Decomposition of the cubic function using knots

The two knots are respectively denoted K_{1} and K_{2}, with $K_{1}=5.333 h$ and $K_{2}=17.333 h$. Therefore the function $f_{i}(t)$ is composed of three cubic functions $f_{i 1}(t), f_{i 2}(t)$ and $f_{i 3}(t)$ for a gene G_{i} in the whole time interval:

$$
\begin{array}{ll}
f_{i 1}(t)=\beta_{i 10}+\beta_{i 11} t+\beta_{i 12} t^{2}+\beta_{i 13} t^{3}, & \left(0 \leq t<K_{1}\right) \\
f_{i 2}(t)=\beta_{i 20}+\beta_{i 21} t+\beta_{i 22} t^{2}+\beta_{i 23} t^{3}, & \left(K_{1} \leq t<K_{2}\right) \\
f_{i 3}(t)=\beta_{i 30}+\beta_{i 31} t+\beta_{i 32} t^{2}+\beta_{i 33} t^{3}, & \left(K_{2} \leq t \leq 32\right) .
\end{array}
$$

The three functions $f_{i 1}(t), f_{i 2}(t)$ and $f_{i 3}(t)$ should satisfy the conditions such that themselves, their first and second derivatives are continuous at each knot. Also their second derivatives are null at times $0 h$ and 32 h . These constrains can be written as:

$$
\begin{gathered}
f_{i 1}\left(K_{1}\right)=f_{i 2}\left(K_{1}\right), \quad \frac{\mathrm{d} f_{i 1}\left(K_{1}\right)}{\mathrm{d} t}=\frac{\mathrm{d} f_{i 2}\left(K_{1}\right)}{\mathrm{d} t}, \quad \frac{\mathrm{~d}^{2} f_{i 1}\left(K_{1}\right)}{\mathrm{d} t^{2}}=\frac{\mathrm{d}^{2} f_{i 2}\left(K_{1}\right)}{\mathrm{d} t^{2}}, \quad \frac{\mathrm{~d}^{2} f_{i 1}(0)}{\mathrm{d} t^{2}}=0 \\
f_{i 2}\left(K_{2}\right)=f_{i 3}\left(K_{2}\right), \quad \frac{\mathrm{d} f_{i 2}\left(K_{2}\right)}{\mathrm{d} t}=\frac{\mathrm{d} f_{i 3}\left(K_{2}\right)}{\mathrm{d} t}, \quad \frac{\mathrm{~d}^{2} f_{i 2}\left(K_{2}\right)}{\mathrm{d} t^{2}}=\frac{\mathrm{d}^{2} f_{i 3}\left(K_{2}\right)}{\mathrm{d} t^{2}}, \quad \frac{\mathrm{~d}^{2} f_{i 3}(32)}{\mathrm{d} t^{2}}=0
\end{gathered}
$$

