Bringing metabolic networks to life: convenience rate law and thermodynamic constraints Supplementary material

Wolfram Liebermeister^{1*}, Edda Klipp¹

Email: Wolfram Liebermeister - lieberme@molgen.mpg.de; Edda Klipp - klipp@molgen.mpg.de;

List of mathematical symbols

Symbol	Meaning
$N = (n_{il})$	stoichiometric matrix
$W = (w_{li})$	regulation matrix
$\mathbf{c} = (c_i)$	vector of metabolite concentrations
$\mathbf{v} = (v_l)$	vector of reaction velocities
k	vector of model parameters
$G_{i}^{(0)}$ K_{i}^{G} k_{l}^{V} k_{li}^{M} k_{li}^{A} k_{li}^{I} $\mathbf{k}_{li}^{eq} = (k_{l}^{eq})$	Gibbs free energy of formation of metabolite i
$k_i^{\tilde{G}}$	energy constant of metabolite i
$k_l^{ m V}$	velocity constant of reaction l
k_{li}^{M}	Michaelis-Menten constant of reaction l and metabolite i
k_{li}^{A}	activation constant of reaction l and metabolite i
$k_{li}^{ m I}$	inhibition constant of reaction l and metabolite i
$\mathbf{k}^{\mathrm{eq}} = (k_l^{\mathrm{eq}})$	vector of equilibrium constants
$\mathbf{k}^{\mathrm{ind}}$	vector of independent equilibrium constants
$R_{ m ind}^{ m eq}$	matrix to compute \mathbf{k}^{eq} from $\mathbf{k}^{\mathrm{ind}}$
E_l	total enzyme concentration of reaction l
$k_{\pm l}^{\mathrm{cat}}$	maximal turnover rates (forward and backward) of reaction l
$v_{\pm l}^{\mathrm{max}}$	maximal velocities (forward and backward) of reaction l
θ	vector of system parameters (logarithmic)
\mathbf{x}^*	vector of kinetic data (logarithmic)
R_{θ}^{x}	matrix to predict \mathbf{x}^* from θ

 $^{^1}$ Computational Systems Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany

^{*}Corresponding author

Derivation of equation (22)

From definition (20), we obtain

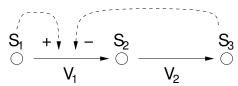
$$\ln k_{-l}^{\text{cat}} = 2 \ln k_l^{\text{V}} - \ln k_{+l}^{\text{cat}}.$$
 (1)

By inserting this into (17), equating to eqn. (18), and using definition (19), we obtain

$$-\sum_{i} n_{il} \ln k_{i}^{G} = 2 \ln k_{+l}^{cat} - 2 \ln k_{l}^{V} + \sum_{i} n_{il} \ln k_{li}^{M},$$
(2)

which can be solved for

$$\ln k_{+l}^{\text{cat}} = \ln k_l^{\text{V}} - \frac{1}{2} \sum_i n_{il} \left(\ln k_{li}^{\text{M}} + \ln k_i^{\text{G}} \right).$$
 (3)


Employing again the above eqn. (1), we obtain

$$\ln k_{-l}^{\text{cat}} = \ln k_l^{\text{V}} + \frac{1}{2} \sum_{i} n_{il} \left(\ln k_{li}^{\text{M}} + \ln k_i^{\text{G}} \right). \tag{4}$$

Taking the exponential of (3) and (4) leads directly to equation (22).

Computing the matrix R_{θ}^{x} : an example

The sensitivity matrix R_{θ}^{x} relates the measured kinetic parameters \mathbf{x}^{*} to the independent system parameters θ . Both θ and \mathbf{x}^{*} contain logarithmic values. We demonstrate the construction of R_{θ}^{x} with the following example network:

 S_1 is a fixed metabolite and activates reaction V_1 , while S_3 inhibits reaction V_1 (dashed arrows). The stoichiometric matrix and the regulation matrix read

$$N = \begin{pmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad W = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}. \tag{5}$$

