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1. Introduction 
 
Below we provide further information on sample network construction using different similarity 
measures, additional network concepts, and other supplementary methods.  We also describe 
how to calculate module eigengenes, relate sample network metrics to sample traits, and provide 
a brief discussion of normalization methods, including correction for batch effects.  Eight 
supplementary figures are presented.  We have also created a detailed tutorial illustrating usage 
of the SampleNetwork and ModuleSampleNetwork R functions, which highlights required input 
files and formats, parameter choices, user interactions, and output files.  This tutorial, along with 
the SampleNetwork and ModuleSampleNetwork R functions, and the required input files, is 
available on our web site: 
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/SampleNetwork. 
 
2. Supplementary Methods 
 
2.1. Sample networks based on general similarity or dissimilarity measures 
Just as cluster analysis can take as input a variety of similarity or dissimilarity measures 
(correlation, Euclidean distance, mutual information, etc.), any such measure can be used to 
construct sample networks. 
 
2.1.1. Turning a similarity or dissimilarity matrix into a network 
A similarity matrix (also referred to as a similarity measure) is defined as an n x n dimensional, 
symmetric matrix S = sij whose entries are non-negative numbers.  Thus, the components of a 
similarity matrix must satisfy the following conditions: 

sij >= 0 (non-negativity), 
sij = sji (symmetry). 

A network adjacency matrix is a special case of a similarity matrix: it is a similarity matrix 
whose entries are less than or equal to 1 and whose diagonal elements are equal to 1.  To 
construct a network adjacency matrix from a similarity matrix, one needs to transform the 
similarity matrix so that its off-diagonal elements lie between 0 and 1 and its diagonal elements 
equal 1.  This can be achieved by finding upper bounds for the similarities.  We call an n x n 
dimensional, symmetric matrix UpperBoundss = UpperBoundsij a matrix of upper bounds for S if 
its elements satisfy the following conditions: 

sij <= UpperBoundsij   (if i is different from j), 
sii =  UpperBoundsii   (for diagonal elements), 
UpperBoundsij = UpperBoundsji   (symmetry). 

The component-wise matrix division: 
A = S / UpperBoundss 
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is defined as the matrix whose ij-th element is given by sij / UpperBoundsij.  One can easily 
verify that the resulting A satisfies the properties of an adjacency matrix.  As an example, 
consider the similarity matrix  

S = |cov(datX)| = |cov(xi,xj)| 
of absolute values of covariances between the numeric vectors xi (i = 1,....,n).  A well known 
inequality (the Cauchy-Schwarz inequality) can be used to show that 

UpperBoundss = sqrt(var(xi)*var(xj)) 
is a matrix of upper bounds for S.  Then: 

A = S / UpperBoundss = |cor(xi,xj)| 
is simply the absolute value of pairwise correlations, which satisfies the properties of an 
adjacency matrix. 
 In the following, we describe how to construct a network based on a dissimilarity matrix.  
A dissimilarity matrix is defined to be a symmetric matrix D = Dij of non-negative numbers with 
diagonal elements equal to 0, i.e. its elements satisfy the following conditions: 

Dij >= 0   (non-negativity), 
Dij = Dji   (symmetry), 

Dii = 0   (zero diagonal). 
Any monotonically decreasing function can be used to turn a dissimilarity matrix into a 
similarity matrix: 

S = DecreasingFunction(D) = DecreasingFunction(Dij). 
Next, the resulting similarity matrix can be used to define a network adjacency matrix as 
described above.  For example, if UpperBounds(D) denotes a symmetric matrix of element-wise 
upper bounds for D, then 

A = 1 – D / UpperBound(D) 
defines an adjacency matrix. 
 
2.2. Exploring the relationship between correlation networks and Euclidean distance-based 
networks 
While sample networks can be defined based on a general distance matrix, we typically use 
signed correlation networks to define sample networks.  Here we argue that a signed correlation 
network is in a certain sense equivalent to a Euclidean distance-based network between scaled 
vectors.  Recall that the Euclidean distance between two vectors is defined as follows: 

. 

