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PTS equations and scaling

The complete set of equations for the PTS proteins that are used is given in the following form:

˙PtsP
P

= k1(PEP PtsP − K1Pyr PtsPP ) − k2(PtsPP PtsO − K2 PtsP PtsOP )

˙PtsO
P

= k2(PtsPP PtsO − K2 PtsP PtsOP ) − k3(PtsOP PtsN − K3 PtsO PtsNP )

˙PtsN
P

= k3(PtsOP PtsN − K3 PtsO PtsNP ) + k5(FruBP PtsN − K5 FruB PtsNP )

˙FruB
P

= k4(PEP FruB − K4Pyr FruBPP ) − k5(FruBP PtsN − K5 FruB PtsNP )

− rfru (1)

Introducing the conservation equation X + XP = X0 and scaling with x = XP /X0, τ = k1 Pyr leads to

(prime indicates derivative with respect to τ):

ptsPP ′

=
PEP

Pyr
(1− ptsP ) − K1 ptsP

P

−

k2PtsO0

k1Pyr
(ptsPP (1− ptsOP ) − K2 ptsP ptsOP )
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ptsOP ′

=
k2PtsP0

k1Pyr
(ptsPP (1− ptsOP ) − K2 (1− ptsPP ) ptsOP )

−

k3PtsN0

k1Pyr
(ptsOP (1− ptsNP ) − K3 (1− ptsOP ) ptsNP )

ptsNP ′

=
k3PtsO0

k1Pyr
(ptsOP (1− ptsNP ) − K3 (1− ptsOP ) ptsNP )

+
k5FruB0

k1Pyr
(fruBP (1− ptsNP ) − K5 (1− fruBP ) ptsNP )

fruBP ′

=
k4
k1

(
PEP

Pyr
(1− fruBP ) − K4 fruBPP )

−

k5PtsN0

k1Pyr
(fruBP (1− ptsNP ) − K5 (1− fruBP ) ptsNP )

−

rfru
k1PyrFruB0

(2)

The dimensionless system has two inputs (PEP/pyruvate ratio and scaled fructose uptake rate), 5 equilibrium

constants Ki and seven kinetic parameters αj :

α1 =
k2PtsO0

k1Pyr
α2 =

k2PtsP0

k1Pyr
α3 =

k3PtsO0

k1Pyr

α4 =
k3PtsN0

k1Pyr
α5 =

k5FruB0

k1Pyr
α6 =

k4
k1

α7 =
k5PtsN0

k1Pyr
(3)

Note, that in the most cases considered in the manuscript, a number of rates are zero. In these cases,

scaling does not play any role, since the equilibrium is invariant. The most important case for the complete

set is growth of the wild type strain on CAA plus fructose. Here, the individual rates are not zero. For

the equations for ptsOp and ptsNp, factors α2, α3, α4 are assumed to be in the same order of magnitude,

since all have identical structures. For the equations for ptsP p and fruBp different expressions appear.

Since the concentration of a metabolite is far higher than the one of a protein, a factor 100 is used here

that relates the values for PEP/Pyr and α2; and α6 and α7, respectively. To obtain a scaled value for

the uptake rate rfru the following rough estimation was performed: The value of the fructose uptake rate

is rfru = 0.08 mmol/gDW h. Parameter k1 is 2 1051/(µmol/gDW h) [Kremling et al., Analysis of global

control of Escherichia coli carbohydrate uptake, BMC Systems Biology 42, 2007], the concentration of

pyruvate in the order of 10µmol/gDW [Sauter and Gilles, Modeling and experimental validation of the

signal transduction via the Escherichia coli sucrose phosphotransferase system, Journal of Biotechnology

110, 2004; Bettenbrock et al., A quantitative approach to catabolite repression, JBC 281, 2006] and the

2



concentration of a PTS protein in the order of 1 10−1µmol/gDW [Bettenbrock et al., A quantitative approach

to catabolite repression, JBC 281, 2006; J. Rohwer et al., Understanding glucose transport by the bacterial

phosphoenolpyruvate: glucose phosphotransferase system on the basis of kinetic measurements in vitro, JBC

275, 2000] . Based on this values, a value of r′fru = 0.001 was chosen.

