
Some methods for blindfolded record linkage

Tim Churches1*, Peter Christen2

1 Centre for Epidemiology and Research, Population Health Division, New South Wales
Department of Health, Locked Mail Bag 961, North Sydney NSW 2059, Australia

2 Department of Computer Science, Australian National University, Canberra ACT 0200,
Australia

Appendix 2 – An impractical protocol for the minimum-knowledge calculation of the
Jaro and Winkler metrics

The following protocol for minimum-knowledge calculation of the Jaro and Winkler string
similarity (described in detail below) is known to be infeasible. We include it in the hope of
stimulating further work on the blindfolded calculation of these comparators.

The Jaro comparator and the Winkler modification of it are widely used in current record
linkage systems – the Winkler comparator is used by both the US Bureau of the Census and
Statistics Canada in their Canlink/GRLS (Generalised Record Linkage System) softwarei,ii,iii.
Using the notation of Winkler, the Jaro comparator is defined as:

 = WA •c /dA + WB •c /dB + W•(c-)/c

where
WA = weight associated with characters in the first of two strings
WB = weight associated with characters in the second of two strings
W = weight associated with transcriptions
dA = length of first string
dB = length of second string
 = number of transpositions of characters in common, and
c = number of characters in common in the pair of strings

If c= 0, then = 0. Two characters are considered in-common if and only if they are no
further than g character positions apart, where g = max(dA,dB)/2 – 1. Characters in-common
are flagged as “assigned”; remaining characters as “unassigned”. The number of
transpositions is computed by comparing the first assigned character on one string with the
first assigned character on the other string. If the characters are not the same, half of a

i Winkler WE: Record linkage software and methods for merging administrative lists. Statistical Research
Report Series No. RR2001/03. Washington DC: US Bureau of the Census; 2001. Available at
http://www.census.gov/srd/papers/pdf/rr2001-03.pdf

ii US Bureau of the Census: Record Linkage Software User Documentation. Washington DC; 1999. Available at
http://www.alw.nih.gov/Other_resources/amgtech/dsc/directory/docs/US%20Census%20Bureau%20Record%
20Linkage%20SW%20user%20Documentation.pdf

iii Statistics Canada: Canlink (formerly GRLS) (software). Ottawa: Statistics Canada; 2001.

transposition has occurred. Subsequently assigned characters are compared in a similar
fashion, and the total number of transpositions is accumulated until there are no more
assigned characters to compare. Note that each string has the same number of assigned
characters, by definition. The values of WA, WB and W are typically set to 1/3.

The Winkler comparator modifies the Jaro metric if the first few characters of the two strings
agree. For i = 1,2,3,4:

W = + i •0.1•(1-) if the first i characters agree

The following is a description of a minimal-knowledge version of the Jaro and Winkler
comparators, using Rivest's concept of “chaffing and winnowing” to hide information []. The
actors are the same as in the previous protocols. The notation H(k,x) denotes the HMAC
keyed hash digest of value x using key k.

The protocol consists of the following steps:

1. As in step 1 in Protocols 1 and 2, Alice and Bob mutually agree on: a secret random key,
KAB, which they share only with each other; a keyed hash transformation function (HMAC);
and a standard protocol for pre-processing strings to render them in a standard form.

2. Alice pre-processes (normalises) the values in attribute A.a in the agreed manner and for
each character, j, with position i in the normalised string of length d, she prepares a
“wheat” tuple of the form:

({A.record_key_digest, RA }PublicKeyD, H(KAB, j), iA, dA, RA, H(KAD, RA))

For each character, j, Alice also prepares a set of “chaff” tuples, of the form:

({A.record_key_digest, RA }PublicKeyD, H(KAB,∀j'), iA, dA, RA, H(Krand, RA))

where ∀j' is each character in the alphabetic complement of j (for example, if j is “f” then
∀j' takes the value of every other letter except “f”), and both RA and Krand are arbitrary, but
different random keys which are used by Alice only once (in other words, they are nonces).
Alice sends this set of wheat and chaff tuples, in randomised order, to Carol.

3. Bob does the same with the values of his attribute B.a, sending Carol a randomised
mixture of tuples of the following forms:

({B.record_key_digest, RB }PublicKeyD, H(KAB, j), iB, dB, RB, H(KBD, RB))
({B.record_key_digest, RB }PublicKeyD, H(KAB,∀j'), iB, dB, RB, H(Krand, RB))

4. For each of the tuples received from Alice, Carol locates “in common” tuples in the set she
has received from Bob – that is, any tuples from Bob in which the second element,
H(KAB, j), matches the second element of the tuple from Alice which is currently under

consideration, and in which the character position iB is within g characters of iA. Tuples
which meet these criteria are flagged as “assigned”. Note that Carol is unable to determine
the original value of character j from which H(KAB, j) was derived, nor is she able to
distinguish “wheat” tuples from “chaff” tuples.

5. Carol performs the same actions for each of the tuples she has received from Bob, with
respect to the set of tuples from Alice. Carol now has two sets of “assigned” tuples, each
set containing the same number of elements.

6. Carol performs an inner join of these two sets, using iA and iB as the join key – in other
words, Carol forms the Cartesian product of all assigned tuples which share the same
character position in their respective source strings.

7. From each of the resulting joined tuples, Carol extracts the following elements and sends
them as a tuple to David:

({RA ,A.record_key_digest}PublicKeyD, {RB ,B.record_key_digest}PublicKeyD, agreement_flag, i,
dA, dB, RA, RB, H(KAD | Krand, RA), H(KBD | Krand, RB))

where agreement_flag has a value of 0.5 if the pair of H(KAB, j) values agree, or 0 if they
do not, and KAD | Krand .means either KAD or Krand (Carol is unable to tell which).

8. For each of the tuples he receives, David uses his knowledge of KAD and KBD to compute H
(KAD, RA) and H(KBD, RB), and discards those tuples which contain chaff or a mixture of
wheat and chaff.

9. David uses his private key to decrypt the values of A.record_key_digest and
B.record_key_digest. For each distinct pairing of A.record_key_digest and
B.record_key_digest in the remaining tuples, David obtains the number of transpositions,
, by summing the values of agreement_flag, and the number of characters in common, c,
by counting the number of tuples within each key digest pairing. The values of dA and dB

will be the same for all tuples within each record key digest pairing. David now has all the
information he needs to compute the value of the Jaro and/or Winkler metrics for each
record key digest pair.

In this protocol, Carol learns the number of characters in each of Alice's and Bob's original
values, but nothing more. Due to the chaffing, she is unable to determine what the actual
values are, nor is she able to determine which of Alice's values have characters in common
with Bob's values, or vice versa. Unfortunately, the chaffing also means that in step 5 of the
protocol, from Carol's perspective, each tuple from Alice will appear to be assigned to a large
number of tuples from Bob, and vice versa. The reason is that there is either a wheat or chaff
tuple for every possible letter in each position of each original string. In step 6, a
combinatorial explosion results in a huge number of tuples – for example, several million from
only ten original values. Unfortunately this renders the protocol impractical. It may be possible
to reduce the amount of chaffing to improve the efficiency of the protocol, without unduly

reducing its security. The other major flaw is that it is completely vulnerable to collusion
between or simultaneous compromise of Carol and David.

