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Proofs of mathematical results, parameter confi-

dence intervals, sensitivity analysis

Derivation of Eq.(6)

Let us consider a monomolecular reaction network. If some reactions are reversible,

we split these reactions into two by using distinct indices for the forward and for the

backward directions, in such a way that Ri ≥ 0, for all i. Then, we show that the

steady state condition defining admissible fluxes

SR = 0, (S1)

is equivalent to the branching parametrisation relation

Rout,j
i = [

nin
j∑

k=1

Rin,j
k νin,jk /νout,ji ]αj

i , (S2)

where
∑

i α
j
i = 1, 0 ≤ αj

i ≤ 1.

Indeed, let us notice that νout,ji = −Sji and Ri = Rout,j
i , if Sji < 0. Similarly,

νin,ji = Sji and Ri = Rin,j
i , if Sji > 0. Relation (S1) is equivalent to

∑
i,Sji>0

SjiRi +
∑

i,Sji<0

SjiRi = 0,

that reads
nin
j∑

k=1

νin,jk Rin,j
k −

nout
j∑
i=1

νout,ji Rout,j
i = 0 (S3)
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The fluxes Rout,j
i can always be expressed as in (S2), for some positive parameters αj

i .

However, if (S3) is satisfied, then
∑

i α
j
i = 1 follows. Conversely, if (S2) is satisfied

with
∑

i α
j
i = 1, then (S3) follows.

Parameter confidence intervals

The available data constrain the values of many parameters. However, not all

parameters are identifiable with the same precision. We describe here a simple post-

processing procedure that allows to quantify the parametric uncertainty.

Our optimization method generates a set of values of parameters, that are local

minima of the objective function. The lowest of such minima is the global optimum.

To take into account possible experimental errors, and because several local minima

can fit the experimental data reasonably well, we have considered not only the globally

best fit, but also several local optima closest to the global optimum. Among these sets

of parameters we considered as representative the one that is closest in the Euclidean

distance to the median parameter value. The spread of parameter values around the

median value provides a first estimate of the parameter range. Then, we have performed

a local sensitivity analysis around each of the selected local minima of the objective

function. To this aim, we multiply each parameter by factors that are independent, and

log-uniformly distributed, namely ki = k0i exp((2Ui − 1)a), where Ui are independent,

uniformly distributed in the interval [0, 1], a > 0, and k0i, ki are the local optimum and

the perturbed parameter values, respectively. The parameter range is defined in this

case by all the perturbed parameters values k such that | log(Φ(k)) − log(Φ(k0))| <

ε, where ε is a small positive value. We call this perturbation scheme uncorrelated,

multiplicative.

For further insight into the parametric uncertainty we have investigated, for each

Michaelis-Menten reaction, the dynamical range of substrate concentrations. These

ranges should ideally include concentration values both below and above the Michaelis

constant Km. In this case, both Vmax and Km are accurately determined. If the

substrate concentration range lies below Km, then the enzymatic reaction performs in

its linear regime. In this case, one gets the ratio Vmax/Km, but Vmax and Km can not
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be independently determined. If the concentration range is above Km, then Vmax is

well determined, but for Km one has only upper bounds. The situations corresponding

to various parameters in this model are presented in Figure.S1.

For Michaelis-Menten reactions functioning in the linear regime, the range of the

Vmax and Km values can be extended with no change in the objective function, if

both Vmax and Km are multiplied by the same positive constant. We have therefore

considered a correlated, multiplicative perturbation scheme in which the parameters of

the same reaction are multiplied by the same factor, namely Vmaxi = Vmax0i exp((2Ui−

1)a) Kmi = Km0i exp((2Ui − 1)a), where Vmax0i, Km0i are the unperturbed parameters

and Ui are independent, uniformly distributed in the interval [0, 1].

For the data hereby presented, we have selected 10 sets of parameters correspond-

ing to the 10 lowest values of the objective function. The corresponding unperturbed

values of the parameters are represented as lines in the Figure S1. We have applied

random perturbations (1000 samples for each parameter and for each parameter set)

and chose an ε value such that the perturbed objective function is not larger than

the largest objective function in the unperturbed set. Then, we represented the min-

imum and maximum perturbed values of the parameters as error bars superimposed

on the unperturbed values profiles. The resulting plot gives an idea of the parameter

uncertainty. Some confidence intervals are large, as expected. The confidence intervals

transcribed in the Table 2 of the main text, are much larger, as they correspond to

the minimum and maximum values of the perturbed parameters, all parameter sets

confounded. For Table 2, we have chosen the correlated multiplicative perturbation

scheme leading to the largest confidence ranges. Of course, this does not mean that

choosing a parameter value at random in the ranges provided will provide a good ob-

jective function, because the represented confidence intervals are the projections onto

the parameters directions of a complicated domain in the parameter space.

Figure S1

Dynamic ranges of substrate concentrations. The interval of substrate concentra-

tions are presented in red and the magenta dots represent the positions of Km. The
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reaction 17 is not of Michaelis-Menten type and has not been represented in this plot.

