

Supplementary Figure 2. Marginal and two-way joint distributions of the 350 data 
points sampled from the synthetic network (Supplemental Figure 1 and Supplemental 
Table 1) for nodes x1-3 and u1-3. (a-c) show the value of node u1 strongly depends on its 
causal node, x1, but not on control nodes like x2. (e, f, i, j) show the value of node u2 has 
limited marginal dependency on either on of its two causal nodes, x1 and x2, but has 
strong conditional dependency on either one of x1 and x2 given the other. We call this 
effect coordination between the causal nodes in determining the target node. (d, g, h, k, l) 
show no such coordination does not exists when we plug in a control node x3 in place of 
either one of the two causal nodes, x1 and x2. 



Supplementary Tables 

 

Variable Algebraic formula True parent set 

x1 N(0,1)  

x2 N(10,5)  

x3 N(0,10)  

u1 (x1)3 + N(0,0.1) x1 

u2 x1 + N(0,0.1), x1+10≥x2 

x2/10 + N(0,0.1), x1+10<x2 

x1, x2 

u3 (x2-x3)/(x2+10) + N(0,0.05) x2, x3 

u4 x1+sin(x3) + N(0,0.1), x1+10≥x2 

x2/10+sin(x3) + N(0,0.1), x1+10<x2 

x1, x2, x3 

u5 log(exp(x1)+exp(u3)) + N(0,0.1) x1, u3 

u6 (u1+u5)*u3/2+ N(0,0.05) u1, u3, u5 

Supplementary Table 1. Relationships encoded into the true models for the synthetic 
dataset. N(μ, σ) is a normal random distribution with mean of μ and standard deviation of 
σ. 



(a) 

One-way ANOVA F P   

 1712.35 0   

Tukey Test MI3 BN dMI3 MI2 

MI3 NA 4.45E-11 4.45E-11 4.45E-11 

BN NA NA 5.89E-11 4.45E-11 

dMI3 NA NA NA 4.45E-11 

MI2 NA NA NA NA 

(b) 

One-way ANOVA F P   

 2818.09 0   

Tukey Test MI3 BN dMI3 MI2 

MI3 NA 4.45E-11 4.45E-11 4.45E-11 

BN NA NA 4.45E-11 4.45E-11 

dMI3 NA NA NA 4.45E-11 

MI2 NA NA NA NA 

Supplementary Table 2. One-way ANOVA followed by Tukey test on the performance 
for MI3 score and control scores in learning 2-parent models from synthetic data. (a) 
Testing statistics for average absolute sensitivity of the 4 methods when learning results 
were compared to true models; (b) Testing statistics for average relative sensitivity of the 
4 methods when learning results were compared to best 2-parent models possible. Only 
testing results for sensitivities are shown, testing results for precisions are the same, since 
precision equals sensitivity multiplied by a constant of 1 (panel a) or 13/12 (panel b). F 
statistics and P-value are calculated for one-way ANOVA test, only upper triangle of the 
P-values table is shown for Tukey test (lower triangles would be symmetric to upper 
triangle). Tukey tests were conducted for all potential pair-wised comparisons, although 
of the most interest are those between MI3 versus control methods. Four scores: MI3, BN 
(log conditional probability), dMI3, MI2. 

The experimental procedure is the same as Figure 2 in the main paper with only statistical 
test results for 350 data points are show here. Test results for other sample sizes are the 
same or very close. In the main paper, one representative experiment results at 350 data 
points (Figure 1), and average performance curves across different sample sizes, from 25 
up to 1000, for all 4 scores are displayed (Figure 2).  



