Neighbor-Net(X, d)

Input: A finite non-empty set X and a distance function d on X

Output: A circular split weight function ω

- 1. $\mathfrak{C} = \{\{x\} \mid x \in X\}$ //initial set of clusters
- 2. $\Theta = \text{FINDORDERING}(\mathfrak{C}, d)$
- 3. $\omega = \text{EstimateSplitWeights}(X, d, \Theta)$
- 4. return ω

FINDORDERING(\mathfrak{C}, d)

Input: A collection \mathfrak{C} of ordered clusters and a distance function d Output: An ordering Θ of the elements in $\bigcup_{C \in \mathfrak{C}} C$

- 1. $Y = \bigcup_{C \in \mathfrak{C}} C$
- 2. $m = |\mathfrak{C}|$
- 3. n = |Y|
- 4. if $n \leq 3$ //base case
- 5. **return** an ordering Θ of Y that is compatible with \mathfrak{C} .
- 6. **else if** there exists $C \in \mathfrak{C}$ with $k = |C| \ge 3$ //reduction case
- 7. Select $x = c_1$, $y = c_2$ and $z = c_3$ from C with $\Theta_C = c_1, \ldots, c_k$.
- 8. Create two new elements u, v not contained in Y.
- 9. $C' = (C \setminus \{x, y, z\}) \cup \{u, v\}$
- 10. $\Theta_{C'} = u, v, c_4, \dots, c_k$
- 11. $\mathfrak{C}' = (\mathfrak{C} \setminus \{C\}) \cup \{C'\}$
- 12. Compute distance function d' on $Y' = \bigcup_{C \in \mathfrak{C}'} C$ according to (1).
- 13. $\Theta' = \text{FINDORDERING}(\mathfrak{C}', d')$
- 14. Compute an ordering Θ of Y according to (2).
- 15. return Θ
- 16. else //selection case
- 17. Select two clusters $C_1, C_2 \in \mathfrak{C}$ that minimize (3).
- 18. $C' = C_1 \cup C_2$
- 19. Compute ordering $\Theta_{C'}$ using (4).
- 20. $\mathfrak{C}' = (\mathfrak{C} \setminus \{C_1, C_2\}) \cup \{C'\}$
- 21. $\Theta = \text{FINDORDERING}(\mathfrak{C}', d)$
- 22. return Θ