Consider the matrix of pairwise squared Euclidean distances D = (||Si – Sj||)2 between sample 
vectors.  Denote by maxDiss = max(D) the maximum squared distance between the vectors.  One 
can then define a distance-based adjacency matrix as follows: 

. 

Consider the scale function that scales (standardizes) the components of a vector.  In vector 
notation, 

. 

For the Euclidean distance‐based network between scaled vectors, we find that 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where minCor denotes the minimum entry of the pairwise correlation matrix.  This equation 
follows directly from the following relationship: 

€ 

scale Si( ) − scale S j( )
2

= 2 m −1( ) 1− cor Si,S j( )( ) , 
where m equals the number of components of Si. 
 Note that 

€ 

Aij
Euclid  is a monotonically increasing function of cor(Si,Sj).  Thus, any signed 

correlation network (defined as an increasing function of cor(Si,Sj)) is a monotonically increasing 
function of the Euclidean distance-based network between scaled vectors. 
 
2.3. Additional network concepts 
Sample networks can be characterized by a variety of concepts that describe properties of 
individual nodes (samples) or properties of a network as a whole.  These concepts provide 
diagnostic measures for comparing the consistency of sample behavior within and across 
datasets.  An advantage of using such measures is that they provide an unbiased approach for 
comparing the quality and variability of data generated by different studies, including data 
produced by different technology platforms.  Several additional network concepts are described 
below. 
 
2.3.1. Maximum Adjacency Ratio 
For weighted networks, we define the maximum adjacency ratio (MAR) of node i as follows: 

€ 

MARi =
aij( )

2

j≠ i
∑

aijj≠ i∑
, 

which is defined if ki = ∑j≠i aij > 0.  Note that 0 ≤ aij ≤ 1 implies that 0 ≤ MARi ≤ 1.  If all non-
zero adjacencies take on their maximum value, then MARi = 1 (hence the name "maximum 
adjacency ratio").  If all non-zero adjacencies take on a small, constant value aij = ε, then MARi = 
ε will be small. 
Sample network interpretation of the maximum adjacency ratio: MARi = 1 suggests that the i-th 
sample has extreme correlations with other samples (close to 1 or –1).  MARi = 0.5 suggests that 
the i-th sample has moderate correlations (e.g. 0.4) with other samples.  The MAR can help 
determine whether a highly connected "hub" sample has moderate correlations with many 
samples or very high positive correlations with relatively few samples.  In weighted sample 
networks, we find that the MAR is often highly correlated with the connectivity k.  But in other 
contexts, the MAR has sometimes (though not always) been found to be superior to k when it 
comes to identifying biologically important hubs [1]. 
 
2.3.2. Decentralization 
The network decentralization is given by: 

€ 

Decentralization =1− n
n − 2

kmax
n −1

−Density
 

 
 

 

 
  

where Density, or "intersample adjacency" (ISA), is defined as the mean adjacency formed 
across the off-diagonal node pairs.  For a network with a star topology, the decentralization is 0; 
in contrast, the decentralization is 1 for a network in which each node has the same connectivity. 
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Sample network interpretation of the decentralization: The decentralization of the sample 
network is close to 0 if one sample is highly correlated with all others while the remaining 
samples have lower correlations with each other.  A sample network with high decentralization 
consists of samples that are highly correlated with one another (as is often the case). 
 
2.3.3. Homogeneity 
The network homogeneity is defined as follows: 

€ 

Homogeneity =1− var(k)
mean(k)

 

The homogeneity is invariant if the connectivity is multiplied by a scalar.  The homogeneity is 
always less than 1, but can take on negative values. 
Sample network interpretation of the homogeneity: The homogeneity measures the variation of 
connectivity across samples.  The homogeneity will be low if a few samples have high 
connectivity while most others have low connectivity.  Thus, data with low homogeneity may 
contain outlying samples.  As described in the journal article, in the special situation of an 
exactly factorizable network, we find that the network concept cor(K,C) is determined by the 
network heterogeneity (i.e. 1 – Homogeneity). 
 