 

Cutoff Selected† Verified Verified 

Ratio 

<0.1 8358 1156 0.138  

0.1 4042 733 0.181  

0.2 2226 513 0.230  

0.3 1303 368 0.282  

0.4 634 231 0.364  

0.5 249 107 0.430  

0.6 58 34 0.586  

0.7 3 3 1.000  

† MYC gene itself was pre-excluded from the target selection 

Supplementary Table 3. Genes selected to be potential MYC targets (T) based on 
criterion I(MYC; T) > specific cutoff value: cutoff value vs total number of targets, 
number of targets verified against the MYC target database 
(http://www.myccancergene.org/), and the verified ratio. 

http://www.myccancergene.org/


 

Method MI3 dMI3 BN MI2 

Rank\R2 Symbol Targets Symbol Targets Symbol Targets Symbol Targets

1 ASH2L 18 PSIP1 19 PSMD14 4 MRPL3 6 

2 TRIP12 14 FNBP1 19 SFRS1 4 PES1 6 

3 ZNF143 13 MRPL28 14 TXNDC9 3 HSPC111 6 

4 ARPC1B 11 NIPSNAP1 7 PCID1 3 SSBP1 6 

5 CSK 9 CD59 7 GTF2A2 3 SSRP1 6 

6 SIAH2 7 RAB27A 6 MSH2 3 MCM7 5 

7 FNBP1 6 ACOT8 5 NDUFAB1 3 TMEM53 5 

8 MIZF 6 ARPC5 5 PSMA3 3 JTV1 5 

9 GCN5L2 6 KIAA0922 5 KIF23 3 TPX2 4 

10 PRPSAP1 5 SIAH2 5 CHERP 2 MAD2L1 4 

Supplementary Table 4. Top 10 most frequently selected coregulators or MYC cofactors 
for 368 verified MYC targets with I(T; MYC)  0.3 by using MI3 or control methods: top 
1 highest scoring cofactor is counted for each target. Cofactors in bold are involved in 
MYC dependent or general transcriptional regulation, those in italics are in the list of 368 
verified MYC targets with I(T; MYC)  0.3. This table based on top 1 MYC cofactors are 
directly comparable to Table 2 in the main text based on top 5 MYC cofactors. 



 

Relationship OR AND XOR 

Contigency Table p R1 R2 T 

1/4 0 0 0 

1/4 1 0 1 

1/4 0 1 1 

1/4 1 1 1  

p R1 R2 T 

1/4 0 0 0 

1/4 1 0 0 

1/4 0 1 0 

1/4 1 1 1  

p R1 R2 T 

1/4 0 0 0 

1/4 1 0 1 

1/4 0 1 1 

1/4 1 1 0  
H(T) 2-0.75*log23 2-0.75*log23 1 

H(R1)=H(R2) 1 1 1 

H(T,R1)=H(T,R2) 1.5 1.5 2 

H(R1,R2) 2 2 2 

H(T,R1,R2) 2 2 2 

I(T;R1)=I(T;R2)= 

H(T)+ H(R1)- H(T,R1) 

1.5-0.75*log23 1.5-0.75*log23 0 

I(T;R1,R2)= H(T)+ 

H(R1,R2) -H(T,R1,R2) 

2-0.75*log23 2-0.75*log23 1 

I(T;R1,R2)- 

I(T;R1)-I(T;R2) 

0.75*log23-1 

=0.189 

0.75*log23-1 

=0.189 

1 

 

Supplementary Table 5. The non-additive property of high order interactions, i.e. 
I(T;R1,R2)-I(T;R1)-I(T;R2) = I(T;R1;R2) >0, shown by common types of regulatory 
relationships involving two independent parents (R1 and R2) and a target (T). Entropies 
(H’s) and mutual information (I’s) are calculated according to definitions in 
Supplementary Note 1. These are ideal cases. In reality, we don’t always get positive high 
order interactions due to the data quality and absence of real regulators in the data. Hence 
we don’t impose any threshold on high order interaction alone. 



Supplementary Notes 

Supplementary Note 1: Mutual information definition, extension and calculation 

Here we describe entropy and mutual information definition for discrete variables. The 
corresponding definition for continuous variables remained the same [1], except that the 
summation becomes integration in the following formulas. 

