Additional file 1: Inferring Species Trees from Incongruent Multi-Copy Gene Trees Using the Robinson-Foulds Distance

1 Computing the RF Distance between two mul-trees is NPcomplete

The NP-completeness proof is by reduction from the following NP-complete problem [1].

Problem 1 (Exact Cover by 3-Sets (X3C)) Input: $S := \{s_1, ..., s_n\}$, where $n = 3q$, and $C := \{C_1, ..., C_m\}$ such that $C_i = \{s_{i_1}, s_{i_2}, s_{i_3}\}.$ *Output:* Are there exist sets $C_{i_1}, ..., C_{i_q}$ such that $\bigcup_{j=1}^q C_{i_j} = S$?

Note that X3C remains NP-complete even when each element of S occurs in *exactly* three subsets in C and thus $m = n = 3q$ [2]. We use this version of X3C in our reduction. For a given instance of the X3C problem, we construct two mul-trees \mathcal{T}_1 and \mathcal{T}_2 on the same set of labels and with matching label multiplicities, such that transforming \mathcal{T}_1 into \mathcal{T}_2 (or vice versa) requires κ (to be specified later) contractions and refinements if and only if an exact cover of S exists.

Mul-trees \mathcal{T}_1 and \mathcal{T}_2 are constructed in the following way. For each $s_i \in S$, we construct two rooted, binary singly-labeled trees $\mathbb T$ and $\mathbb T'$ on the same set of labels that take a "large" number of contractions and refinements to transform into each other (see Fig. 1). Let k and t be two positive integers such that $k + 2 \geq n^2$ and $k + 2 = 2^t$; $\mathbb T$ and $\mathbb T'$ are on the same $(k + 2)$ -element leaf label set. \mathbb{T}' has the same underlying tree as \mathbb{T} but different labeling map. In particular, for each cherry¹ (x, y) in \mathbb{T} , x and y are in different clusters $C_{\mathbb{T}'}(u)$ and $C_{\mathbb{T}'}(v)$ in \mathbb{T}' , where u and v are two children of the root in the underlying tree of \mathbb{T}' . Both $\mathbb T$ and $\mathbb T'$ have unique leaf labels for each $s_i \in S$.

Lemma 1. $RF(\mathbb{T}, \mathbb{T}') = 2k$.

Proof. $RF(\mathbb{T}, \mathbb{T}') = 2|\mathcal{H}(\mathbb{T})\backslash \mathcal{H}(\mathbb{T}')|$, since \mathbb{T} and \mathbb{T}' are binary singly-labeled trees. Further, since T and T' are on the same set of $k + 2$ labels, $\mathcal{H}(\mathbb{T}) = \mathcal{H}(\mathbb{T}') = k$. Thus, it suffices to show that no cluster in $\mathbb T$ matches any cluster in $\mathbb T'$, but this follows directly from the construction. \Box

¹In a phylogenetic tree $\mathcal{T} = (T, \phi)$ on X, a pair of leaf labels (a, b) forms a cherry if $\phi^{-1}(a)$ and $\phi^{-1}(b)$ are adjacent to the same internal vertex in T.

Figure 1: Two possible singly-labeled trees $\mathbb T$ and $\mathbb T'$ on an 8-element label set. The RF distance between $\mathbb T$ and $\mathbb T'$ is 12.

Figure 2: (a) Structure of mul-tree \mathcal{T}_1 and (b) a toll sequence of k leaves.

We now describe the construction of \mathcal{T}_1 and \mathcal{T}_2 . Let $n = 3q$. Figure 2(a) outlines the structure of \mathcal{T}_1 . The solid rectangles represent *toll* sequences of k uniquely labeled leaves. The toll sequence is a caterpillar tree, where leaf vertices of both ends are in fact the two internal vertices (the center vertex of degree 2n and degree-four vertex corresponding to a C_i ($1 \le i \le n$)) in the underlying tree of \mathcal{T}_1 (Fig. 2(b)). The left side of \mathcal{T}_1 has n triangles, one for each of the n elements in S. Each triangle represents a phylogenetic tree $\mathbb T$ corresponding to each $s_i \in S$, connecting through its root. The right side of \mathcal{T}_1 has n sets of three triangles corresponding to the subsets in C; for each subset $C_i = \{s_{i_1}, s_{i_2}, s_{i_3}\}\$, the triangles represent three phylogenetic trees \mathbb{T}' s, corresponding to each s_{i_j} ($1 \leq j \leq 3$), connected through their roots.

The structure of mul-tree \mathcal{T}_2 is similar to that of \mathcal{T}_1 , except that \mathcal{T}_2 has \mathbb{T}' for each $s_i \in S$ and \mathbb{T} for each element of $C_i \in C$ ($1 \le i \le n$). Thus, \mathcal{T}_2 has \mathbb{T}' s on the left side and \mathbb{T} s on the right side, the opposite of \mathcal{T}_1 .

