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1. Extracting Specific Rate Laws from SBML Process Diagrams

SBMLsqueezer was designed to interpret process diagrams created by CellDesigner and to apply rate
laws for each reaction depending on the context. This document describes how SBMLsqueezer ex-
tracts the desired information from process diagrams and gives an overview of all currently supported
rate laws. Each rate law is explained with an example process diagram, the general formula and the
result yielded by SBMLsqueezer. At the end of each section we discuss the Systems Biology On-
tology (SBO) terms which correspond to the introduced rate law. The appendix of this document
contains a table of all currently available SBO terms for mathematical expressions in cellular systems
(Section A, page 25).

Models of biological systems consist of reacting species. The rate of change of each species’ con-
centration is determined by the reactions it is involved in. This rate depends on the velocities of the
reactions. Each reaction velocity can basically be influenced by two types of modifiers: inhibitors
and activators. Inhibitors lower the reaction velocity whereas activators speed up or enable the reac-
tion. Any interaction of modulators with the reaction must be reflected in the rate law. An activated
molecule can be an activator but this is not necessarily true. Here activation means activation of a
reaction, in contrast to the activation of a molecule, which is a reaction in which the non-activated
form of the molecule turns into the active form.
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1. Extracting Specific Rate Laws from SBML Process Diagrams

The graphical notation of process diagrams used by CellDesigner extends standard SBML [1] with
additional information that can be interpreted to automatically assign appropriate rate laws to each
reaction. CellDesigner allows including reaction-specific information to only a certain level of detail,
thus several reaction mechanisms cannot be distinguished. For instance, it is not possible to include
exact formulas for inhibition and activation as can be done for selected mechanisms in relevant text
books like those of Cornish-Bowden or Segel [2, 3]. Often the process diagrams do not show at which
state the modifier affects the reaction, i. e., whether the inhibitor reacts with the first substrate or the
second one, with the ES1, the ES2 or with the EP1P2 complex, and so on.

To overcome this difficulty, Liebermeister and Klipp defined a generic inhibition and activation
term [4]. This function is a prefactor, that can be multiplied with a kinetic equation to introduce
modification. SBMLsqueezer applies this prefactor also to rather more detailed rate laws like the
random order, ping-pong or the ordered ternary-complex mechanism.

CellDesigner 4.0α supports specialized arrows for two types of activating modification: one for
transcriptional and another one for translational activation. A specific arrow for activation of enzyme
reactions has been available since version 4.0β: the trigger symbol and—depending on the context—
the symbol for physical stimulation. We reached the following accommodation: Besides the trigger
and physical stimulation symbol, SBMLsqueezer also interprets an unknown catalysis arrow as an ac-
tivation of the respective reaction (Table 1). This also allows modeling an activation with the α-version
of CellDesigner 4.0. For a complete list of all symbols used in CellDesigner reference can be made
to Kitano et al. [5] and the CellDesigner homepage [6]. The term “Modulation” was also introduced

Table 1: Redefinition of unknown catalysis to cover activation in process diagrams
Graphical Notation CellDesigner Convention SBMLsqueezer Interpretation

A B

C

Unknown Catalysis Activation

Trigger Activation

Physical Stimulation Activation

Modulation Activation and Inhibition

by CellDesigner 4.0β. It specifies one of the two kinds of interplay between reaction and modulator.
Hence its meaning is decidedly not clear. By considering such a modulator as both inhibitor and acti-
vator SBMLsqueezer assumes that in a later parameter optimization process an appropriate optimizer
determines which role prevails.

In some cases, certain rate laws are special cases of other ones that only differ in their parameter
settings. In these cases SBMLsqueezer always assigns the most general equation to the reaction,
driven by the assumption that in a later parameter optimization process an optimizer will find the
correct solution. Alternatively, all rate laws created by SBMLsqueezer may also be modified manually
using the designated CellDesigner dialog boxes.
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2. Supported Kinetic Equations

This section gives a complete list of all currently supported kinetic formulas and shows examples in
the graphical notation of CellDesigner [7, 5, 6]. For an up-to-date list, refer to the project web page
http://www.ra.cs.uni-tuebingen.de/software/SBMLsqueezer [8].

According to the process diagram, it often remains unclear at which state of the reaction the in-
hibitor or activator binds to enzyme, substrate or some intermediate complex. As stated in Section 1,
SBMLsqueezer applies a generic formula for inhibition and activation for many rate laws such as the
generalized mass-action kinetics or the rather detailed ternary-complex mechanisms. Equation (1),
which was defined by Liebermeister et al. [4] in the context of convenience kinetics (Section 2.6,
page 15), gives the general formula for this prefactor of the desired rate equation:

fj(S,p) =
∏
m

hA([Sm], kA
jm)w+

jmhI([Sm], kI
jm)w−

jm . (1)

where S and p are vectors of the concentrations of all reacting species in the system or parameter val-
ues, respectively. The matrices N± contain the absolute values of all positive or negative elements of
the stoichiometric matrix N or zero otherwise [4]. The matrices W± are derived from the modulation
matrix W in a similar way [4]. The modulation functions read:

hA([Sm], kA
jm) =

[Sm]
kA

jm + [Sm]
(2)

hI([Sm], kI
jm) =

kI

kI
jm + [Sm]

. (3)

As an alternative to this simplified approach, one has to include all possible parameters assuming for
a single inhibitor that it potentially acts at each state during the reaction. If more detailed knowledge
about the mechanism is known, the rate law generated by SBMLsqueezer may serve as an initial
equation that can be modified manually.

For reactions with two or more catalysts, one rate law will be generated for each catalyst. The rate
law for this particular reaction is given as the sum of the rates of all participating catalysts. If the
reaction is one of those, whose modification is modeled according to Equation (1), the whole rate law
will be multiplied by the modification term f .

vj(S,p) = fj(S,p) ·
|catalysts|∑

c=1

vjc(S,p) (4)

We also grant that the enzyme may be omitted from the process diagram for the sake of simplicity
and clear arrangement of the reacting species. SBMLsqueezer therefore offers a checkbox asking
whether all reactions should be considered as being enzyme-catalyzed. In this case, all factors [E]0 ·
kcat
± are replaced by the parameters V m

± that hide the enzyme concentration and allow estimation of
the whole factor by appropriate optimizers.

The context menu of SBMLsqueezer for single reactions considers RNA and asRNA, simple and
unknown molecules, complexes, truncated as well as generic proteins, and receptors all as enzymes to
allow the user to apply any possible kinetic formula to a certain reaction whereas the plug-in window
provides user settings to restrict this list to a more detailed selection of possible enzymes.

In SBML every species has an identifier (ID) and may also have a name. The ID is an obligatory
tag whereas the name may be empty [1, 9]. The name is intended to be a biologically meaningful
identifier, which can in some cases be very long. Since the ID is supposed to be a short systematic
identifier, SBMLsqueezer uses the ID for its LATEX export.
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2. Supported Kinetic Equations

2.1. Generalized Mass-Action Kinetics

In SBMLsqueezer generalized mass-action kinetics utilizes Equation (1) to include modification ef-
fects. This approach has already been successfully applied [10]. Figure 1 depicts an example of a

S1 P1

I1

Figure 1: Example of a reaction to be modeled using the generalized mass-action rate law

reaction which is catalyzed by ion I1 and thus cannot be modeled using enzyme kinetic approaches.
This reaction may have an arbitrary mechanism in which the product P1 acts as an inhibitor. Equa-
tion (5) shows the general formula for the reversible, and Equation (6) for the irreversible, case. The
reaction velocity vj of reaction j depends on a vector of all reacting species S and a parameter vector
p. Equation (7) gives the kinetic equation generated for the process in Figure 1:

vj(S,p) =Fj(S,p) ·

(
k+j

∏
i

[Si]n
−
ij − k−j

∏
i

[Si]n
+
ij

)
(5)

vj(S,p) =Fj(S,p) · k+j

∏
i

[Si]n
−
ij (6)

v1 =
kI

1,P1

kI
1,P1 + [P1]

· (k+1[S1][I1]− k−1[P1][I1]) . (7)

Fj(S,p) is allowed to be any positive function [11]. Thus all kinetic equations presented in the
remainder of this section are special forms of this general formula as they can be derived from Equa-
tion (5) by setting Fj(S,p) appropriately. Because of the availability of more specific equations,
SBMLsqueezer restricts Fj in the following way:

Fj(S,p) = fj(S,p). (8)

Generalized mass-action kinetics allows modeling of reactions with any number of reactant and prod-
uct molecules. However, since reactions with more than two reactants are unlikely to take place [2],
warnings will be displayed.

SBMLsqueezer applies Equations (5) and (6) to all reactions which are not catalyzed by an enzyme
or catalyzed by non-enzymes. Gene regulation (transcription) processes that are neither activated nor
inhibited by other factors proceed at a constant rate (basal gene expression) and hence follow a zeroth
order mass-action rate law. Another example of where SBMLsqueezer applies mass-action kinetics is
in degradation processes.

