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List of mathematical symbols

Symbol Meaning

N = (ng) stoichiometric matrix

W = (wy;) | regulation matrix

c= () vector of metabolite concentrations

v = (v) vector of reaction velocities

k vector of model parameters

GZ(.O) Gibbs free energy of formation of metabolite i

kZG energy constant of metabolite 4

kY velocity constant of reaction [

kit Michaelis-Menten constant of reaction / and metabolite ¢
ki activation constant of reaction ! and metabolite ¢

ki, inhibition constant of reaction [ and metabolite 4

ked = (k") | vector of equilibrium constants

kind vector of independent equilibrium constants

R, matrix to compute k®4 from k»d

E; total enzyme concentration of reaction [

k3 maximal turnover rates (forward and backward) of reaction [
v maximal velocities (forward and backward) of reaction I
0 vector of system parameters (logarithmic)

x* vector of kinetic data (logarithmic)

Ry matrix to predict x* from 6




Derivation of equation (22)

From definition (20), we obtain
Ink= = 2Ink’ —Ink$. (1)
By inserting this into (17), equating to eqn. (18), and using definition (19), we obtain
=Y g Wkf =2k — 2k + > naynk), (2)
which can be solved for
ca’ 1
1n/c+f=1nklv—52ml (In kM +In k). (3)
Employing again the above eqn. (1), we obtain
ca’ 1
In k% = Ink) + 3 Znil (In &y + In k). (4)

Taking the exponential of (3) and (4) leads directly to equation (22).

Computing the matrix Rj: an example

The sensitivity matrix R relates the measured kinetic parameters x* to the independent system parameters
. Both ¢ and x* contain logarithmic values. We demonstrate the construction of R with the following
example network:

S7 is a fixed metabolite and activates reaction V;, while S3 inhibits reaction V; (dashed arrows). The
stoichiometric matrix and the regulation matrix read

-1 0
N = 1 -1 ], W:((l)g_(l)>. (5)
0 1

We include the enzyme concentrations Ej into the model parameters and assume that all system parameters
cat max

as well as equilibrium constants ky'¢, turnover rates k$%, and maximal velocities v'2** can be measured. The
matrix R§ reads (dots represent zero elements):
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Its upper part corresponds to direct measurements of the system parameters; it is just an identity matrix.
The lower part shows how the equilibrium constants, turnover rates, and maximal velocities depend on the
system parameters, based on Ink®d = —NTk% (compare eqs. (18) and (22)). The sensitivity matrix R can
be written in block matrix form

ES KV M kA KOE

kG I

kY I

kM I

kA I

kT I

E : I
ked _NT . .

kSat %NT I —%Z

keat —INT 1 Lz

pmax It 1 -1z I
pmax gNT I %Z I



where each column of the matrix Z
ki1 ks k3 k3

U1 -1 1 . .

(%) . . -1 1
corresponds to one of the kN values; it contains the stoichiometric coefficient for the corresponding [th
reaction and zeroes for all other reactions. For parameter estimation, we only consider the kinetic parameters
that have been measured and collected in the vector x*. Hence, we use an incomplete sensitivity matrix,
built only from those rows of Rj that correspond to the measured parameters.