2.4. Calculating module eigengenes 
Assume an m x n dimensional matrix datX whose i-th column xi is a numeric vector (e.g. gene 
expression levels) with m components (e.g. number of samples).  Before carrying out the 
singular value decomposition (SVD), we typically scale the columns of datX so that they have 
mean = 0 and variance = 1.  The SVD of datX is given by the matrix multiplication of three 
matrices: 

datX = U D (V)T 
where T denotes the transpose.  The m x min(m,n) dimensional matrix U and the n x min(m,n) 
dimensional matrix V contain orthonormal columns.  The columns of the matrices U and V are 
referred to as left and right singular vectors, respectively.  The matrices U and D are given by: 

U = (u1 u2...) 
D = diag{|d1|,|d2|,...}. 

The singular values are defined as diagonal elements |d1|,|d2|,... of the diagonal matrix D.  We use 
the absolute value sign around the singular values to indicate that the 
singular values are non-negative real numbers. 
 We assume that |d1| denotes the largest singular value.  Often the first singular value |d1| 
is strictly larger than the other singular values.  In this case, u1 and v1 are uniquely defined up to 
a sign.  In practice, we fix the sign of u1 by requiring that its average correlation with the 
columns of datX is positive.  When the columns of datX refer to genes, u1 is referred to as an 
eigengene.  Furthermore, if the genes correspond to a gene module, then u1 is referred to as a 
module eigengene. 
 
2.5. Relating sample metrics to sample traits 
In most genomic studies, there is often some available information that may be used to try to 
explain differences among samples (i.e. sample covariates or "sample traits").  For example, 
samples may possess different biological traits such as age, gender, tissue type, treatment type, 
etc.  There may also be technical sources of variation that can contribute to differences among 
samples (e.g. processing date, ascertainment center, or batch effects).  Given all of the known 
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biological and technical sources of variation that may exist within a dataset, it is useful to know 
which traits exert significant effects on measured activity (e.g. gene expression levels, protein 
abundance, etc).  Global effects can be ascertained by fitting a model in which the outcome is 
summarized for each sample and regressed upon a linear combination of sample traits.  There are 
many ways to summarize measured activity for a given sample, and three are currently 
implemented in the SampleNetwork R function: mean (i.e. the mean activity level), Z.K (i.e. the 
standardized sample connectivity), and pc1 (i.e. the first principal component obtained by 
singular value decomposition of the activity matrix).  Note that the user may implement each of 
these summaries for all features or a user-defined subset of features.  SampleNetwork 
automatically relates the chosen summary measure to the user-specified sample traits using 
Analysis of Variance (ANOVA) and univariate or multivariate regression models, as illustrated 
in Figure 6E from the journal article and in our online R tutorial, which is available at 
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/SampleNetwork. 
 While it is useful to know whether a given source of variation exerts a significant global 
effect on measured activity, it is often the case that only certain "levels" of a categorical variable 
will exert a significant effect.  For example, consider a microarray experiment in which samples 
were hybridized on six separate days over a span of many months.  Imagine that on five of these 
days an experienced technician performed the experiments, but on the sixth day, an 
inexperienced new hire performed the experiments and inadvertently used more labeled target 
material.  Because samples hybridized on this day constitute only a small fraction of the total 
number, hybridization batch may not appear to exert a significant effect on global gene 
expression when all batches are considered.  However, if each batch is considered in isolation, 
then the effect may become very obvious.  This functionality has been implemented in 
SampleNetwork such that individual levels of categorical variables may be screened for 
significant effects using ANOVA and univariate or multivariate regression models, as illustrated 
in Figure 6E from the journal article and in our online tutorial. 
 