The Systems Biology Ontology (SBO) defines several special cases of generalized mass-action
kinetics (Table 2). None of the formulas defined therein includes the presence of any modulators.
Monoexpotential decay (SBO:0000333) as a special case of first order irreversible mass-action ki-
netics (SBO:0000049) is indirectly supported by SBMLsqueezer because the rate constant k+j can

6



2.2. Uni-Uni Michaelis-Menten Kinetics

be set to a value less than one. SBMLsqueezer was designed to create rate laws for continuous
simulators and does not support any derivatives of irreversible mass-action kinetics, discrete scheme
(SBO:0000166). Note that the discrete formulas SBO:00001401, SBO:00001412, SBO:00001433 and
SBO:00001464 are formally identical to their corresponding continuous forms. All other special cases
of the mass-action kinetics in SBO can be created by SBMLsqueezer. Whenever a mass-action rate
law is applicable, SBMLsqueezer also offers selection of a zeroth order rate law (either for the forward
or the reverse reaction).

2.2. Uni-Uni Michaelis-Menten Kinetics

Figure 2(b) shows the uni-uni enzyme-catalyzed reaction scheme including inhibition. Figure 2(a)
depicts an example of one possible corresponding CellDesigner process diagram. In the case of the

S1 P1

E1

(a) Example of a process diagram

E + S1
k1−−⇀↽−−
k−1

ES1
k2−−⇀↽−−
k−2

E + P1
−−

⇀
↽
−− k
Ia

I+

−−
⇀

↽
−− K

Ib
I+

EI ES1I

(b) Reaction scheme

Figure 2: Uni-uni enzyme-catalyzed reaction

enzyme-catalyzed uni-uni reaction, SBMLsqueezer can use convenience kinetics or, by default, the
Michaelis-Menten equation. The latter includes both constants kIa and KIb. This allows for optimiza-
tion of the model to fit the parameters and to decide which kind of inhibition is the most appropriate
one if it is not known, including the following three special cases, that are often of particular interest:

1. Competitive inhibition for 0 < kIa < ∞ and KIb →∞

2. Noncompetitive inhibition for 0 < kIa = KIb < ∞

3. Uncompetitive inhibition for kIa →∞ and 0 < KIb < ∞

A detailed explanation of the different kinds of modification can be found in “The Regulation of Cel-
lular Systems” [11]. In addition to the well-described inhibition, we employ the activation prefactor
of Equation (1).

The general Michaelis-Menten equation is given in Equation (9) with its corresponding irreversible
form in Equation (10) and the example generated for the process diagram in Figure 2(a) is written in

1The zeroth order irreversible mass action kinetics, discrete scheme corresponds to the continuous form SBO:0000047.
2The first order irreversible mass action kinetics, discrete scheme corresponds to the continuous form SBO:0000049.
3The second order irreversible mass action kinetics, two reactants, discrete scheme corresponds to the continuous form

SBO:0000054.
4The third order irreversible mass action kinetics, three reactants, discrete form corresponds to the continuous form

SBO:0000061.
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2. Supported Kinetic Equations

Equation (11).

vj(S,p) =[E]0 ·
∏
m

hA([Sm]kA
jm)w+

jm ·

kcat
+j

kM
j,S1

[S1]−
kcat
−j

kM
j,P1

[P1]

1 + [I]

kIa
j

+
(

[S1]

kM
j,S1

+ [P1]

kM
j,P1

)(
1 + [I]

KIb
j

) (9)

vj(S,p) =[E]0 ·
∏
m

hA([Sm]kA
jm)w+

jm ·
kcat

+j [S1]

kM
1 +

kM
j,S1

kIa
j

[I] + [S1] +
kM

j,S1

KIb
j

[I]
(10)

v1 =[E1] ·

kcat
+1

kM
1,S1

[S1]−
kcat
−1

kM
1,P1

[P 1]

1 + [P1]

kIa
1

+
(

[S1]

kM
1,S1

+ [P1]

kM
1,P1

)(
1 + [ P1]

KIb
1

) (11)

The SBO defines several special cases of Equation (10) and provides one special case of Equa-
tion (9) without inhibition (SBO:0000326). Activation is currently not considered in SBO. In the
case of no modulation, Equation (10) covers SBO:0000028 to SBO:0000031 and SBO:0000199. If
exactly one inhibitor interferes with the reaction, Equation (10) equals SBO:0000265. If kIa

j = KIb
j

Equation (10) and SBO:0000266 are identical. This equation also covers competitive inhibition with
appropriate parameter settings: SBO:0000262 for kIa

j →∞ and SBO:0000260 for KIb
j →∞.

If more than one inhibitor interacts with the enzyme during the irreversible uni-uni reaction, SBML-
squeezer applies the mixed-type inhibition of irreversible enzymes by mutually exclusive inhibitors
(SBO:0000275):

vj(S,p) =
kcat

+j [E]0[S1]

kM
j,S1

·
(

1 +
∑n

i=1
[Ii]

KIbi
j

)
+ [S1] ·

(
1 +

∑n
i=1

[Ii]

KIai
j

) . (12)

This equation includes SBO:0000276 and SBO:0000277 if exactly two inhibitors lower the reaction
velocity vj . The latter one applies when ∀i : KIai = KIbi, which depends on the parameter settings.
Another special case of Equation (12) emerges for ∀i : KIai

j → ∞: this rate law then includes
SBO:0000270 (competitive inhibition of irreversible unireactant enzymes by exclusive inhibition)
and its derivatives SBO:0000271 and SBO:0000274 (Table 2).

The competitive inhibition of irreversible unireactant enzymes by non-exclusive non-cooperative
inhibitors (SBO:0000273) and its derivative SBO:0000267 constitute a special case of Equation (10)
only if exactly one inhibitor interferes with the reaction, KIb

j →∞ and the exponent mi = 1:

vj(S,p) =
∏
m

hA([Sm]kA
jm)w+

jm · [E]0 ·
kcat

j [S1]

kM
j,S1

·
∏n

i=1

(
1 + [Ii]

KI
i

)mi

+ [S1]
. (13)

Therefore, SBMLsqueezer offers this equation as an alternative for each irreversible reaction with
one substrate molecule and more than one inhibitor. Activation is included using the prefactor from
convenience kinetics.

Reversible uni-uni reactions with more than one inhibitor are modeled using the following equation
which makes use of Equation (1) and is not included in the SBO:

vj(S,p) = [E]0 · fj(S,p) ·

kcat
+j

kM
j,S1

[S1]−
kcat
−j

kM
j,P1

[P1]

1 + [S1]

kM
j,S1

+ [P1]

kM
j,P1

. (14)
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2.3. Bi-Uni Enzyme Reactions

2.3. Bi-Uni Enzyme Reactions

In some cases a single enzyme reacts with two reactants. Depending on the sequence in which the
reactants bind to the enzyme, we can distinguish two different reaction mechanisms. Additionally,
convenience kinetics constitutes a third alternative when no information about the mechanism is avail-
able. For irreversible bi-uni enzyme reactions without modulation, Equation (32) gives an additional
modeling alternative. A special case of this bi-uni reaction emerges if there is one reactant species that
has a stoichiometric coefficient of two. Figure 3(a) shows a possible graphical representation of this
type of reaction. Neither the random order mechanism nor the ordered mechanism for bi-uni reactions
is currently defined in SBO. For both mechanisms we also apply the prefactor defined by convenience
kinetics in Equation (1).

2.3.1. Random Order Mechanism

The reaction scheme of this mechanism is presented in Figure 3(b). For the sake of simplicity the
inhibition mechanism is omitted from this scheme. Both substrates bind in arbitrary sequence to the
enzyme. The general formula for this mechanism is given in Equation (15), and its irreversible form

S1 P1

E1

S2

(a) Bi-uni enzyme-catalyzed reaction

E

S1 S2
−−

⇀
↽
−− −−
⇀

↽
−−

−−⇀↽−
−

−−⇀↽−−

ES1 −−⇀↽−− ES1S2 −−⇀↽−−
E + P1

ES2 −−⇀↽−− ES1S2
−−⇀↽−−

−−
⇀

↽
−− −−
⇀

↽
−−

S2 S1
(b) Reaction scheme

Figure 3: Bi-uni random order enzyme reaction mechanism

is shown in Equation (16). The automatically generated equation to Figure 3(a) with respect to this
mechanism can be found in Equation (17). For a derivation of this formula see Section 3.2 (page 22).

vj(S,p) =fj(S,p) ·

kcat
+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

− kcat
−j [E]0[P1]

kM
j,P1

1 + [S1]

kI
j,S1

+ [S2]

kI
j,S2

+ [S1][S2]

kM
j,S2

kI
j,S1

+ [P1]

kM
j,P1

(15)

vj(S,p) =fj(S,p) ·
kcat

+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

+ kM
j,S2

[S1] + kM
j,S1

[S2] + [S1][S2]
(16)

v1 =
kI

1,P1

kI
1,P1

+ [P1]
·

kcat
+1

ki
1,S1

kM
1,S2

[E1][S1][S2]−
kcat
−1

kM
1,P1

[E1][P1]

