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Fig. 1. The block diagram representation of a diversity combining system.

gain of the lth diversity branch is denoted bŷhl(t) and
nl(t) designates the corresponding additive white Gaussian
noise (AWGN) component with varianceN0. The relationship
between the transmitted signals(t) and the received signals
xl(t) at the combiner input can be expressed as

x(t) = ĥ(t)s(t) + n(t) (1)

where x(t), ĥ(t), and n(t) are L × 1 vectors with entries
corresponding to thelth (l = 1, 2, . . . , L) diversity branch
denoted byxl(t), ĥl(t), and nl(t), respectively. The spatial
correlation between the diversity branches arises due to the
spatial correlation between closely located receiver antennas
in the antenna array. The correlation matrixR, describing
the correlation between diversity branches, is given byR =
E[ĥ(t)ĥH(t)], where(·)H represents the Hermitian operator.
Using the Kronecker model, the channel vectorĥ(t) can be
expressed aŝh(t) = R

1
2h(t) [36]. Here, the entries of the

L × 1 vectorh(t) are mutually uncorrelated with amplitudes
and phases given by|hl(t)| and φl, respectively. We have
assumed that the phasesφl (l = 1, 2, . . . , L) are uniformly
distributed over(0, 2π], while the envelopesζl(t) = |hl(t)|
(l = 1, 2, . . . , L) follow the Nakagami-m distribution pζl(z)
given by [21]

pζl(z) =
2mml

l z2ml−1

Γ(ml)Ω
ml

l

e
−

mlz
2

Ωl , z ≥ 0 (2)

where Ωl = E
{

ζ2l (t)
}

, ml = Ω2
l

/

Var
{

ζ2l (t)
}

, and Γ (·)
represents the gamma function [44]. Here,E{·} and Var{·}
denote the mean (or the statistical expectation) and variance
operators, respectively. The parameterml controls the severity
of the fading. Increasing the value ofml decreases the severity
of fading associated with thelth branch and vice versa.

The eigenvalue decomposition of the correlation matrix
R can be expressed asR = UΛUH . Here, U consists
of the eigenbasis vectors at the receiver and the diagonal
matrix Λ comprise the eigenvaluesλl (l = 1, 2, . . . , L) of
the correlation matrixR. The receiver antenna correlations
ρp,q (p, q = 1, 2, . . . , L) under isotropic scattering conditions
can be expressed asρp,q = J0 (bpq) [45], where J0(·) is
the Bessel function of the first kind of order zero [44] and
bpq = 2πδpq /λ . Here,λ is the wavelength of the transmitted
signal, whereasδpq represents the spacing between thepth
andqth receiver antennas. In this article, we have considered a
uniform linear array with adjacent receiver antennas separation

represented byδR. Increasing the value ofδR decreases the
spatial correlation between the diversity branches and vice
versa. It is worth mentioning here that the analysis presented
in this article is not restricted to any specific receiver antenna
correlation model, such as given byJ0(·), for the description
of the correlation matrixR. Therefore, any receiver antenna
correlation model can be used as long as the resulting corre-
lation matrixR has the eigenvaluesλl (l = 1, 2, . . . , L).

A. Spatially Correlated Nakagami-m Channels with MRC

In MRC, the combiner computesy(t) = ĥH(t)x(t), hence
the instantaneous SNRγ(t) at the combiner output in an
MRC diversity system with correlated diversity branches can
be expressed as [9], [30]

γ(t) =
Ps

N0
ĥH(t)ĥ(t) =

Ps

N0

L
∑

l=1

λlζ
2
l (t) = γsΞ(t) (3)

where γs = Ps/N0 can be termed as the average SNR
of each branch,Ξ(t) =

∑L
l=1 ζ́

2
l (t), and ζ́l(t) =

√
λlζl(t).

It is worth mentioning that although we have employed the
Kronecker model, the study in [30] reports that (3) holds for
any arbitrary correlation model, as long as the correlation
matrix R is non-negative definite. It is also shown in [30]
that despite the diversity branches are spatially correlated, the
instantaneous SNRγ(t) at the combiner output of an MRC
system can be expressed as a sum of weighted statistically
independent gamma variatesζ2l (t), as given in (3). The PDF
pζ́2

l
(z) of processeśζ2l (t) follows the gamma distribution with

parametersαl = ml and β́l = λl Ωl/ml [46, Eq. (1)].
Therefore, the processΞ(t) can be considered as a sum of
weighted independent gamma variates. As a result, the PDF
pΞ(z) of the processΞ(t) can be expressed using [46, Eq. (2)]
as

pΞ(z) =

L
∏

l=1

(

β́1

β́l

)αl ∞
∑

k=0

ǫk z
∑L

l=1 αl+k−1e−z/β́1

β́
∑

L
l=1 αl+k

1 Γ
(

∑L
l=1 αl + k

) ,

z ≥ 0 (4)

where

ǫk+1 =
1

k + 1

k+1
∑

i=1





L
∑

l=1

αl

(

1− β́1

β́l

)l


 ǫk+1−l,

k = 0, 1, 2... (5)

ǫ0 = 1, and β́1 = minl{β́l} (l = 1, 2, . . . , L).
When using MRC, if the diversity branches are uncorrelated

having identical Nakagami-m parameters (i.e., when in (3)
λl = 1 (l = 1, 2, . . . , L), α1 = α2 = · · · = αL = α, and
β́1 = β́2 = · · · = β́L = β), it is shown in [24] that the
joint PDFpΞΞ̇(z, ż) of Ξ(t) and its time derivativėΞ(t) at the
same timet, under the assumption of isotropic scattering can
be written as

pΞΞ̇(z, ż) = pΞ(z)
1

√

2πσ2
Ξ̇

e
−

ż2

2σ2
Ξ̇ , z ≥ 0, |ż| < ∞ (6)