In information theory, for a discrete variable, X, Shannon entropy H(X) is defined to be 
[2]: 
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Where X=xi (i=1,2, , Mx), corresponding to Mx different states of variable X, notice that 
Mx may be different from total number of data points. Shannon entropy is a measurement 
for the randomness of variable distribution, i.e. how unpredictable the value or state of a 
variable is. The higher the Shannon entropy is, the harder to predict the value or state of 
this variable. Similarly, the entropy of joint distribution of two discrete variables X and Y 
is defined to be [2]: 
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Where Y=yj (j=1,2, , My), corresponding to My different states of variable Y.  

Mutual information between two variable X and Y, I(X;Y), is defined based on Shannon 
entropy, it equals the difference between the sum of entropy of X and Y individually vs 
the entropy of them jointly [2, 3]:  

)3(),()()();( YXHYHXHYXI   

Mutual information measures the difference in predictability when considering two 
variables together versus considering them independently. Said another way, mutual 
information is a measurement of dependency between variables. High dependency or 
mutual information usually occurs when there is causal relationship between variables, or 
common causal factors exit. Therefore, mutual information can be used to identify best 
predictors, or even causal factors and target/dependent factors of variables.  

One specific problem addressed in this work is the mutual information among multiple 
variables. We extended entropy and mutual information definitions in formula (1-3) 



correspondingly. For 3 variables X, Y, Z, we can define three types of three-way mutual 
information: total correlation C(X;Y;Z) [4], generalized two-way I(X;Y,Z), and three-way 
interaction information I(X;Y;Z) [5, 6]: 
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These are all generalized mutual information of order 3, different in lower order terms: 
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Supplementary Table 5 show common examples, where the relationships are high order 
and can only be fully captured by high order mutual information. 

Conditional entropy and mutual information can also be defined based on conditional 
probability. A rearranged version of conditional mutual information can derived by 
starting with the definition of conditional probability given Z: 
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Next, apply Bayes’ rule and rearrange to yield: 
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Re-write into mutual information: 
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Apparently, this conditional mutual information is of order 3 and is closely related to all 
other types of three-way mutual information. So far, we have been focusing on three-way 
mutual information and entropy. Similarly, the conception of entropy and mutual 



information can be directly extended to arbitrary higher order to capture even 
complicated relationships among multiple variables or multiple sets of variables. 

Supplementary Note 2: Comparison between MI and log-based local conditional 
probability 

Plug entropy definitions formula (1) and (2) into formula (3), we get the expanded 
formula for mutual information based on probability:  
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Where X=xk (j=1,2, , N) Y=yk (j=1,2, , N), corresponding to N data points of variable X 
or Y.  

The counterpart to mutual information in Bayesian network (BN) is log-based local 
conditional probability, or log likelihood (LL) can be expanded as:  
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It can be seen that mutual information is close to log likelihood. However mutual 
information is more standardized, with a weighted-averaging term 1/N and normalizing 
term P(xk), which minimize the effects of sample size and specific distribution of 
individual variables. Without these two terms, log likelihood decreases with larger 
samples size N and fluctuate greatly with the individual distributions of X and Y, and it 
becomes difficult to compare models with different data sizes and variables/nodes. 
Therefore, mutual information is a score better tailored for local model/network learning 
than log likelihood. 

Supplementary Note 3: presentation of probabilistic causation using directed graphs 

Directed graphs, including directed acyclic graphs (DAG) or Bayesian Networks, have 
been well established tools for probabilistic causation modeling [7]. In these graphs, 
directed arrows between nodes represent causal relationships. For instance, the synthetic 
network (Supplementary Figure 1) shows node x1 cause u1. This relationship can be 
interpreted as the value of variable x1 (event A: x1 = a specific value) directly 
determines/alters on the probability distribution of the variable u1 (probability of event B: 
u1 = a specific value). Indeed, x1 strongly affects u1 distribution (Supplementary Figure 
2b), whereas another node x2 has almost no effect on u1 (Supplementary Figure 2c). 
From a predictive point of view, knowing the value of x1 greatly narrows down (helps 