1 + [S1]

ki
1,S1

+ [S2]

ki
1,S2

+ [S1][S2]

ki
1,S1

kM
1,S2

+ [P1]

kM
1,P1

(17)
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2. Supported Kinetic Equations

2.3.2. Ordered Mechanism

Figure 4(b) depicts the reaction scheme of the ordered bi-uni mechanism. Note that in this reaction
mechanism the sequence in which the species react is fixed. Equation (18) gives the general formula

S1 P1

E1

S2

(a) Bi-uni enzyme-catalyzed reaction

S1 S2 P1

−−
⇀

↽
−− −−
⇀

↽
−− −−
⇀

↽
−−

E −−⇀↽−− ES1 −−⇀↽−− ES1S2 −−⇀↽−− EP1 −−⇀↽−− E

(b) Reaction scheme

Figure 4: Reaction scheme of the ordered bi-uni mechanism

of this mechanism and Equation (19) shows its corresponding irreversible version. Equation (20) was
automatically generated with respect to Figure 4(a).

vj(S,p) =fj(S,p) ·

kcat
+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

− kcat
−j [E]0[P1]

kM
j,P1

1 + [S1]

kI
j,S1

+
kM

j,S1
[S2]

kI
j,S1

kM
j,S2

+ [S1][S2]

kM
j,S2

kI
j,S1

+
kM

j,S1
[S2][P1]

kI
j,S1

kM
j,S2

kI
j,P1

+ [P1]

kM
j,P1

(18)

vj(S,p) =fj(S,p) ·
kcat

+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

+ kM
j,S2

[S1] + kM
j,S1

[S2] + [S1][S2]
(19)

v1 =
kI

1,P1

kI
1,P1

+ [P1]
·

kcat
+1

ki
1,S1

kM
1,S2

[E1][S1][S2]−
kcat
−1

kM
1,P1

[E1][P1]

1 + [S1]

ki
1,S1

+
kM
1,S1

[S 2]

ki
1,S1

kM
1,S2

+ [S1][S2]

ki
1,S1

kM
1,S2

+
kM
1,S1

[S2][P1]

ki
1,S1

kM
1,S2

ki
1,P1

+ [P1]

kM
1,P1

(20)

For the derivation of this formula see Section 3.1 (page 18).

2.4. Bi-Bi Enzyme Reactions

Another special case covered by SBMLsqueezer is that of enzyme-catalyzed reactions with two sub-
strates and two products. As was the case for the bi-uni reactions we can observe the possible mech-
anisms random order, ordered and, if no information about the mechanism is available, convenience
kinetics. Additionally, a fourth reaction scheme can be applied: the bi-bi ping-pong mechanism, that
also has a fixed sequence in which all participating molecules bind to the enzyme. Furthermore, irre-
versible reactions without modulation can also be described by Equation (32). Figure 5 illustrates one
example of a process diagram for bi-bi reactions. As in the case of bi-uni reactions, it is also possible
that only one substrate with stoichiometry coefficient two occurs. Here, there might also be just one
product with stoichiometry coefficient two. In all following reaction schemes the mechanisms for
inhibition were omitted due to the fact that modulation is included according to Equation (1). At the
time of writing, the random order, ordered and ping-pong mechanisms for bi-bi reactions presented in
the following sections were not defined by SBO.
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2.4. Bi-Bi Enzyme Reactions

S1 P1

E1

S2

P2

Figure 5: An example of a bi-bi enzyme reaction

2.4.1. Random Order Mechanism

The general reaction scheme of the random order mechanism for bi-bi reactions is given in Figure 6.
The sequence in which the reactants bind to the enzyme and the products leave the enzyme complex
is arbitrary. Equation (21) models the reversible reaction with this rapid-equilibrium random order

E

S1 S2

−−
⇀

↽
−− −−
⇀

↽
−−

−−⇀↽−
−

−−⇀↽−−

ES1 −−⇀↽−− ES1S2 −−⇀↽−−

ES2 −−⇀↽−− ES1S2
−−⇀↽−−

−−
⇀

↽
−− −−
⇀

↽
−−

S2 S1

(
ES1S2

EP1P2

)

P1 P2
−−

⇀
↽
−− −−
⇀

↽
−−

−−⇀↽−
−

−−⇀↽−−

EP1 −−⇀↽−− EP1P2 −−⇀↽−−

EP2 −−⇀↽−− EP1P2
−−⇀↽−−

−−
⇀

↽
−− −−
⇀

↽
−−

P2 P1

E

Figure 6: Reaction scheme of the random order bi-bi mechanism

ternary-complex mechanism [2, p. 169] whereas the irreversible alternative is given by Equation (22).
The automatically derived equation for the example in Figure 5 is shown in Equation (23).

vj(S,p) =fj(S,p) ·

kcat
+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

− kcat
−j [E]0[P1][P2]

kM
j,P1

kI
j,P2

1 + [S1]

kI
j,S1

+ [S2]

kI
j,S2

+ [S1][S2]

kM
j,S2

kI
j,S1

+ [P1]

kI
j,P1

+ [P2]

kI
j,P2

+ [P1][P2]

kI
j,P2

kM
j,P1

(21)

vj(S,p) =fj(S,p) ·
kcat

+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

+ kM
j,S2

[S1] + kM
j,S1

[S2] + [S1][S2]
(22)

v1 =
kI

1,P1

kI
1,P1

+ [P1]
·

kcat
+1

ki
1,S1

kM
1,S2

[E1][S1][S2]−
kcat
−1

ki
1,P2

kM
1,P1

[E1][P1][P2]

1 + [S1]

ki
1,S1

+ [S2]

ki
1,S2

+ [P1]

ki
1,P1

+ [P2]

ki
1,P2

+ [P1][P2]

ki
1,P2

kM
1,P1

+ [S1][S2]

ki
1,S1

kM
1,S2

(23)
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2. Supported Kinetic Equations

Due to the following relations among the Michaelis and inhibition constants, the constants kM
j,S1

and
kM

j,P2
do not appear explicitly in Equation (21):

kM
j,S1

kI
j,S2

=kI
j,S1

kM
j,S2

(24)

kM
j,P1

kI
j,S2

=kI
j,P1

kM
j,P2

. (25)

2.4.2. Ordered Mechanism

Figure 7(b) presents the reaction scheme for the ordered bi-bi mechanism, which is also called the
compulsory-order ternary-complex mechanism [2, pp. 166-168]. As in the bi-uni case (Section 2.3.2),
the sequence, in which all reactants bind to the enzyme, is fixed. Furthermore, the products also leave
the enzyme complex in a defined sequence. A special case of this reaction is given when there is just
one reactant or just one product with the stoichiometry of two.

S1 P1

E1

S2

P2

(a) Example of a bi-bi enzyme reaction

S1 S2 P1 P2

−−
⇀

↽
−− −−
⇀

↽
−− −−
⇀

↽
−− −−
⇀

↽
−−

E −−⇀↽−− ES1 −−⇀↽−− ES1S2 −−⇀↽−− EP1 −−⇀↽−− EP2 −−⇀↽−− E

(b) Reaction scheme

Figure 7: Reaction scheme for the ordered bi-bi mechanism

The formula for a reversible reaction is given by Equation (26) whereas the corresponding irre-
versible form can be found in Equation (27). An example for a generated equation with respect to
Figure 5 can be found in Equation (28).
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B

i-B
iE

nzym
e

R
eactions

vj(S,p) =fj(S,p)

·

kcat
+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

− kcat
−j [E]0[P1][P2]

kM
j,P1

kI
j,P2

1 + [S1]

kI
j,S1

+
kM

j,S1
[S2]

kI
j,S1

kM
j,S2

+ [S1][S2]

kM
j,S2

kI
j,S1

+
kM

j,S1
[S2][P1]

kI
j,S1

kM
j,S2

kI
j,P1

+ [P2]

kI
j,P2

+
kM

j,P2
[P1]

kI
j,P2

kM
j,P1

+
kM

j,P2
[S1][P1]

kI
j,S1

kM
j,P1

kI
j,P2

+ [P1][P2]

kI
j,P2

kM
j,P1

+ [S1][S2][P1]

kI
j,S1

kM
j,S2

kI
j,P1

+ [S2][P1][P2]

kI
j,S2

kM
j,P1

kI
j,P2

(26)

vj(S,p) =fj(S,p) ·
kcat

+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

+ kM
j,S2

[S1] + kM
j,S1

[S2] + [S1][S2]
(27)

v1 =
kI

1,P1

kI
1,P1

+ [P1]

·

kcat
+1

ki
1,S1

kM
1,S2

[E1][S1][S2]−
kcat
−1

ki
1,P2

kM
1,P1

[E1][P1][P2]

1 + [S1]

ki
1,S1

+
kM
1,S1

[S2]

ki
1,S1

kM
1,S2

+
kM
1,P2

[P1]

ki
1,P2

kM
1,P1

+ [P2]

ki
1,P2

+ [S1][S2]

ki
1,S1

kM
1,S2

+
kM
1,P2

[S1][P1]

ki
1,S1

kM
1,P1

ki
1,P2

+
kM
1,S1

[S2][P2]

ki
1,S1

kM
1,S2

ki
1,P2

+ [P1][P2]

kM
1,P1

ki
1,P2

+ [S1][S2][P1]

ki
1,S1

kM
1,S2

ki
1,P1

+ [S2][P1][P2]

ki
1,S2

kM
1,P1

ki
1,P2

(28)
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2. Supported Kinetic Equations

