
Additional file 1: Inferring Species Trees from
Incongruent Multi-Copy Gene Trees Using the

Robinson-Foulds Distance

1 Computing the RF Distance between two mul-trees is NP-
complete

The NP-completeness proof is by reduction from the following NP-complete problem [1].

Problem 1 (Exact Cover by 3-Sets (X3C))
Input: S := {s1, ..., sn}, where n = 3q, and C := {C1, ..., Cm} such that Ci = {si1 , si2 , si3}.
Output: Are there exist sets Ci1 , ..., Ciq such that

⋃q
j=1Cij = S ?

Note that X3C remains NP-complete even when each element of S occurs in exactly three
subsets in C and thus m = n = 3q [2]. We use this version of X3C in our reduction. For a given
instance of the X3C problem, we construct two mul-trees T1 and T2 on the same set of labels and
with matching label multiplicities, such that transforming T1 into T2 (or vice versa) requires κ (to
be specified later) contractions and refinements if and only if an exact cover of S exists.

Mul-trees T1 and T2 are constructed in the following way. For each si ∈ S, we construct two
rooted, binary singly-labeled trees T and T′ on the same set of labels that take a “large” number of
contractions and refinements to transform into each other (see Fig. 1). Let k and t be two positive
integers such that k + 2 ≥ n2 and k + 2 = 2t; T and T′ are on the same (k + 2)-element leaf
label set. T′ has the same underlying tree as T but different labeling map. In particular, for each
cherry1 (x, y) in T, x and y are in different clusters CT′(u) and CT′(v) in T′, where u and v are two
children of the root in the underlying tree of T′. Both T and T′ have unique leaf labels for each
si ∈ S.

Lemma 1. RF (T,T′) = 2k.

Proof. RF (T,T′) = 2|H(T)\H(T′)|, since T and T′ are binary singly-labeled trees. Further, since
T and T′ are on the same set of k + 2 labels,H(T) = H(T′) = k. Thus, it suffices to show that no
cluster in T matches any cluster in T′, but this follows directly from the construction.

1In a phylogenetic tree T = (T, φ) on X , a pair of leaf labels (a, b) forms a cherry if φ−1(a) and φ−1(b) are
adjacent to the same internal vertex in T .
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Figure 1: Two possible singly-labeled trees T and T′ on an 8-element label set. The RF distance
between T and T′ is 12.
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Figure 2: (a) Structure of mul-tree T1 and (b) a toll sequence of k leaves.

We now describe the construction of T1 and T2. Let n = 3q. Figure 2(a) outlines the structure
of T1. The solid rectangles represent toll sequences of k uniquely labeled leaves. The toll sequence
is a caterpillar tree, where leaf vertices of both ends are in fact the two internal vertices (the center
vertex of degree 2n and degree-four vertex corresponding to a Ci (1 ≤ i ≤ n)) in the underlying
tree of T1 (Fig. 2(b)). The left side of T1 has n triangles, one for each of the n elements in S.
Each triangle represents a phylogenetic tree T corresponding to each si ∈ S, connecting through
its root. The right side of T1 has n sets of three triangles corresponding to the subsets in C; for
each subset Ci = {si1 , si2 , si3}, the triangles represent three phylogenetic trees T′s, corresponding
to each sij (1 ≤ j ≤ 3), connected through their roots.

The structure of mul-tree T2 is similar to that of T1, except that T2 has T′ for each si ∈ S and T
for each element of Ci ∈ C (1 ≤ i ≤ n). Thus, T2 has T′s on the left side and Ts on the right side,
the opposite of T1.

Lemma 2. T1 and T2 can be constructed in polynomial time.

Proof. T and T′ have the leaf label set of k + 2 elements. Both T and T′ can be constructed in
polynomial time, and so can their 8n copies (4n for T1 and 4n for T2). Further, the 2n toll sequences
(n for T1 and n for T2) can be constructed in polynomial time. The number of remaining vertices
in T1 and T2 is constant.

The connection between exactly covering S and transforming T1 into T2 by contractions and
refinements is as follows: To transform T1 into T2, we need to convert each T on the left into T′ and
each T′ on the right into T. From Lemma 1, this costs 24qk contractions and refinements. A rather
clever technique is to swap 3q Ts on the left with their counterparts on the right and to transform
the remaining 6q T′s on the right into Ts. If an exact cover Ci1 , ..., Ciq of S exists, we can partition

2



the 3q Ts into q groups according to the cover. For each Cj (j = i1, ..., iq) in the cover, we swap
the corresponding group of phylogenetic trees for sequences sj1 , sj2 , sj3 with their counterparts.

Lemma 3. All T′s for each Cj (j = i1, ..., iq) can be swapped with corresponding Ts by 2(k + 1)
contractions and refinements.

Proof. Take the toll sequence corresponding to Cj and contract its k+1 edges; i.e., (k−1) internal
edges and 2 edges at both the sides of the toll sequence. Now refine it so that the corresponding Ts
move in Cj and the T′s stay on the left. This takes 2(k + 1) contractions and refinements.

From Lemma 3, if an exact cover of S exists, then 6q phylogenetic trees can be transformed by
2q(k+1) contractions and refinements. The remaining 6q T′s can be transformed into Ts by 12qk
contractions and refinements. Let κ = 2q(k + 1) + 12kq. We have the next lemma.

Lemma 4. If set S has an exact cover, then RF(T1, T2) = κ.

Lemma 5. If set S has no exact cover, then RF(T1, T2) > κ.

Proof. Observe that to transform the 6q T′s, in the right side of T1 into their respective Ts, we need
at least κ2 = 12kq contraction and refinements, whether or not there is an exact cover. We claim
that if S has no exact cover, then the number of additional contractions and refinements required,
which we denote by κ1, is greater than 2q(k + 1).

If set S has an exact cover, then the 3q Ts on the left and the 3q T′s on the right side of T1 can
be converted into their counterparts by one of the two ways:

• Swapping more than q triplets. Let q + σ triplets cover all elements in S (with some
repeated elements). Now swapping 3q T with corresponding T′ in q + σ triplets will require
2(q + σ)(k + 1) contractions and refinements. Thus, κ1 = 2(q + σ)(k + 1).

• Swapping q triplets. Let Ci1 , ..., Ciq be the best q triplets that cover all but σ elements in S.
Swapping these q triplets only converts n− σ Ts and T′s into their counterparts. Rest 2σ Ts
and T′s need to be converted manually. Thus, κ1 = 2q(k + 1) + <2σ manual conversions>.

Both the above ways yield a κ1 > q(k + 1). The total number of contractions and refinements
is κ1 + κ2, which is greater than κ.

We have the next theorem.

Theorem 1. Set S has an exact cover if and only if RF(T1, T2) = κ.
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