The dynamical concentration ranges could be supplemented by the zero concentrations

(when it is supposed that the reactions rates are zero) and extended to −∞ in loga-

rithmic scale, but in this plot we have only considered non-vanishing concentrations,

corresponding to effective measurements.
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Figure S2

Parameter profiles and confidence intervals for a uncorrelated, multiplicative per-

turbation scheme. The lines connect parameter values corresponding to local minima

of the objective function and therefore inform on the parameter correlation.
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Figure S3

Parameter profiles and confidence intervals for a correlated, multiplicative pertur-

bation scheme. Notice the larger confidence intervals
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Table.S1

Flux sensitivity vs. Vmax
Vmax1 Vmax2 Vmax3 Vmax4 Vmax5 Vmax6 Vmax7 Vmax8 Vmax9 Vmax10Vmax11Vmax12Vmax13Vmax14Vmax15Vmax16Vmax17

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R6 0 0 0 0 0 0.58 0 0.44 0.05 0.37 0.02 -

0.33

-

0.38

-

0.015

0.77 0.39 0

R7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R8 0 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0.78 0.34 0

R9 0 0 0 0 0 0.61 0 0.50 0.75 0.37 -

0.03

-

0.32

-

0.34

-

0.33

0.78 0.44 0

R10 0 0 0 0 0 0.04 0 0.41 0.06 0.37 -

0.002

-

0.34

-

0.02

-

0.02

0.76 0.35 0

R11 0 0 0 0 0 0.61 0 0.50 -

0.25

0.37 0.96 -

0.32

-

0.34

-

0.33

0.78 0.44 0

R12 0 0 0 0 0 0.04 0 0.42 0.07 -

0.66

-

0.002

0.65 -

0.02

-

0.02

0.82 0.36 0

R13 0 0 0 0 0 -

0.42

0 0.44 0.05 0.37 0.02 -

0.33

0.62 -

0.01

0.77 0.39 0

R14 0 0 0 0 0 0.61 0 0.50 -

0.25

0.37 -

0.03

-

0.32

-

0.34

0.67 0.78 0.44 0

R15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

R16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.88 0.30 0

R17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table.S2

Flux sensitivity vs. Km
Km1 Km2 Km3 Km4 Km5 Km6 Km7 Km8 Km9 Km10 Km11 Km12 Km13 Km14 Km15 Km16 Km17

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R6 0 0 0 0 0 -

0.57

0 -

0.40

-

0.05

-

0.34

-

0.02

0.33 0.38 0.01 -

0.55

-

0.33

0

R7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R8 0 0 0 0 0 0 0 -

0.34

0 0 0 0 0 0 -

0.57

-

0.28

0

R9 0 0 0 0 0 -

0.61

0 -

0.46

-

0.75

-

0.35

0.03 0.31 0.34 0.33 -

0.56

-

0.40

0

R10 0 0 0 0 0 -

0.04

0 -

0.35

-

0.06

-

0.34

0.002 0.33 0.02 0.02 -

0.56

-

0.30

0

R11 0 0 0 0 0 -

0.61

0 -

0.46

0.25 -

0.35

-

0.96

0.32 0.34 0.33 -

0.56

-

0.39

0

R12 0 0 0 0 0 -

0.04

0 -

0.36

-

0.07

0.63 0.002 -

0.64

0.02 0.02 -

0.59

-

0.31

0

R13 0 0 0 0 0 0.42 0 -

0.40

-

0.05

-

0.34

-

0.02

0.33 -

0.61

0.01 -

0.56

-

0.34

0

R14 0 0 0 0 0 -

0.61

0 -

0.46

0.25 -

0.35

0.03 0.32 0.34 -

0.67

-

0.56

-

0.40

0

R15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

0.62

0 0

R16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

0.61

-

0.23

0

R17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table.S3

Concentration sensitivity vs. Vmax
Vmax1 Vmax2 Vmax3 Vmax4 Vmax5 Vmax6 Vmax7 Vmax8 Vmax9 Vmax10Vmax11Vmax12Vmax13Vmax14Vmax15Vmax16Vmax17

Ser 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS 0 0 0 0 0 -

0.33

0 0.59 0.02 0.37 0.006 -

0.31

-

0.27

-

0.002

0.82 0.53 0

Etn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PEtn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PE 0 0 0 0 0 0.71 0 0.64 -

0.16

0.39 -

0.02

-

0.30

-

0.23

-

0.20

0.84 0.59 0

PC 0 0 0 0 0 0.02 0 0.55 0.03 -

0.65

-6e-

4

-

0.33

-

0.005

-

0.004

0.83 0.49 0

Cho 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.1 -

0.65

0

PCho 0 0 0 0 0 0 0 -

0.50

0 0 0 0 0 0 0.91 0.49 0

Table.S4

Concentration sensitivity vs. km
Km1 Km2 Km3 Km4 Km5 Km6 Km7 Km8 Km9 Km10 Km11 Km12 Km13 Km14 Km15 Km16 Km17

Ser 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PS 0 0 0 0 0 0.33 0 -

0.57

-

0.02

-

0.36

-

0.006

0.31 0.27 0.002 -

0.57

-

0.50

0

Etn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PEtn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PE 0 0 0 0 0 -

0.71

0 -

0.62

0.160 -

0.38

0.02 0.30 0.23 0.20 -

0.58

-

0.56

0

PC 0 0 0 0 0 -

0.02

0 -

0.52

-

0.032

0.64 6e4 0.32 0.005 0.004 -

0.58

-

0.45

0

Cho 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

0.66

0.62 0

PCho 0 0 0 0 0 0 0 0.47 0 0 0 0 0 0 -

0.61

-

0.46

0