2.6. Normalizing and correcting for batch effects 
Normalization refers to the process of adjusting measured activity to remove or reduce the 
impact of technical sources of variation.  A large number of algorithms have been developed to 
accomplish this goal, many of which are specific to different technology platforms [2-4].  It is 
beyond the scope of the present work to provide a review of these methods, as it is beyond the 
scope of SampleNetwork to provide a complete menu of normalization options.  At present, if 
the user wishes to use SampleNetwork for data normalization, quantile normalization [5] will be 
implemented.  Quantile normalization imposes the same distribution of measured activity on 
every sample within the dataset, and is therefore an appropriate normalization method when 
there is good reason to believe that the true underlying distributions of activity levels among 
samples within a dataset should be very similar (such as when all samples are taken from the 
same tissue).  It should be noted that SampleNetwork will also export an unnormalized matrix 
(with outlier samples removed) that can be used as input for other normalization functions, if 
desired. 
 Standard normalization methods, including quantile normalization, typically do not 
eliminate batch effects [6].  SampleNetwork will allow the user to perform additional 
normalization to remove batch effects if they are deemed to be present.  Batch normalization is 
performed by calling an R function called ComBat [7], which we have found to be very effective 
in eliminating batch effects (see also ref. [6]).  ComBat uses empirical Bayes methods to adjust 
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batch effects and has been implemented within SampleNetwork using its default options.  To call 
ComBat from within SampleNetwork, the user must indicate which column in the sample 
information file provides the batch structure, as well as which columns (if any) in the sample 
information file should be included as biological covariates (see our online tutorial at 
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/SampleNetwork and ref. [7]).  
Note that SampleNetwork enables the user to run ComBat independently of quantile 
normalization, and vice versa.  If the user chooses to run ComBat, a sample information file 
required by ComBat will be automatically generated by SampleNetwork and exported to the 
/SampleNetwork subdirectory.  In the event that only one level of a batch or a subset of batch 
levels is deemed significant, it is up to the user to decide how the batch normalization should be 
performed.  Continuing with the example above, imagine that there is one batch among six that 
has a strong influence on gene expression.  If the user were to employ SampleNetwork to correct 
only for this batch, then a total of two batches would be passed to ComBat (one for samples from 
the "bad" batch, and one for all of the other samples).  Alternatively, the user could pass the 
entire batch structure to ComBat (i.e. all six), even though only one batch exerted a strong 
influence on activity levels.  The relative merits of each approach deserve further study. 
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4. Supplementary Figures 
 