2.4.3. Ping-Pong Mechanism

A special case of the ordered mechanism is the ping-pong reaction, whose scheme is presented in
Figure 8. The reactants bind in a fixed sequence, and the products leave the enzyme complex in
a specific succession. However, during the reaction, the enzyme passes through different states so
that it can only react with the next reactant or set the next product free. This is why the mechanism
is also called a substituted-enzyme mechanism. No corresponding bi-uni reaction exists because it
would formally be equal to the ordered bi-uni mechanism. Equation (29) gives the general formula

S1 P1 S2 P2

−−
⇀

↽
−− −−
⇀

↽
−− −−
⇀

↽
−− −−
⇀

↽
−−

E −−⇀↽−− ES1 −−⇀↽−− E′P1 −−⇀↽−− E′ −−⇀↽−− E′S2 −−⇀↽−− EP2 −−⇀↽−− E

Figure 8: Reaction scheme of the ping-pong bi-bi mechanism

for this particular mechanism, and its corresponding irreversible form is shown in Equation (30) [2,
pp. 169-171]. Equation (31) was generated by SBMLsqueezer with respect to the example in Figure 5.

vj(S,p) =fj(S,p)

·

kcat
+j [E]0[S1][S2]

kI
j,S1

kM
j,S2

− kcat
−j [E]0[P1][P2]

kM
j,P2

kI
j,P1

[S1]

kI
j,S1

+
kM

j,S1
[S2]

kI
j,S1

kM
j,S2

+ [S1][S2]

kM
j,S2

kI
j,S1

+
kM

j,S1
[S2][P2]

kI
j,S1

kM
j,S2

kI
j,P2

+ [P1]

kI
j,P1

+
kM

j,P1
[P2]

kI
j,P1

kM
j,P2

+ [S1][P1]

kI
j,S1

kI
j,P1

+ [P1][P2]

kI
j,P1

kM
j,P2

(29)

vj(S,p) =fj(S,p) ·
kcat

+j [E]0[S1][S2]

kM
j,S2

[S1] + kM
j,S1

[S2] + [S1][S2]
(30)

v1 =
kI

1,P1

kI
1,P1

+ [P1]

·

kcat
+1

ki
1,S1

kM
1,S2

[E1][S1][S2]−
kcat
−1

ki
1,P1

kM
1,P2

[E1][P1][P2]

[S1]

ki
1,S1

+
kM
1,S1

[S2]

ki
1,S1

kM
1,S2

+ [P1]

ki
1,P1

+
kM
1,P1

[P2]

ki
1,P1

kM
1,P2

+ [S1][S2]

ki
1,S1

kM
1,S2

+ [S1][P1]

ki
1,S1

ki
1,P1

+
kM
1,S1

[S2][P2]

ki
1,S1

kM
1,S2

ki
1,P2

+ [P1][P2]

ki
1,P1

kM
1,P2

(31)

Comparing all bi-bi kinetic formulas, one can see that the ordered mechanism is the slowest one
because of the large denominator.

2.5. Irreversible Non-Modulated Non-Interacting Reactant Enzymes

Irreversible enzyme-catalyzed reactions with more than one substrate can alternatively be modeled
using the following equation if there is no modulator:

vj(S,p) = [E]0k+j

n∏
i=1

[Si]
kM

ji + [Si]
. (32)

In contrast to the formulas for reversible reactions, the number of products does not matter for rate
laws of irreversible reactions. Figure 9 depicts an example of a compatible process diagram. Two
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2.6. Convenience Kinetics and Thermodynamics

substrate molecules react to one product. Equation (33) gives the generated rate law for this example.

Figure 9: Example of an irreversible non-modulated non-interacting bireactant enzyme-catalyzed re-
action

v1 =
kcat

1 · [E1] · [S1]

kM
1,S2

· [S1]

kM
1,S1(

1 + [S2]

kM
1,S2

)
·
(

1 + [S1]

kM
1,S1

) (33)

SBMLsqueezer offers the user the choice of selecting this equation (SBO:0000150) whenever the
aforementioned conditions are fulfilled. Equation (32) also covers the special cases SBO:0000151
and SBO:0000152 for two or three substrate molecules, respectively. This rate law is a special case of
convenience kinetics with distinct reactants, each with stoichiometry one and no modulation at all.

2.6. Convenience Kinetics and Thermodynamics

In their original work Liebermeister et al. published the convenience kinetics in two forms [4]:

vj(S,p) =fj(S,p) · [Ej ] ·
kcat

+j

∏
i

(
[Si]

KM
ji

)n−ij
− kcat

−j

∏
i

(
[Si]

KM
ji

)n+
ij

∏
i

∑n−ij
m=0

(
[Si]

KM
ji

)m

+
∏

i

∑n+
ij

m=0

(
[Si]

KM
ji

)m

− 1
(34)

vj(S,p) =fj(S,p) · kV
j · [Ej ] ·

∏
i

(
[Si]

KM
ji

)n−ij (
kG

i kM
ji

)−nij
2 −

∏
i

(
[Si]

KM
ji

)n+
ij (

kG
i kM

ji

)nij
2

∏
i

∑n−ij
m=0

(
[Si]

KM
ji

)m

+
∏

i

∑n+
ij

m=0

(
[Si]

KM
ji

)m

− 1
. (35)

The prefactor f introduces the modifiers for activation or inhibition, to the kinetic equation and was
defined in Equation (1).

Equation (34) can be applied to any enzyme-catalyzed reaction. However, if the stoichiometric
matrix N of the reaction system contains linearly dependent columns, i. e., N does not have full
column rank, then at least one reaction is thermodynamically dependent on another. In this case,
choosing the parameters of the equation while ignoring this dependency may fit given measurement
data well but will violate the thermodynamic constraints of the system. Hence, Liebermeister et al.
derived a second form of convenience kinetics, which is shown in Equation (35). The parameters

kcat
±j are replaced by

∏
i

(
kG

i kM
ji

)∓nij
2 and the whole fraction is multiplied by the additional parameter
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2. Supported Kinetic Equations

kV
j . This ensures that all newly introduced parameters are thermodynamically independent. Note that

every kG
i stands for molecule i regardless of the respective reaction, whereas every kV

j is a parameter
for reaction j and does not depend on any molecule. The Michaelis analog parameter kM

ji depends on
both reaction j and molecule i and thus links both parameters together. For a complete derivation see
the original paper of Liebermeister et al. [4].

Because Equation (35) is more complicated and contains additional parameters, SBMLsqueezer
uses the simpler formula whenever applicable. To ensure the thermodynamic correctness of the sys-
tem, an implementation of the Gaussian algorithm, which computes the rank of a matrix, is invoked. If
the stoichiometric matrix of the system has full column rank, there is no need to apply Equation (35).
Otherwise SBMLsqueezer will assign every reaction to be modeled using convenience kinetics with
Equation (35).

For all enzyme-catalyzed reactions independent of the mechanism, convenience kinetics may be an
appropriate choice if the user lacks detailed biochemical knowledge. As stated before, reactions with
more than two substrate molecules are unlikely to take place. SBMLsqueezer will show a warning
message for such reactions. This number does not only stand for the number of different reactant
species, but rather for the stoichiometry on the left hand side. For instance, the reaction

4 A −−→ 6 B (36)

will also be considered unrealistic. This warning is, however, user-defined and the equations can still
be generated properly pursuant to the particular formula. In the case of the context menu, warnings
are shown whenever the number of reacting species exceeds two.

In an application of convenience kinetics to a mixed network together with uni-uni Michaelis-
Menten equations, it was shown that convenience kinetics leads to reasonable results when fitted to
in vivo data [12]. At the time of writing no form of convenience kinetics is included in the systems
biology ontology (SBO, Table 2).

