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Table S1: Pathway analysis with PathWave using the human pathways from BiGG

Human metabolic model subsystem (pathway) P* up* no_ch* down*

Arginine_and_Proline_Metabolism < 1E-16 6 5 5

Blood_Group_Biosynthesis < 1E-16 23 12 10

Cholesterol_Metabolism < 1E-16 11 11 9

Glycerophospholipid_Metabolism < 1E-16 5 13 9

Glycine,_Serine,_and_Threonine_Metabolism < 1E-16 10 1 1

Glycolysis_Gluconeogenesis < 1E-16 11 3 3

Glycosylphosphatidylinositol__GPI__anchor_biosynthesis < 1E-16 15 19 2

IMP_Biosynthesis < 1E-16 10 0 0

Inositol_Phosphate_Metabolism < 1E-16 4 18 9

Keratan_sulfate_biosynthesis < 1E-16 38 18 3

N_Glycan_Biosynthesis < 1E-16 25 6 17

Nucleotides < 1E-16 39 41 5

Pyruvate_Metabolism < 1E-16 5 10 7

Sphingolipid_Metabolism < 1E-16 22 16 30

Steroid_Metabolism < 1E-16 16 16 7

Transport,_Extracellular < 1E-16 49 38 26

Transport,_Mitochondrial < 1E-16 16 2 1

Tryptophan_metabolism < 1E-16 6 15 11

Tyrosine_metabolism < 1E-16 3 24 19

Eicosanoid_Metabolism 3.82E-14 2 2 11

Chondroitin_____heparan_sulfate_biosynthesis 4.77E-14 3 19 19

Bile_Acid_Biosynthesis 1.15E-13 16 10 11

Folate_Metabolism 1.62E-13 9 21 1

Carnitine_shuttle 2.96E-13 31 31 31

Pentose_Phosphate_Pathway 2.85E-12 5 5 5

Chondroitin_sulfate_degradation 4.02E-12 10 22 1

Keratan_sulfate_degradation 5.16E-09 26 45 0

Fatty_acid_oxidation 7.23E-04 0 2 25

*up is the number of metabolic reactions up-regulated in lung adenocarcinoma; down the 
number of down-regulated reactions; and no_ch the number of reactions without notable 
changes. P is the Bonferroni corrected P-value for the entire pathway.
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Table S2: Pathway analysis with DAVID for the lung cancer dataset on metabolic KEGG 
pathways

Pathway name Fold enrichment P (nominal)* P (Bonferroni)

Aminoacyl-tRNA biosynthesis 1.95 7.26E-06 6.46E-04

Purine metabolism 1.40 1.10E-04 9.80E-03

N-Glycan biosynthesis 1.57 4.54E-03 4.04E-01

Phenylalanine metabolism 1.88 4.80E-03 4.27E-01

Tyrosine metabolism 1.53 1.09E-02 9.70E-01

Pyrimidine metabolism 1.28 3.46E-02 1.00E+00

*Only pathways with a nominal (uncorrected) P-value < 0.05 are shown.

Table S3: Pathway analysis with GSEA for the lung cancer dataset on metabolic KEGG 
pathways 

Pathway NES P (nominal)* P (Bonferroni)

Pyrimidine metabolism 1.69 4.45E-03 3.96E-01

Aminoacyl-tRNA biosynthesis 1.59 2.03E-02 1.00E+00

Purine metabolism 1.36 4.10E-02 1.00E+00

*Only pathways with a nominal (uncorrected) P-value < 0.05 are shown.

Table S4: Metabolites removed from the human metabolic model from BiGG

Compartment: Cytosol (_c)