For growth on CAA plus fructose, the complete set of equations has to be solved to determine the steady

state degree of phosphorylation. The assumption of a steady state is reasonable since the phosphoryl transfer

between the PTS proteins runs on a much faster time scale than metabolic reactions. Taking into account

that some of the values for αi are in the same order of magnitude, and with the values from above, the

following set of equations is solved with MATLAB (.m files are available on request):

0 = r′1 −

1

100
r′2

0 = r′2 − r′3

0 = r′3 + r′5

0 = r′4 −

1

100
r′5 − r′fru (4)

Kinetic parameters

Based on the available data not all parameters could be calculated. Therefore, the following strategy was

chosen: Parameter K3 was first fixed to K3 = 1. For growth in CAA the PEP/pyruvate ratio pp was set to

1. Considering the wild type, the conditions given in the main text and the available experimental data, the

following condition that allows to determine K1 holds true: The equations were written in such a form that

the unknowns, PtsPP or PtsOP , were eliminated:

PtsPP =
K2 K3

1− PtsPP (1−K2 K3)
=

pp

K1 + pp
(5)

Afterwards, the same equation is used to determine the PEP/pyruvate ratio pp for growth on CAA plus

fructose. The product K4 · K5 can be determined from the fact that for both branches, the equilibrium

constant must be the same. Finally, considering growth on CAA plus fructose for the PtsP mutant, r3 =

r5 = 0 and hence r4′ = r′fru allows to calculate K5. With the parameters so far, a value for K2 was chosen

in such a way that it fits the data at best. It was observed that there is a saturation behavior when varying

K2, that is, larger values of K2 have no influence on the simulation results. Finally the influence of the
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choice K3 = 1 was analyzed. It turns out that K3 could be changed only in a small range. Therefore K3 = 1

was the final fixing. The resulting values are as follows (all values are dimensionless):

K1 K2 K3 K4 K5

0.02 1.0 1.0 3.12 · 10−5 654.6

Figure 1 shows the influence of varying parameters K2 and the PEP/pyruvate ratio since these values

are set a priori. The default condition is marked with a black square. The colors represent values of the

objective function (least square approach):

Φ =
∑ (yMi − yi)

2

σ2
(6)

with yMi measured values, yi simulated values and σ the standard deviation (values are given in Table 2

in the main text). The model can be assessed by comparing the values of Φ with values given from a χ2

distribution. For the calculation shown in Figure 1, 10 data points are considered and five parameters are

estimated (Ki and PEP/pyruvate ratio; note that not all Ki value could be chosen independently), so the

range for χ2 is given by 5 degree of freedom. The respective valid interval is therefore between 0.83 and

12.83.
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Figure 1: Contour plot for Φ in dependence on K2 and the PEP/pyruvate ratio. The black square indicates
the two values used in the calculations.

As can be seen, parameter K2 has only marginal influence on the objective function. The PEP/pyruvate

ratio could be changed in reasonable borders without leaving the interval given by the χ2 distribution. The
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black square indicates the two values used in the calculations.

Kinetics for the PEP synthase rc and gluconeogenetic reaction rd

Based on power law kinetics the following results are obtained for the two reactions:

rc = kc Pyrnc with kc = 1; nc = 1 are set

rd = kd PEPnd with kd = 2.73; nd = 0.30 (7)

Based on the values for the flux variability analysis, the value of k in Figure 8 might change. For the

default condition k = 0.34. Since k is defined as k = ∆rb
∆ra

it increases for larger values of ∆rb and smaller

values of ∆ra and decreases for smaller values of ∆rb and larger values of ∆ra. Taking the values from Table

3 different values for ∆ra and ∆rb could be determined; the extreme conditions lead to values kmax = 0.47

and kmin = 0.22. These values are used in the calculation. The confidence region is shown in Figure 9 with

dashed lines.
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