2.6.1. Thermodynamically Dependent Form

Equation (34) shows the thermodynamically dependent formula of convenience kinetics for reversible
reactions. Equation (37) gives its corresponding irreversible form [4]. An example of a generated rate
law is shown in Equation (38) for the bi-bi reaction presented in Figure 5 on page 11.

vj(S,p) =fj(S,p) · [E]0
kcat

+j

∏
i

(
[Si]

kM
ji

)n−ij

∏
i

∑n−il
m=0

(
[Si]

kM
ji

)m (37)

v1 =
kI

1,P1

kI
1,P1 + [P1]

· [E1] ·
kcat

+1 ·
[S1]

kM
1,S1

· [S2]

kM
1,S2

− kcat
−1 ·

[P1]

kM
1,P1

· [P2]

kM
1,P2(

1 + [S1]

kM
1,S1

)(
1 + [S2]

kM
1,S2

)
+
(

1 + [P1]

kM
1,P1

)(
1 + [P2]

kM
1,P2

)
− 1

(38)

2.6.2. Thermodynamically Independent Form

As stated at the beginning of this Section (page 15), if there are linear dependencies within the stoi-
chiometric matrix, SBMLsqueezer applies the thermodynamically independent form of convenience
kinetics, which is shown in Equation (35) and for its corresponding irreversible form in Equation (39)
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2.7. Hill Equation

[4]. Equation (40) shows the generated independent form of the reaction example depicted in Figure 5,
page 11.

vj(S,p) = fj(S,p) · [E] · kV
l

∏
i

(
[Si]

kM
ji

)n−il (
kG

i kM
ji

)−nij
2

∏
i

∑n−il
m=0

(
[Si]

kM
ji

)m (39)

v1 =
kI

1,P1

kI
1,P1 + [P1]

· [E1] · kV
1 ·

[S1]

kM
1,S1

· [S2]

kM
1,S2

√
kG

S1k
M
1,S1

kG
S2k

M
1,S2

kG
P1k

M
1,P1

kG
P2k

M
1, P2

− [P1]

kM
1,P1

· [P2]

kM
1,P2

√
kG

P1k
M
1,P1

kG
P2k

M
1,P2

kG
S1k

M
1,S1

kG
S2k

M
1, S2(

1 + [S1]

kM
1,S1

)(
1 + [S2]

kM
1,S2

)
+
(

1 + [P1]

kM
1,P1

)(
1 + [P2]

kM
1,P2

)
− 1

(40)

2.7. Hill Equation

Gene regulation can also be modeled using CellDesigner. A common rate law to model those reactions
is the Hill equation [11, 13]. Figure 10 depicts one example of a process considered gene regulation.
Gene s1 is expressed and the RNA molecule s2 assembles. This process is (transcriptionally) inhibited
by the translation product, protein s3. The translation process is (translationally) activated by protein
s4. Note that the concentration of gene s1 remains unchanged during this process as the transcription
does not change the state of the gene. SBMLsqueezer recognizes mistakes within the SBML file and
sets the boundary conditions of genes to “true”. Furthermore, SBMLsqueezer will show warnings
if a transcription is, for instance, “translationally” activated. Since the release of CellDesigner 4.0β

s1

s2

s3s4

Figure 10: An example of gene expression regulation in CellDesigner notation

there have been two special arrows for the transitions described here: transcription and translation. To
ensure backwards compability, SBMLsqueezer supports simple state transitions, even between genes
and RNA as well as between RNA and proteins. However, if transcription and translation arrows are
used, SBMLsqueezer will show a warning message if they are mixed up.

The general Hill equation is given in Equation (41). The formula for the translation example in
Figure 10 can be found in Equation (42) and the rate of transcription generated according to Figure 10
is given by Equation (43). Note that the exponents w±

jm are defined according to the modulation
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3. Derivation of Predefined Kinetic Equations for Bi-Uni Reactions

matrices W± in Section 2.6, page 15.

vj(S,p) = vm
j

∏
m

 [Sm]n
H
jm

[Sm]n
H
jm +

(
KS

jm

)nH
jm


w+

jm
1− [Sm]n

H
jm

[Sm]n
H
jm +

(
KS

jm

)nH
jm


w−

jm ∏
i

S
n+

ij ·ki

i

(41)

v1 = k
g
1 ·

1− [s3]n−1,s3

[s3]n−1,s3 +
(
kS
−1,s3

)n−1,s3

 (42)

v2 = k
g
2 ·

[s4]n+2,s4

[s4]n+2,s4 +
(
kS

+2,s4

)n+2,s4
(43)

The constant ki distinguishes genes from other species:

ki =

{
0 if Si is a gene,
1 otherwise.

(44)

The SBO defines three forms of the Hill equation (SBO:0000192, SBO:0000195 and SBO:0000198).
The form described here is the general microscopic form (SBO:0000195) where no inhibition is in-
volved; see Table 2 for details. Both other types are special cases of this formula for appropriate
parameter settings. If a gene regulation or translation reaction without an assigned activator or in-
hibitor occurs, Equation (42) formally becomes a zeroth order mass-action equation (Section 2.1,
page 6).

3. Derivation of Predefined Kinetic Equations for Bi-Uni Reactions

This section shows the derivation of rate laws for the random order and the ordered bi-uni mecha-
nisms using the King-Altman method [2]. This derivation is necessary, since for this special case the
common literature does not provide appropriate equations to be used as a pre-computed formula in
SBMLsqueezer [2, 3, 14].

The King-Altman method provides an algorithm to create rate laws even for complex enzyme-
catalyzed reaction mechanisms according to the quasi-steady-state approximation [2, 14]. The algo-
rithm roughly consists of five steps that will be explained in detail in the remainder of this section.

3.1. Ordered Bi-Uni Mechanism

Firstly, we derive the rate law for the ordered bi-uni mechanism. Note that the sequence, in which the
reactants bind to the enzyme molecule, is fixed (Figure 4(b), page 10).

First Step

A polygon, whose arcs and vertices reflect the reaction mechanism, is charted (Figure 11). Every
vertex symbolizes one of the forms of the enzyme during the reaction. The edges mirror the transition
between these forms. All charted transitions have to be first-order reactions. Second-order reactions
must be given in pseudo-first-order form. The arrows, which constitute the edges of the diagram,
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3.1. Ordered Bi-Uni Mechanism
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Figure 11: Underlying reaction scheme for the ordered bi-uni mechanism

are labeled with the rate constants, which are multiplied with entering ligands if necessary, for the
corresponding transition.

The master pattern drafts the reaction scheme as a rough structure. In this case we obtain a triangle
(Figure 12).

??
??

??
? �������

Figure 12: Master pattern of the ordered bi-uni mechanism

Second Step

Next, we construct all possible substructures of Figure 12 which

1. contain only edges of the master pattern

2. connect all enzyme states and

3. do not contain closed loops.

??
??

??
?

??
??

??
?�������

�������

Figure 13: All valid sub-structures of the master pattern

Each of these patterns contains exactly one edge fewer than the master pattern. We obtain three
structures, each with two edges (Figure 13).

Third Step

In this step every single enzyme state is marked one time within each pattern and directed arcs replace
the edges, each pointing towards the highlighted enzyme state. According to the resulting pattern, we
determine an equation for the relative amount of each highlighted enzyme state (Figure 14).

The denominator D equals the sum of all numerator terms of the equations in Figure 14 and reads

D = k−1k−2 + k2k3[B] + k−1k3 + k1k2[A][B] + k−2k−3[B][P]
+ k−1k−3[P] + k1k2[A] + k−2k−3[P] + k1k3[A]. (48)
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(47)

Figure 14: Sub-patterns with their respective equations

Fourth Step

We now write the denominator as the product of coefficients in a way that all constants are ordered
with respect to their concentration terms:

D = D0 + [A]D1 + [B]D2 + [A][B]D3 + [B][P]D4 + [P]D5 (49)

where

D0 =k−1(k−2 + k3) (50)

D1 =k1(k−2 + k3) (51)

D2 =k2 + k3 (52)

D3 =k1 + k2 (53)

D4 =k2 + k−3 (54)

D5 =k−3(k−1 + k−2). (55)

The rate law is then given as the sum of the rates to form a particular product decremented by the
rates that reduce this product. In this ordered bi-uni mechanism there is only one step, in which P is
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3.1. Ordered Bi-Uni Mechanism

produced. Hence, there is only one way to consume P again and the formula reads:

v =
d[P]
dt

=k3[EAB]− k−3[E][P] (56)

=[E]0
k1k2k3[A][B] + k2k3k−3[B][P] + k−1k3k−3[P]

D

+
−k−1k−2k−3[P]− k2k3k−3[B][P]− k−1k3k−3[P]

D
(57)

=[E]0
k1k2k3[A][B]− k−1k−2k−3[P]

D
.

Fifth Step

The kinetic parameters are defined based on the coefficients determined in the fourth step. The
Michaelis constants kM

i are defined as the ratio of all constants of the substrate or product forma-
tion rate, minus the constants of the product or substrate formation rate, and the coefficient of the
rates of all substrates or products.

kM
A =

D2

D3
=

k2k3

k1k2
=

k3

k1
(58)

kM
B =

D1

D3
=

k1(k−2 + k3)
k1k2

=
k−2 + k3

k2
(59)

kM
P =

D0

D5
=

k−1(k−2 + k3)
k−3(k−1 + K−2)

(60)

The maximal activities for the forward and reverse reaction, V m
+ and V m

− , are the quotient of the
respective numerator coefficient and the coefficient of all substrates or products, respectively.