M_h_c  M_h2o_c M_atp_c M_pi_c M_adp_c

M_na1_c M_coa_c M_o2_c M_nadp_c M_nadph_c

M_ppi_c M_nad_c M_nadh_c M_amp_c M_co2_c

M_nh4_c M_crn_c M_h2o2_c M_gln_DASH_L_c M_hco3_c

M_dcdp_c M_accoa_c M_ser_DASH_L_c M_ala_DASH_L_c M_ump_c

M_udp_c M_gly_c M_gdp_c M_cys_DASH_L_c M_dadp_c

M_dgdp_c M_dudp_c M_glc_DASH_D_c M_dtdp_c M_cmp_c

M_cl_c M_amet_c M_R2coa_hs_c M_ahcys_c M_thr_DASH_L_c

M_pyr_c M_paps_c M_ctp_c M_pap_c M_malcoa_c

M_gdpmann_c M_asn_DASH_L_c M_so4_c M_Rtotalcoa_c M_mthgxl_c

M_gthrd_c M_for_c M_datp_c M_dag_hs_c M_cdp_c

M_ac_c M_thf_c M_pmtcoa_c M_pchol_hs_c M_dgtp_c

M_chol_c M_ACP_c M_utp_c M_udpg_c M_uacgam_c

M_gtp_c M_f6p_c M_dctp_c M_asp_DASH_L_c M_adn_c
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M_uri_c M_k_c M_dttp_c M_dhap_c M_dcmp_c

M_arachd_c M_retn_c M_retinol_c M_pro_DASH_L_c M_pail_hs_c

M_oh1_c M_mal_DASH_L_c M_lys_DASH_L_c M_lald_DASH_D_c M_g3p_c

M_fum_c M_cytd_c M_acald_c

Compartment: EndoplasmicReticulum (_r)

M_h_r M_h2o_r M_nadp_r M_nadph_r M_o2_r

M_dolp_U_r M_dolp_L_r M_nad_r M_nadh_r M_udp_r

M_pe_hs_r M_dolmanp_U_r M_dolmanp_L_r M_udpglcur_r M_dag_hs_r

M_pi_r M_glc_DASH_D_r M_chsterol_r

Compartment: Extraorganism (_e)

M_na1_e M_h_e M_h2o_e M_hco3_e M_gln_DASH_L_e

M_cl_e M_ser_DASH_L_e M_cys_DASH_L_e M_pi_e M_glc_DASH_D_e

M_ala_DASH_L_e M_thr_DASH_L_e M_gly_e M_glu_DASH_L_e M_asn_DASH_L_e

M_k_e

Compartment: GolgiApparatus (_g)

M_h_g M_udp_g M_udpgal_g M_uacgam_g M_paps_g

M_pap_g M_cmp_g M_cmpacna_g M_h2o_g M_gdp_g 

M_gdpfuc_g M_man_g M_udpacgal_g M_udpglcur_g

Compartment: Lysosome (_l)

M_h2o_l M_h_l M_so4_l M_acgam_l M_glu_DASH_L_l

M_pi_l M_glcur_l M_acgal_l M_gal_l

Compartment: Mitochondria (_m)

M_h_m M_h2o_m M_coa_m M_nad_m M_nadh_m

M_atp_m M_fad_m M_fadh2_m M_adp_m M_nadp_m

M_nadph_m M_crn_m M_pi_m M_o2_m M_co2_m

M_dudp_m M_dadp_m M_dgdp_m M_dcdp_m M_dtdp_m

M_occoa_m M_pyr_m M_ppi_m M_ppcoa_m M_dutp_m

M_datp_m M_amp_m M_gtp_m M_gdp_m M_hco3_m

Compartment: Nucleus (_n)

M_h_n M_atp_n M_adp_n M_h2o_n M_udp_n

M_pi_n M_dcdp_n M_cdp_n M_dcmp_n

Compartment: Peroxisome (_x)

M_h2o_x M_coa_x M_o2_x M_h_x M_h2o2_x

M_accoa_x M_nadh_x M_nad_x
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Figure S1: Glycolysis in lung adenocarinoma compared to normal tissue

red = up-regulated; green = down-regulated; grey = no notable change
(template is taken from http://www.genome.jp/kegg/)
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Figure S2: TCA cycle in lung adenocarinoma compared to normal tissue

red = up-regulated; green = down-regulated; grey = no notable change.
(template is taken from http://www.genome.jp/kegg/)
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Figure S3: Tryptohpan metabolism in lung tumors compared to paired adjacent normal 
tissue

red = up-regulated; green = down-regulated; gray = no notable change.
(template is taken from http://www.genome.jp/kegg/)
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Figure S4:  Starch and sucrose metabolism in  long-lived flies  compared to flies  with 
normal lifespan

red = up-regulated in long lived flies; green = down-regulated; grey = no notable change; light 
green = enzyme present in flies, but no expression data available (template is taken from 
http://www.genome.jp/kegg/)
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Figure S5: Circadian rhythm in long-lived D. melanogaster compared to D. melanogaster 
with normal lifespan

red = up-regulated; grey = no notable change (template is taken from 
http://www.genome.jp/kegg/)