We include the enzyme concentrations E_l into the model parameters and assume that all system parameters as well as equilibrium constants k_l^{eq} , turnover rates $k_{\pm l}^{\text{cat}}$, and maximal velocities v_{\pm}^{max} can be measured. The matrix R_{θ}^x reads (dots represent zero elements):

		k_1^{G}	k_2^{G}	$k_3^{ m G}$	$k_1^{ m V}$	k_2^{V}	$k_{11}^{ m M}$	$k_{12}^{ m M}$	$k_{22}^{ m M}$	$k_{23}^{ m M}$	$k_{11}^{\rm A}$	k_{13}^{I}	E_1	E_2
	/													\
k_1^{G}	1	1			•				•					. \
k_2^{G}	l		1		•	•	•	•	•				•	.
$k_{1}^{ m G} \ k_{2}^{ m G} \ k_{3}^{ m G} \ k_{1}^{ m V} \ k_{2}^{ m V} \ k_{11}^{ m M}$	l			1	•	•		•	•				•	
$k_1^{ m V}$			•		1	•	•	•	•		•	•	•	·
$k_2^{ m ilde V}$	1				•	1	•	•	•				•	
$k_{11}^{ m M}$		•	•		•	•	1	•	•		•		•	·
$k_{12}^{ m M}$	İ				•	•		1	•				•	.
$k_{22}^{ m M}$	l		•			•		•	1				•	
$k_{23}^{ m M}$	l			•	•	•	•	•	٠	1	•	•	•	·
$k_{22}^{\overline{ ext{M}}} \ k_{23}^{ ext{M}} \ k_{11}^{ ext{A}} \ k_{13}^{ ext{I}}$		•		•	•	•	•	•	•	•	1	•	•	•
k_{13}^{I}		•		•	•	•	•	•	•	•	•	1	•	•
E_1					•		•	•	•		•		1	•
E_2	l	٠	•	•	•	•	•	•	•		•	•	•	1
$k_1^{ m eq}$		1	-1		•		•	•	•		•		•	·
$k_2^{ m eq}$	l		1	-1	•	•	•	•	٠		•	•	•	
k_{+1}^{cat}	-	$-\frac{1}{2}$	$\frac{1}{2}$		1	•	$\frac{1}{2}$	$-\frac{1}{2}$	•				•	
k_{+2}^{cat}	1		$-\frac{\frac{1}{2}}{\frac{1}{2}}$ $-\frac{1}{\frac{1}{2}}$	$\frac{1}{2}$	•	1	•	•	$\frac{1}{2}$	$-\frac{1}{2}$	•		•	
k_{-1}^{cat}	1	$\frac{1}{2}$	$-\frac{1}{2}$		1	•	$-\frac{1}{2}$	$\frac{1}{2}$			•	•	•	.
k_{-2}^{cat}	l_	•	- 4	$-\frac{1}{2}$	•	1	•	•	$-\frac{1}{2}$	$\frac{1}{2}$	•	•		
v_{+1}^{\max}	-	$-\frac{1}{2}$	$\frac{1}{2}$		1	•	$\frac{1}{2}$	$-\frac{1}{2}$			•	•	1	
v_{+2}^{\max}	1		$-\frac{1}{2}$	$\frac{1}{2}$	•	1			$\frac{1}{2}$	$-\frac{1}{2}$	•	•	•	1
v_{-1}^{\max}		$\frac{1}{2}$	$-rac{rac{1}{2}}{-rac{1}{2}} -rac{1}{2}$		1	•	$-\frac{1}{2}$	$\frac{1}{2}$			•		1	.
v_{-2}^{\max}	/		$\frac{1}{2}$	$-\frac{1}{2}$		1		•	$-\frac{1}{2}$	$\frac{1}{2}$	•	•	•	1 /

Its upper part corresponds to direct measurements of the system parameters; it is just an identity matrix. The lower part shows how the equilibrium constants, turnover rates, and maximal velocities depend on the system parameters, based on $\ln \mathbf{k}^{\text{eq}} = -N^{\text{T}}\mathbf{k}^{\text{G}}$ (compare eqs. (18) and (22)). The sensitivity matrix R_{θ}^{x} can be written in block matrix form

where each column of the matrix Z

corresponds to one of the $k_{li}^{\rm M}$ values; it contains the stoichiometric coefficient for the corresponding $l^{\rm th}$ reaction and zeroes for all other reactions. For parameter estimation, we only consider the kinetic parameters that have been measured and collected in the vector \mathbf{x}^* . Hence, we use an incomplete sensitivity matrix, built only from those rows of R_{θ}^{x} that correspond to the measured parameters.