V m
+ =

numerator1
coefficient of all substrates

=[E]0
k1k2k3

k1k2
(61)

V m
− =

numerator2
coefficient of all products

=[E]0
k−1k−2k−3

k−3(k−1 + k−2)
(62)

After some conversions these kinetic equations can be combined as follows:

[E]0k−1k−2k−3 = V m
+ k1k2 (63)

and
[E][E]0k1k2k3 = V m

− k−3(k−1 + k−2). (64)

Applying some more conversions and aggregation, the rate law then reads

v =
V m

+ k1k2[A][B]− V m
− k−3(k−1 + k−2)[P]
D

(65)

=

V m
+ k1k2[A][B]−V m

−k−3(k−1+k−2)[P]

k−1(k−2+k3)

D
k−1(k−2+k3)

(66)

=

V m
+ [A][B]

kI
AkM

B

− V m
− [P]

kM
P

1 + [A]

kI
A

+ kM
A [B]

kI
AkM

B

+ [A][B]

kM
B kI

A

+ kM
A [B][P]

kI
AkM

B kI
P

+ [P]

kM
P

, (67)
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where we define the following constants:

kI
P =

k−3

k3
(68)

kI
A =

k−1

k1
. (69)

To accommodate this equation with the uni-uni Michaelis-Menten equation, we set V m
+ = kcat

+j [E]0
and V m

− = kcat
−j [E]0. This leads us to the following equation for a reversible ordered bi-uni mechanism:

v =

kcat
+j [E]0[A][B]

kI
AkM

B

− kcat
−j [E]0[P]

kM
P

1 + [A]

kI
A

+ kM
A [B]

kI
AkM

B

+ [A][B]

kM
B kI

A

+ kM
A [B][P]

kI
AkM

B kI
P

+ [P]

kM
P

. (70)

For the irreversible ordered bi-uni mechanism the formula for the rate law reads

v =

kcat
+j [E]0[A][B]

kI
AkM

B

1 + [A]

kI
A

+ kM
A [B]

kI
AkM

B

+ [A][B]

kM
B kI

A

=
kcat

+j [E]0[A][B]

kI
AkM

B + kM
B [A] + kM

A [B] + [A][B]
. (71)

3.2. Random Order Bi-Uni Mechanism

The random order mechanism is characterized by its arbitrary sequence, in which the reactants bind
to the enzyme. The binding of every substrate is carried out independently of the others (Figure 3(a)
on page 9). This must also be reflected in the corresponding rate law.

To derive an appropriate pre-computed formula for this mechanism, we again apply the five steps
of the King-Altman method [14, pp. 126-131]. Here, we only briefly summarize the steps and omit a
detailed explanation.

First Step

We chart the master pattern of the mechanism from the polygon that belongs to this particular reaction
scheme (Figure 15).

Second Step

Next we construct all possible substructures, each with exactly one edge fewer than the master pattern
(Figure 16).
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Figure 15: Structure and master pattern of the bi-uni random mechanism
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Figure 16: All valid sub-structures derived from the master pattern

Third Step

In this step, we derive the equations for every form of the enzyme attributable to the respective sub-
patterns.

[E]
[E]0

=
k−2k−1k−3 + k−1k−3k4[A] + k−2k−4k3[B] + k−4k−2k−1

D

+
k5k4k3[A][B] + k−1k−2k5 + k−2k3k5[B] + k−1k4k5[A]

D
(72)

[E][A][B]
[E]0

=
k1k−2k3[A][B] + k1k3k4[A]2[B] + k2k3k4[A][B]2 + k−1k2k4[A][B]

D

+
k3k4k−5[A][B][P] + k−1k−2k−5[P] + k−2k3k−5[B][P] + k−1k4k−5[A][P]

D
(73)
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3. Derivation of Predefined Kinetic Equations for Bi-Uni Reactions

[E][B]
[E]0

=
k−1k2k−3[B] + k1k3k−4[A][B] + k2k3k−4[B]2 + k−1k2k−4[B]

D

+
k3k−4k−5[P][B] + k−1k2k5[B] + k2k3k5[B]2 + k−1k−4k−5[P]

D
(74)

[E][A]
[E]0

=
k1k−2k−3[A] + k1k−3k4[A]2 + k2k−3k4[A][B] + k1k−2k−4[A]

D

+
k−3k4k−5[A][P] + k1k−2k5[A] + k−2k−3k−5[P] + k1k4k5[A]2

D
(75)

Fourth Step

The denominator and the preliminary kinetic equation can now be written as:

D =(k−1k−2k−3 + k−1k−2k−4 + k−1k−2k5)
+ [A](k−1k4k5 + k1k−2k−3 + k1k−2k−4 + k1k−2k5 + k−1k−3k4)

+ [A]2(k1k−3k4 + k1k4k5) + [A][B](k3k4k5 + k1k−2k3 + k1k3k−4 + k2k−3k4 + k−1k2k4)

+ [A]2[B](k1k3k4) + [B](k−2k3k−4 + k−2k3k5 + k−1k2k−3 + k−1k2k−4 + k−1k2k5)

+ [B]2(k2k3k−4 + k2k3k5) + [A][B]2(k2k3k4) + [P](k−1k−2k−5 + k−1k−4k−5 + k−2k−3k−5)
+ [A][P](k−3k4k−5 + k−1k4k−5) + [A][B][P](k3k4k−5) + [B][P](k3k−4k−5 + k−2k3k−5)

=D0 + [A]D1 + [A]2D2 + [A][B]D3 + [A]2[B]D4 + [B]D5 + [B]2D6+

[A][B]2D7 + [P]D8 + [A][P]D9 + [A][B][P]D10 + [B][P]D11

(76)

v =
d[P]
dt

=k5[EAB]− k−5[E][P]

=[E]0
(k1k−2k3 + k−1k2k4)k5[A][B] + k1k3k4k5[A]2[B] + k2k3k4k5[A][B]2

D

− (k−1k−2 + k−1k−2k−3)k−5[P] + k−1k−3k4k−3[A][P] + k−2k3k−4k−5[B][P]
D

.

(77)

Fifth Step

To complete the derivation, we have to define the Michaelis constant. According to Segel, the random
order bi-uni mechanism does not provide a hyperbole function when no substrate saturation is present
[3]. Thus, a kinetic formula based on this mechanism cannot be linearized. Hence, we may combine
several rate constants to Michaelis-like constants similar to what we applied in the derivation for the
ordered bi-uni mechanism. However, these constants would not be in accordance with the definition
of the Michaelis constant of the uni-uni formula [3]. Assuming fast steady-states between the ternary
and the binary complexes EAB and EP, and also assuming all conversions to be fast, this equation
can be simplified as follows: According to Cornish-Bowden, the squared terms in the numerator and
denominator as well as the terms [B][P], [A][P] and [A][B][P] then disappear [2]. This leads to the def-
inition of the dissociation constants kI

A, kI
B and kI

P for kM
A , kM

B and kM
P . Since the sequence, in which

the reactants bind to the enzyme, is arbitrary, we have kM
A kI

B = kI
AkM

B . Hence, the derived equation
is valid for this mechanism and assumes an underlying rapid-equilibrium-random-mechanism. The
constants of this equation are defined as follows:
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kM
A =

D5

D3
(78)

kM
B =

D1

D3
(79)

kM
P =

D0

D8
(80)

kI
A =

D1

D0
(81)

kI
B =

D0

D5
. (82)

And the final equation then reads:

v =

kcat
+j [E]0[A][B]

kI
AkM

B

− kcat
−j [E]0[P]

kM
P

1 + [A]

kI
A

+ [B]

kI
B

+ [A][B]

kM
B kI

A

+ [P]

kM
P

. (83)

For the irreversible random order bi-uni mechanism the above formula can be simplified to

v =

kcat
+j [E]0[A][B]

kI
AkM

B

1 + [A]

kI
A

+ [B]

kI
B

+ [A][B]

kM
B kI

A

=
kcat

+j [E]0[A][B]

kI
AkM

B + kM
B [A] + kM

A [B] + [A][B]
. (84)

A. Systems Biology Ontology of Mathematical Expressions

The following Table 2 provides an overview of all mathematical expressions (SBO:0000064), de-
fined mainly by Nicolas Le Novère, Michael Hucka and Andrew Finney in the Systems Biology
Ontology [15]. The SBO term “mathematical expression” contains the term “conservation law”
(SBO:0000355) and has two sub-categories: “rate law” (SBO:0000001) and “obsolete mathemati-
cal expression” (SBO:0000005).

Here we only consider the category “rate law”, whose terms are listed in the following table. The
identifiers of internal nodes are written in bold face. The column “variables” contains both parameters
and reacting species. The table lists the tree of SBO terms for rate laws, which are defined at the
time of writing, serially. The entries in this table are not sorted with respect to the SBO identification
number but to the order of their occurrence within the tree from top to bottom. The discrete scheme
mass-action kinetics, which are currently not supported by SBMLsqueezer, are printed gray. Note that
four of these are formally equivalent to their corresponding continuous rate laws (see Section 2.1 for
details).