 
Supplementary Figure 1 | Sample networks provide a novel perspective on Huntington's disease.  Analysis of 
201 human brain microarray samples from [8] using SampleNetwork.  (A) Dendrogram produced by average linkage 
hierarchical clustering using 1 – ISA (intersample adjacency) for all probe sets (n = 18,631) as a dissimilarity measure.  
Samples were colored according to brain region and HD diagnosis status: turquoise = CB CTRL (n = 27); orange = CB 
HD (n = 39); red = BA9 CTRL (n = 12); darkgreen = BA9 HD (n = 18); black = BA4 CTRL (n = 16); brown = BA4 HD 
(n = 19); blue = CN CTRL (n = 32); purple = CN HD (n = 38).  CB = cerebellum; BA9 = Brodmann's area 9 (prefrontal 
cortex); BA4 = Brodmann's area 4 (primary motor cortex); CN = caudate nucleus; CTRL = control; HD = Huntington's 
disease.  Standardized sample connectivities (Z.K; B) and standardized sample clustering coefficients (Z.C; C) for the 
same samples using all probe sets.  Samples were colored as in (A).  (D) The relationship between Z.K and Z.C is shown 
for all samples (colored as in [A]).  (E) Significance testing of sample covariates using multivariate linear regression with 
pc1 as the outcome (i.e. the first principal component for all probe sets obtained via singular value decomposition).  Blue 
line: P = .05; red line: Bonferroni correction for multiple comparisons.  (F) Using the same model as in (E) but sub-setting 
by brain region isolated the significance levels of individual brain regions with respect to pc1. 
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Supplementary Figure 2 | Connectivity is positively correlated with the clustering coefficient in modular 
and random gene expression networks.  A module of co-expressed genes (M15C [brown], n = 221; [10]) (A) and 
221 randomly selected genes (B) were used to construct signed weighted gene networks (β = 2) from human caudate 
nucleus control subjects (n=31; [8]).  The brown module was chosen to approximate the number of nodes found in 
the HD study sample network (n = 201), and genes were restricted to those that were positively correlated with the 
brown module eigengene [1].  The standardized connectivity (Z.K) and standardized clustering coefficient (Z.C) 
exhibited strong positive correlations in each gene network (linear least squares regression lines in black).  Note that 
the mean Z.K and mean Z.C were substantially higher in the module network (A), as expected.  (C and D) 
Histograms of pairwise gene correlations are shown for the module gene network (A) and the random gene network 
(B), respectively. 
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Supplementary Figure 3 | Sample adjacencies are degraded in caudate nucleus relative to other brain 
regions.  Distributions of pairwise samples adjacencies for control (CTRL) and Huntington's disease (HD) subjects 
across all probe sets (n = 18,631) in prefrontal cortex (A; n = 9 CTRL and 16 HD), motor cortex (B; n = 16 CTRL 
and 14 HD), cerebellum (C; n = 23 CTRL and 34 HD), and caudate nucleus (D; n = 31 CTRL and 35 HD).  
Networks were constructed using all samples (CTRL and HD) from each brain region, and pairwise adjacencies 
among samples from each brain region x diagnosis cohort are shown. 
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Supplementary Figure 4 | Caudate nucleus samples exhibit significant segregation by diagnosis in gene co-
expression module M11C (black).  Analysis of caudate nucleus (CN) sample network properties for genes 
comprising the CN black co-expression module M11C [10].  (A) Average linkage hierarchical clustering of samples 
using 1 – ISA (intersample adjacency).  Colors denote control (CTRL) subjects (darkgreen; n = 31) and Huntington's 
disease (HD) subjects with varying grades of disease severity: HD grade 0 (black; n = 2), HD grade 1 (red; n = 11), 
HD grade 2 (turquoise; n = 16), HD grade 3 (blue; n = 5), and HD grade 4 (brown; n = 1).  Standardized sample 
connectivities (Z.K; B) and standardized sample clustering coefficients (Z.C; C).  (D) HD and CTRL samples 
segregated into two distinct groups when depicted in terms of Z.K and Z.C (linear least squares regression lines in 
black [CTRL] and red [HD]).  (E) Multivariate linear regression revealed a significant effect of diagnosis (Dx) on 
the black module eigengene.  Blue line: P = .05; red line: Bonferroni correction for multiple comparisons.  (F) Heat 
map of expression levels for genes comprising the black co-expression module M11C.  Rows correspond to probe 
sets (genes) and columns correspond to samples.  Green = low expression; red = high expression.  Note that the 
prevailing pattern of gene expression is opposite that seen in the salmon module M8C (Figure 6F from the main 
article).  Samples in (B–D, F) are colored as in (A). 
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Supplementary Figure 5 | Caudate nucleus samples exhibit significant segregation by diagnosis in gene co-
expression module M36 (royalblue).  Analysis of caudate nucleus (CN) sample network properties for genes 