predict) the potential values of u1 (Supplementary Figure 2b vs 2a) while knowing the 
value of x2 helps very little if any (Supplementary Figure 2b vs 2a). This is a simple 
two-way causal relationship, where there is one causal node and one target node. The 
synthetic network and real gene regulatory network features high-order causal 
relationships, where two or more other nodes cause one target node. In the synthetic 
network (Supplementary Figure 1), x1 + x2 -> u2 is an example of three-way causal 
relationship. Either one of the two causal nodes, x1 or x2, does affect (and predict) the 
distribution of u2 marginally, yet to a limited extend (Supplementary Figure 2e and 2i). 
But both nodes jointly tell a lot more on u2. In other words, knowing x2, x1 can predict 
u2 extremely well, and vice versa (Supplementary Figure 2f vs 2e, 2j vs 2i). We call this 
effect coordination or synergy between causal factors in determining the target (more 
description in Methods). As a control case, knowing x3, a fake causal factor of u2 does 
not help at all on the prediction of u2 either using x1 or x2 (Supplementary Figure 2h vs 
2e, 2k vs 2i). Similarly, knowing x1 or x2 does not help predicting u2 using x3 either 
(Supplementary Figure 2g vs 2d, 2l vs 2d). 

Clearly, these high-order causal relationships are more complicated than two-way 
relationships hence cannot be fully measured by two-way or correlative metrics 
(Supplementary Figure 2e vs 2d, 2i vs 2h, more examples are given in Supplementary 
Table 5). In this paper, we propose to capture high-order causal relationships using a 
high-order mutual information based metric, MI3 (Methods and Supplementary Table 5). 
MI3 effectively differentiate causal vs confounding relationships, where two-way or 
correlative metrics fail frequently (Figure 4 and 5). 

Supplementary Note 4: Exhaustive search for the best R1-R2 pairs given T, but not the 
best R2-T pairs given R1 

In MI3, model learning was focused locally, i.e. we scored and compared all possible 
local regulatory models for specific target T. This target centered model learning applied 
to both synthetic data and experimental data, even though biologically we are interested 
in constructing models centered at particular R1=MYC in the latter case. It would be less 
appropriate to compare models across different T’s because they are not mutually 
exclusive. Similarly, in Bayesian network, logP(T|R1,R2) is only comparable for fixed T, 
where all other terms including P(R1)P(R2) in the full product form of joint probability 
[8, 9] cancelled out. Therefore, we only searched for best R1-R2 pairs given T, but not 
best R2-T pairs given R1 when learning probabilistic models based on MI3 score or log 
conditional probability or any other established score. This local approach makes it 
affordable for MI3 to conduct exhaustive search, which leads to globally optimized 
models. Heuristic search can be taken when computing time is limited. 

Supplementary Note 5: Major differences in learning regulatory models from microarray 



data versus synthetic data 

When MI3 is applied to an experimental gene expression dataset, two key differences 
between experimental data and synthetic data need to be considered. First, in our gene 
expression data there are 8359 genes, which is significantly larger system than the 
9-variable synthetic network. For an exhaustive search for the best two-parent set for 
each gene, this problem size would require searching ~1011 (83593) combinations—a 
scale that is currently out of reach computationally. In this work, we focus on the 
construction transcription regulatory networks centered to MYC. Therefore, we can fix 
one regulator, R1, to MYC, and only search across cofactors (R2s) and targets (T). This 
reduced problem requires the search of ~107 (83592) combinations for our gene 
expression data.  This scale of problem is computationally tractable. For both scenarios, 
we constrain MYC targets (T) with I(T; MYC) 0.3, i.e. targets that have enough 
marginal dependency on MYC to ensure that MYC does likely regulate the target based 
on the the microarray dataset. Second, there are frequently multiple equally interesting 
and closely scoring regulatory models learned from experimental data for each target. For 
example, several regulators are equally important, or multiple genes in a 
pathway/complex represent the same regulatory action equally well. Correspondingly, we 
kept the top 5 highest scoring 2-parent models for each target gene, rather than the top 1 
as in the synthetic data. Keeping top 1 model only led to almost the same list of top 10 
MYC cofactors (Supplementary Table 3-4), except that the number of targets mapped to 
individual cofactors was too small for quantitative evaluation. 
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