10



Stability of P-values and robustness of pathway rankings 

The pathway P-values estimated by PathWave suffer from a problem which is generally known 
for Monte Carlo resampling methods: the empirically determined P-values depend on what 
random permutations are actually executed and may thus change from execution to execution, 
even with the same dataset, because the executed number of random permutations (which 
gives an approximate P-value estimate) is usually much lower than the total number of possible 
permutations (which would give an accurate P-value estimate).

We therefore evaluated the stability and reproducibility of the pathway P-values and the 
resulting pathway rankings performing 100 identical PathWave runs for case study 2 (D. 
melanogaster aging; see article) and using three measures:

1. The variation coefficients (or coefficients of variation) of P-values of each pathway, 
defined as the ratio σ/μ of the standard deviation σ to the mean μ. Multiplication of this 
ratio by 100 measures the standard deviation as a percentage of the mean and indicates 
how strongly P-values variate over 100 identical runs.

2. The “recall” of pathways (i.e. the number of times a pathway is declared significant) as a 
function of its mean P-value, indicating how frequently pathways with a P-value close to 
the threshold are possibly missed or wrongly declared significant.

3. The average pairwise Spearman correlation between the 100 pathway rankings obtained 
from the 100 identical PathWave runs, indicating how stable pathway rankings are 
across multiple identical runs. 

To evaluate how these measures depend on the number of Monte Carlo samplings (parameter 
numperm) used for P-value estimation, we executed PathWave 100 times (identical runs) for 
each of numperm=100, numperm=1000, and numperm=10000.

The results show that for 10,000 random samplings (used in the article), the P-values of single 
pathways (Figure S6) are highly stable (standard deviation < 5% of mean for most pathways), 
as are the overall pathway rankings (Figure S8; median pairwise Spearman correlation of 
0.9996) over 100 runs. Moreover, the results indicate an excellent recall (Figure S7; right). As 
expected, pathways with an average P-value very close to 0.05 (here ca. ± 2%) are declared 
significant in roughly 50% of the runs. Pathways with average P<0.045 have a recall of >95% 
(100% for average P<0.04).

For 1,000 random samplings (used as a default in the PathWave R package), the results 
indicate a slightly lower but still sufficient stability. The P-values of most pathways have 
standard deviations of <20% of their mean (Figure S6), and the obtained pathway rankings are 
nearly as stable as for 10,000 random samplings (Figure S8; median pairwise Spearman 
correlation of 0.9970). Although pathways with an average P-value of close to 0.05 are recalled 
with slightly more difficulty (Figure S7; middle), their overall recall is still good (>95% for 
average P<0.04; 100% for average P<0.03).

For 100 random samplings, in contrast, both the P-values (Figures S6 and S7) and the 
pathway rankings (Figure S8) are not sufficiently stable.

Overall, these anlyses suggest that 1,000 random samplings (default in the R package) are 
sufficient and offer a reasonably high confidence in the obtained results. The 10,000 random 
samplings used in the article allow for an even higher confidence as well as an excellent 
stability.
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Figure S6: Stability of pathway P-values as measured by their variation coefficients

The  variation  coefficients  were  determined  for  each  single  pathway  over  100  identical 
PathWave runs. Boxplots depict the distribution of variation coefficients of the pathways for 100 
(left), 1000 (middle), and 10,000 random samplings (numperm).

Figure S7: Recall of pathway significance as a function of the mean P-value
The number of times a pathway is declared significant (at a P-value threshold of 0.05) in 100 
identical PathWave runs is drawn as a function of the pathway's mean P-value for 100 (left), 
1000 (middle), and 10,000 (right) random samplings (numperm).
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Figure S8: Robustness of pathway rankings

The robustness of pathway rankings over 100 identical PathWave runs is shown as boxplots of 
the rankings' pairwise Spearman rank correlations for 100 (left), 1000 (middle) and 10,000 
random samplings (numperm).
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