comprising the CN royalblue co-expression module M36 [10].  (A) Average linkage hierarchical clustering of 
samples using 1 – ISA (intersample adjacency).  Colors denote control (CTRL) subjects (darkgreen; n = 31) and 
Huntington's disease (HD) subjects with varying grades of disease severity: HD grade 0 (black; n = 2), HD grade 1 
(red; n = 11), HD grade 2 (turquoise; n = 16), HD grade 3 (blue; n = 5), and HD grade 4 (brown; n = 1).  
Standardized sample connectivities (Z.K; B) and standardized sample clustering coefficients (Z.C; C).  (D) HD and 
CTRL samples segregated into two distinct groups when depicted in terms of Z.K and Z.C (linear least squares 
regression lines in black [CTRL] and red [HD]).  (E) Multivariate linear regression revealed a significant effect of 
diagnosis (Dx) on the royalblue module eigengene.  Blue line: P = .05; red line: Bonferroni correction for multiple 
comparisons.  (F) Heat map of expression levels for genes comprising the royalblue co-expression module M36.  
Rows correspond to probe sets (genes) and columns correspond to samples.  Green = low expression; red = high 
expression.  Note that the prevailing pattern of gene expression is opposite that seen in the salmon module M8C 
(Figure 6F from the main article).  Samples in (B–D, F) are colored as in (A). 
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Supplementary Figure 6 | Caudate nucleus samples exhibit significant segregation by diagnosis in gene co-
expression module M19C (red).  Analysis of caudate nucleus (CN) sample network properties for genes 
comprising the CN red co-expression module M19C [10].  (A) Average linkage hierarchical clustering of samples 
using 1 – ISA (intersample adjacency).  Colors denote control (CTRL) subjects (darkgreen; n = 31) and Huntington's 
disease (HD) subjects with varying grades of disease severity: HD grade 0 (black; n = 2), HD grade 1 (red; n = 11), 
HD grade 2 (turquoise; n = 16), HD grade 3 (blue; n = 5), and HD grade 4 (brown; n = 1).  Standardized sample 
connectivities (Z.K; B) and standardized sample clustering coefficients (Z.C; C).  (D) HD and CTRL samples 
segregated into two distinct groups when depicted in terms of Z.K and Z.C (linear least squares regression lines in 
black [CTRL] and red [HD]).  (E) Multivariate linear regression revealed no significant effect of diagnosis (Dx) on 
the red module eigengene.  Blue line: P = .05; red line: Bonferroni correction for multiple comparisons.  (F) Heat 
map of expression levels for genes comprising the red co-expression module M19C.  Rows correspond to probe sets 
(genes) and columns correspond to samples.  Green = low expression; red = high expression.  Samples in (B–D, F) 
are colored as in (A). 
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Supplementary Figure 7 | Module enrichment analysis of differentially expressed genes in an in vitro 
model of Huntington's disease.  Genes that were differentially expressed (DE) in an in vitro model of 
Huntington's disease (HD), comprised of rat primary striatal neurons expressing an N-terminal fragment of the 
mutant huntingtin protein [9], were cross-referenced with human caudate nucleus (CN) gene co-expression modules 
from normal subjects [10].  The significance of enrichment (y-axis) is reported for various levels of stringency for 
module definitions (x-axis).  Modules were iteratively re-defined at various levels of stringency by including all 
genes with positive module membership values (i.e. positive correlations with the module eigengene) and module 
membership P-values < 1e–03, < 1e–04, < 1e–05, etc. (as reported in Table S5 from [10]).  DE genes (n = 1,036) 
were restricted to those with a false-discovery rate (Q-value) < .05 and with expression changes that were 
concordant with the direction of change in gene expression between control and HD subjects in caudate nucleus 
(Table S2 from [9]).  Each line corresponds to a module, as denoted by its color and the legend.  Note that M8C = 
the salmon CN module. 
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Supplementary Figure 8 | cor(K,C) exhibits similar behavior in unweighted networks.  Here we explore 
the properties of the standardized C(k) curve in signed unweighted networks using hard thresholds.  As the 
threshold for dichotomizing the adjacency matrix to produce an unweighted network is progressively 
increased (from top left to bottom right), we observe a transition in the standardized C(k) curve that is 
similar to the transition we observe in weighted sample networks.  For the examples shown below, 1000 
randomly selected genes (probe sets) were used to construct signed unweighted gene networks from human 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caudate nucleus control subjects (n=31; [8]).  Thus, at permissive (low) thresholds (e.g. top left panel), which 
produce networks in which most nodes are connected, the standardized C(k) curve is negative; as the threshold is 
raised, producing networks in which most nodes are not connected, the relationship begins to invert, becoming 
positive at more stringent (high) thresholds (e.g. bottom right).   
 