Also, the mathematical form of the kinetics of irreversible non-modulated unireactant enzymes
(SBO:0000028), the Henri-Michaelis-Menten equation (SBO:0000029), the Van Slyke and Cullen
equation (SBO:0000030) as well as the Briggs-Haldane equation (SBO:0000031) are effectively iden-
tical. The lattermost one is almost the same as the other three except that the constant KS is renamed
to KM. The difference in these equations can be explained by different modeling assumptions, in
particular the denotation of KM:

Michaelis-Menten, rapid equilibrium K = koff

kon

Briggs-Haldane, quasi-steady-state K = koff+kcat

kon

Van Slyke and Cullen, irreversible substrate binding K = kcat

kon
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Table 2: The systems biology ontology (SBO) of rate laws
SBO Term Variables Formula

0000012 Mass action kinetics general category
0000041 Irreversible mass action ki-

netics
general category

0000043 Zeroth order irreversible
mass action kinetics

general category

0000043 First order irreversible mass
action kinetics

general category

0000045 Second order irreversible
mass action kinetics

general category

0000050 Second order irreversible
mass action kinetics, one
reactant

general category

0000053 Second order irreversible
mass action kinetics, two
reactants

general category

0000055 Third order irreversible mass
action kinetics

general category

0000056 Third order irreversible mass
action kinetics, one reactant

general category

0000058 Third order irreversible mass
action kinetics, two reactants

general category

000060 Third order irreversible mass
action kinetics, three reac-
tants

general category

0000163 Irreversible mass action ki-
netics, continuous scheme

k, n, µ, R k ·
∏n

i=0 Rµi
i

0000047 Zeroth order irreversible
mass action kinetics, contin-
uous scheme

k k

0000049 First order irreversible mass
action kinetics, continuous
scheme

k, R k ·R

0000333 Monoexpotential decay l, R R
l

0000052 Second order irreversible
mass action kinetics, one
reactant, continuous scheme

k, R k ·R2

0000054 Second order irreversible
mass action kinetics, two
reactants, continuous scheme

k, R1, R2 k ·R1 ·R2

0000057 Third order irreversible mass
action kinetics, one reactant,
continuous scheme

k, R k ·R2 ·R
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0000059 Third order irreversible mass
action kinetics, two reactants,
continuous scheme

k, R1, R2 k ·R2
1 ·R2

0000061 Third order irreversible mass
action kinetics, three reac-
tants, continuous scheme

k, R1, R2, R3 k ·R1 ·R2 ·R3

0000166 Irreversible mass action ki-
netics, discrete scheme

c, n, µ, R c ·
∏n

i=0
Ri!

(Ri−µi)!·µi!

0000140 Zeroth order irreversible
mass action kinetics, discrete
scheme

c c

0000141 First order irreversible mass
action kinetics, discrete
scheme

c, R c ·R

0000142 Second order irreversible
mass action kinetics, one
reactant, discrete scheme

c,R c · R·(R−1)
2

0000143 Second order irreversible
mass action kinetics, two
reactants, discrete scheme

c, R1, R2 c ·R1 ·R2

0000144 Third order irreversible mass
action kinetics, one reactant,
discrete scheme

c,R c · R·(R−1)·(R−2)
6

0000145 Third order irreversible mass
action kinetics, two reactants,
discrete scheme

c,R1, R2 c ·R1 · R2·(R2−1)
2

0000146 Third order irreversible mass
action kinetics, three reac-
tants, discrete scheme

c, R1, R2,
R3

c ·R1 ·R2 ·R3

0000042 Reversible mass action kinet-
ics

general category

0000069 Zeroth order forward re-
versible mass action kinetics

general category

0000070 Zeroth order forward, first or-
der reverse, reversible mass
action kinetics, continuous
scheme

kf , kr, P kf − kr · P

0000071 Zeroth order forward, second
order reverse, reversible mass
action kinetics

general category

0000072 Zeroth order forward, second
order reverse with one prod-
uct, reversible mass action
kinetics, continuous scheme

kf , kr, P kf − kr · P 2
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SBO Term Variables Formula

0000073 Zeroth order forward, second
order reverse with two prod-
ucts, reversible mass action
kinetics, continuous scheme

kf , kr, P1,
P2

kf − kr · P1 · P2

0000074 Zeroth order forward, third
order reverse, reversible mass
action kinetics

general category

0000075 Zeroth order forward, third
order reverse with one prod-
uct, reversible mass action
kinetics, continuous scheme

kf , kr, P kf − kr · P 3

0000076 Zeroth order forward, third
order reverse with two prod-
ucts, reversible mass action
kinetics, continuous scheme

kf , kr, P1,
P2

kf − kr · P1 · P2 · P2

0000077 Zeroth order forward, third
order reverse with three prod-
ucts, reversible mass action
kinetics, continuous scheme

kf , kr, P1,
P2, P3

kf − kr · P1 · P2 · P3

0000078 First order forward reversible
mass action kinetics

general category

0000079 First order forward, zeroth
order reverse, reversible mass
action kinetics, continuous
scheme

kf , kr, R kf ·R− kr

0000080 First order forward, first or-
der reverse, reversible mass
action kinetics, continuous
scheme

kf , kr, R, P kf ·R− kr · P

0000081 First order forward, second
order reverse, reversible mass
action kinetics

general category

0000082 First order forward, second
order reverse with one prod-
uct, reversible mass action
kinetics, continuous scheme

kf , kr, R, P kf ·R− kr · P 2

0000083 First order forward, second
order reverse with two prod-
ucts, reversible mass action
kinetics, continuous scheme

kf , kr, R, P1,
P2

kf ·R− kr · P1 · P2

0000084 First order forward, third or-
der reverse, reversible mass
action kinetics

general category
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0000085 First order forward, third or-
der reverse with one product,
reversible mass action kinet-
ics, continuous scheme

kf , kr, R, P kf ·R− kr · P 3

0000086 First order forward, third or-
der reverse with two prod-
ucts, reversible mass action
kinetics, continuous scheme

kf , kr, R, P1,
P2

kf ·R− kr · P 2
1 · P2

0000087 First order forward, third or-
der reverse with three prod-
ucts, reversible mass action
kinetics, continuous scheme

kf , kr, R, P1,
P2, P3

kf ·R− kr · P1 · P2 · P3

0000088 Second order forward re-
versible mass action kinetics

general category

0000089 Second order forward with
one reactant reversible mass
action kinetics

general category

0000090 Second order forward with
one reactant, zeroth order re-
verse, reversible mass action
kinetics, continuous scheme

kf , kr, R kf ·R2 − kr

0000091 Second order forward with
one reactant, first order re-
verse, reversible mass action
kinetics, continuous scheme

kf , kr, R, P kf ·R2 − kr · P

0000092 Second order forward with
one reactant, second order re-
verse, reversible mass action
kinetics

general category

0000093 Second order forward with
one reactant, second order re-
verse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P kf ·R2 − kr · P 2

0000094 Second order forward with
one reactant, second order re-
verse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P1,
P2

kf ·R2 − kr · P1 · P2

0000095 Second order forward with
one reactant, third order re-
verse, reversible mass action
kinetics

general category
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SBO Term Variables Formula

0000096 Second order forward with
one reactant, third order re-
verse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P kf ·R2 − kr · P 3

0000097 Second order forward with
one reactant, third order re-
verse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P1,
P2

kf ·R2 − kr · P 2
1 · P2

0000098 Second order forward with
one reactant, third order re-
verse with three products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P1,
P2, P3

kf ·R2 − kr · P1 · P2 · P3

0000099 Second order forward with
two reactants reversible mass
action kinetics

general category

0000100 Second order forward with
two reactants, zeroth or-
der reverse, reversible mass
action kinetics, continuous
scheme

kf , kr, R1, R2 kf ·R1 ·R2 − kr

0000101 Second order forward with
two reactants, first order re-
verse, reversible mass action
kinetics, continuous scheme

kf , kr, R1,
R2, P

kf ·R1 ·R2 − kr · P

0000102 Second order forward with
two reactants, second order
reverse, reversible mass ac-
tion kinetics

general category

0000103 Second order forward with
two reactants, second order
reverse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P

kf ·R1 ·R2 − kr · P 2

0000104 Second order forward with
two reactants, second order
reverse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P1, P2

kf ·R1 ·R2 − kr · P1 · P2

0000105 Second order forward with
two reactants, third order re-
verse, reversible mass action
kinetics

general category
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0000106 Second order forward with
two reactants, third order re-
verse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P

kf ·R1 ·R2 − kr · P 3

0000107 Second order forward with
two reactants, third order re-
verse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P1, P2

kf ·R1 ·R2 − kr · P 2
1 · P2

0000108 Second order forward with
two reactants, third order re-
verse with three products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P1, P2,
P3

kf ·R1 ·R2 − kr · P1 · P2 · P3

0000109 Third order forward re-
versible mass action kinetics

general category

0000110 Third order forward with two
reactants reversible mass ac-
tion kinetics

general category

0000111 Third order forward with two
reactants, zeroth order re-
verse, reversible mass action
kinetics, continuous scheme

kf , kr, R1,
R2

kf ·R2
1 ·R2 − kr

0000112 Third order forward with two
reactants, first order reverse,
reversible mass action kinet-
ics, continuous scheme

kf , kr, R1,
R2, P

kf ·R2
1 ·R2 − kr · P

0000113 Third order forward with two
reactants, second order re-
verse, reversible mass action
kinetics

general category

0000114 Third order forward with two
reactants, second order re-
verse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P

kf ·R2
1 ·R2 − kr · P 2

0000115 Third order forward with two
reactants, second order re-
verse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P1, P2

kf ·R2
1 ·R2 − kr · P1 · P2
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SBO Term Variables Formula