Lemma 2. \mathcal{T}_1 *and* \mathcal{T}_2 *can be constructed in polynomial time.*

Proof. $\mathbb T$ and $\mathbb T'$ have the leaf label set of $k + 2$ elements. Both $\mathbb T$ and $\mathbb T'$ can be constructed in polynomial time, and so can their $8n$ copies ($4n$ for \mathcal{T}_1 and $4n$ for \mathcal{T}_2). Further, the $2n$ toll sequences (*n* for \mathcal{T}_1 and *n* for \mathcal{T}_2) can be constructed in polynomial time. The number of remaining vertices in \mathcal{T}_1 and \mathcal{T}_2 is constant. \Box

The connection between exactly covering S and transforming \mathcal{T}_1 into \mathcal{T}_2 by contractions and refinements is as follows: To transform \mathcal{T}_1 into \mathcal{T}_2 , we need to convert each \mathbb{T} on the left into \mathbb{T}' and each \mathbb{T}' on the right into \mathbb{T} . From Lemma 1, this costs $24qk$ contractions and refinements. A rather clever technique is to swap $3q$ Ts on the left with their counterparts on the right and to transform the remaining $6q$ T's on the right into Ts. If an exact cover $C_{i_1},..., C_{i_q}$ of S exists, we can partition

the 3q Ts into q groups according to the cover. For each C_i ($j = i_1, ..., i_q$) in the cover, we swap the corresponding group of phylogenetic trees for sequences $s_{j_1}, s_{j_2}, s_{j_3}$ with their counterparts.

Lemma 3. All \mathbb{T}' *s* for each C_j ($j = i_1, ..., i_q$) can be swapped with corresponding \mathbb{T} *s* by $2(k + 1)$ *contractions and refinements.*

Proof. Take the toll sequence corresponding to C_j and contract its $k+1$ edges; i.e., $(k-1)$ internal edges and 2 edges at both the sides of the toll sequence. Now refine it so that the corresponding Ts move in C_j and the \mathbb{T}' s stay on the left. This takes $2(k + 1)$ contractions and refinements. \Box

From Lemma 3, if an exact cover of S exists, then $6q$ phylogenetic trees can be transformed by $2q(k+1)$ contractions and refinements. The remaining $6q$ T's can be transformed into Ts by $12qk$ contractions and refinements. Let $\kappa = 2q(k+1) + 12kq$. We have the next lemma.

Lemma 4. *If set S has an exact cover, then* $RF(\mathcal{T}_1, \mathcal{T}_2) = \kappa$ *.*

Lemma 5. *If set S has no exact cover, then* $RF(\mathcal{T}_1, \mathcal{T}_2) > \kappa$ *.*

Proof. Observe that to transform the $6q$ T's, in the right side of \mathcal{T}_1 into their respective Ts, we need at least $\kappa_2 = 12kq$ contraction and refinements, whether or not there is an exact cover. We claim that if S has no exact cover, then the number of additional contractions and refinements required, which we denote by κ_1 , is greater than $2q(k + 1)$.

If set S has an exact cover, then the $3q$ Ts on the left and the $3q$ T's on the right side of \mathcal{T}_1 can be converted into their counterparts by one of the two ways:

- Swapping more than q triplets. Let $q + \sigma$ triplets cover all elements in S (with some repeated elements). Now swapping 3q T with corresponding \mathbb{T}' in $q + \sigma$ triplets will require $2(q + \sigma)(k + 1)$ contractions and refinements. Thus, $\kappa_1 = 2(q + \sigma)(k + 1)$.
- Swapping q triplets. Let $C_{i_1},..., C_{i_q}$ be the best q triplets that cover all but σ elements in S. Swapping these q triplets only converts $n - \sigma$ Ts and T's into their counterparts. Rest 2σ Ts and \mathbb{T}' 's need to be converted manually. Thus, $\kappa_1 = 2q(k+1) + \langle 2\sigma \rangle$ manual conversions>.

Both the above ways yield a $\kappa_1 > q(k + 1)$. The total number of contractions and refinements is $\kappa_1 + \kappa_2$, which is greater than κ . \Box

We have the next theorem.

Theorem 1. *Set S has an exact cover if and only if* $RF(\mathcal{T}_1, \mathcal{T}_2) = \kappa$ *.*

References

- [1] M. R. Garey and D. S. Johnson. *Computers and Intractability: A guide to the theory of NPcompleteness*. W. H. Freeman, New York, 1979.
- [2] G. Hickey, F. Dehne, A. Rau-Chaplin, and C. Blouin. SPR distance computation for unrooted trees. *Evolutionary Bioinformatics*, 4:17–27, 2008.