0000116 Third order forward with two
reactants, third order reverse,
reversible mass action kinet-
ics

general category

0000117 Third order forward with two
reactants, third order reverse
with one product, reversible
mass action kinetics, contin-
uous scheme

kf , kr, R1,
R2, P

kf ·R2
1 ·R2 − kr · P · P 2

0000118 Third order forward with two
reactants, third order reverse
with two products, reversible
mass action kinetics, contin-
uous scheme

kf , kr, R1,
R2, P1, P2

kf ·R2
1 ·R2 − kr · P1 · P1 · P2

0000119 Third order forward with
two reactants, third order re-
verse with three products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, P1, P2,
P3

kf ·R2
1 ·R2 − kr · P1 · P2 · P3

0000120 Third order forward with
three reactants reversible
mass action kinetics

general category

0000121 Third order forward with
three reactants, zeroth or-
der reverse, reversible mass
action kinetics, continuous
scheme

kf , kr, R1,
R2, R3

kf ·R1 ·R2 ·R3 − kr

0000122 Third order forward with
three reactants, first order re-
verse, reversible mass action
kinetics, continuous scheme

kf , kr, R1,
R2, R3, P

kf ·R1 ·R2 ·R3 − kr · P

0000123 Third order forward with
three reactants, second order
reverse, reversible mass ac-
tion kinetics

general category

0000124 Third order forward with
three reactants, second order
reverse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, R3, P

kf ·R1 ·R2 ·R3 − kr · P 2

0000125 Third order forward with
three reactants, second order
reverse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, R3, P1,
P2

kf ·R1 ·R2 ·R3 − kr · P1 · P2
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0000126 Third order forward with
three reactants, third order re-
verse, reversible mass action
kinetics

general category

0000127 Third order forward with
three reactants, third order re-
verse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, R3, P

kf ·R1 ·R2 ·R3 − kr · P 3

0000128 Third order forward with
three reactants, third order re-
verse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, R3, P1,
P2

kf ·R1 ·R2 ·R3 − kr · P 2
1 · P2

0000129 Third order forward with
three reactants, third order re-
verse with three products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R1,
R2, R3, P1,
P2, P3

kf ·R1 ·R2 ·R3 − kr · P1 · P2 · P3

0000130 Third order forward with one
reactant reversible mass ac-
tion kinetics

general category

0000131 Third order forward with one
reactant, zeroth order re-
verse, reversible mass action
kinetics, continuous scheme

kf , kr, R kf ·R3 − kr

0000132 Third order forward with one
reactant, first order reverse,
reversible mass action kinet-
ics, continuous scheme

kf , kr, R, P kf ·R3 − kr · P

0000133 Third order forward with one
reactant, second order re-
verse, reversible mass action
kinetics

general category

0000134 Third order forward with one
reactant, second order re-
verse with one product, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P kf ·R3 − kr · P 2

0000135 Third order forward with one
reactant, second order re-
verse with two products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P1,
P2

kf ·R3 − kr · P1 · P2
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0000136 Third order forward with one
reactant, third order reverse,
reversible mass action kinet-
ics

general category

0000137 Third order forward with one
reactant, third order reverse
with one product, reversible
mass action kinetics, contin-
uous scheme

kf , kr, R, P kf ·R3 − kr · P 3

0000138 Third order forward with one
reactant, third order reverse
with two products, reversible
mass action kinetics, contin-
uous scheme

kf , kr, R, P1,
P2

kf ·R3 − kr · P1 · P2

0000139 Third order forward with
one reactant, third order re-
verse with three products, re-
versible mass action kinetics,
continuous scheme

kf , kr, R, P1,
P2, P3

kf ·R3 − kr · P1 · P2 · P3

0000192 Hill equation Vmax, R, K,
h

Vmax·Rh

K+Rh

0000195 Hill equation, microscopic
form

Vmax, R, K,
h

Vmax·Rh

Kh+Rh

0000198 Hill equation, reduced form Vmax, R∗,
K, h

Vmax·R∗h

1+R∗h

0000268 Enzyme kinetics general category

0000150 Kinetics of irreversible non-
modulated non-interacting
reactant enzymes

E, k+, n, S,
K

E·k+·
Qn

i=1
Si
KiQn

i=1

“
1+

Si
Ki

”

0000028 Kinetics of irreversible non-
modulated unireactant en-
zymes

kcat, ET, S,
KS

kcat·ET·S
KS+S

0000029 Henri-Michaelis-Menten
equation

kcat, ET, S,
KS

kcat·ET·S
KS+S

0000030 Van Slyke-Cullen equation kcat, ET, S,
KS

kcat·ET·S
KS+S

0000031 Briggs-Haldane equation kcat, ET, S,
KM

kcat·ET·S
KM+S

0000199 Normalized kinetics of unire-
actant enzymes

kcat, S, KS
kcat·S
KS+S

0000151 Kinetics of irreversible non-
modulated non-interacting
bireactant enzymes

E, k+, n,
S1, S2, K1,
K2

E·k+· S1
K1

· S2
K2“

1+
S1
K1

”
·
“
1+

S2
K2

”
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0000152 Kinetics of irreversible non-
modulated non-interacting
trireactant enzymes

E, k+, n,
S1, S2, S3,
K1, K2, K3

E·k+· S1
K1

· S2
K2

· S3
K3“

1+
S1
K1

”
·
“
1+

S2
K2

”
·
“
1+

S3
K3

”

0000269 Kinetics of unireactant en-
zymes

general category

0000262 Simple uncompetitive inhibi-
tion of irreversible unireac-
tant enzymes

kcat, ET, S,
I , KS, KI

kcat·ET·S
S·

“
1+ I

KI

”
+KS

0000270 Competitive inhibition
of irreversible unireac-
tant enzymes by exclusive
inhibitors

kcat, ET, S,
I , KS, KI, n

kcat·ET·S
KS·

“
1+

Pn
i=1

Ii
KIi

”
+S

0000260 Simple competitive inhibi-
tion of irreversible unireac-
tant enzymes by one inhibitor

kcat, ET, S,
I , KS, KI

kcat·ET·S
KS·

“
1+ I

KI

”
+S

0000271 Competitive inhibition of
irreversible unireactant
enzymes by two exclusive
inhibitors

kcat, ET, S,
I1, I2, KS,
KI1, KI2,
KI2

kcat·ET·S
KS·

“
1+

I1
KI1

+
I2

KI2

”
+S

0000273 Competitive inhibition of
irreversible unireactant
enzymes by non-exclusive
non-cooperative inhibitors

kcat, ET, S,
I , KS, KI,
n, m

kcat·ET·S
KS·

Qn
i=1

“
1+

Ii
KIi

”mi
+S

0000267 Competitive inhibition of
irreversible unireactant
enzymes by one inhibitor

kcat, ET, S,
I , KS, KI, n

kcat·ET·S
S+KS·

“
1+ I

KI

”n

0000274 Simple competitive inhibi-
tion of irreversible unireac-
tant enzymes by two non-
exclusive inhibitors

kcat, ET, S,
I1, I2, KS,
KI1, KI2

kcat·ET·S
KS·

“
1+

I1
KI1

+
I2

KI2

”
+S

0000275 Mixed-type inhibition of ir-
reversible enzymes by mutu-
ally exclusive inhibitors

kcat, ET, S,
I , KS, KI, a,
n

kcat·ET·S
KS·

“
1+

Pn
i=1

Ii
KIi

”
+S·

“
1+

Pn
i=0

Ii
ai·KIi

”

0000265 Simple mixed-type inhibition
of irreversible unireactant en-
zymes

kcat, ET, S,
I , KS, KI, a

kcat·ET·S
S·

“
1+ I

a·KI

”
+KS·

“
1+ I

KI

”

0000266 Simple non-competitive inhi-
bition of unireactant enzymes

kcat, ET, S,
I , KS, KI

kcat·ET·S
S·

“
1+ I

KI

”
+KS·

“
1+ I

KI

”
0000276 Mixed-type inhibition of irre-

versible unireactant enzymes
by two inhibitors

kcat, ET, S,
I1, I2, KS,
KI1, KI2, a,
b

kcat·ET·S
S·

“
1+

I1
a·KI1

+
I2

b·KI2

”
+KS·

“
1+ I

KI1
+

I2
KI2

”
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0000277 Mixed-type inhibition of
unireactant enzymes by two
inhibitors

kcat, ET, S,
I1, I2, KS,
KI1, KI2

kcat·ET·S
S·

“
1+

I1
KI1

+
I2

KI2

”
+KS·

“
1+

I1
KI1

+
I2

KI2

”

0000326 Kinetics of non-modulated
unireactant enzymes

k−cat, k+cat,
ET, S, P ,
KMS, KMP

k+cat·ET· S
KMS

−k−cat·ET· P
KMP

1+ S
KMS

+ P
KMP
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