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Supplementary table 1. FLUX Simulator parameters

NB_MOLECULES 50000000
LOAD_CODING YES
RTRANSCRIPTION YES
RT_PRIMER RH
RT_LOSSLESS YES
RT_MIN 30
RT_MAX 1000
TSS_MEAN 25
POLYA_SCALE 80
POLYA_SHAPE 2
FRAGMENTATION YES
FRAG_METHOD UR
FRAG_SUBSTRATE RNA
READ_LENGTH 101
PAIRED_END YES
FILTERING YES
SIZE_DISTRIBUTION N(300,100)
SIZE_SAMPLING MH
FASTA YES




Supplementary table 2. RNA-seq data used for comparison with qRT-PCR

SRA PE/ read ;:;e:ltl modal
SRA ID experiment sample study note total reads length g length
D SE mp) | "8 | (bp)
(bp)
SRR1261168 | SRX523771 | PE UHRR Butterfield [1] 134,921,154 | 101 x2 1;)8(; 125
SRR1261170 | SRX523772 | PE UHRR Butterfield [1] 72,897,482 | 101x2 128(; 135
SRR515084 SRX155461 PE UHRR Wu [2] 28,885,185 91x2 1§§O~ 194
SRR950078 SRX333347 | PE UHRR Rapaport [3] 1./5 100,387,010 | 100x 2 100 ~ 159
replicates 300
SRR950079 SRX333348 | PE HBRR Rapaport [3] 1./5 111,037,701 | 100x 2 100 ~ 175
replicates 350
- - PE | MKN-28 Lee [4] 7,573,109 36x2 ?ZON 104
Supplementary table 3. qRT-PCR data used for comparison with RNA-seq data
Study Number of genes Protocol Sample Replicates
UHRR MAQC MAQC [5] 1001 TagMan UHRR Mean over 4 replicates
UHRR Wang Wang et al.[6] 1363 TagMan UHRR Mean over 4 replicates
HBRR MAQC MAQC [5] 1001 TagMan HBRR Mean over 4 replicates
MKN-28 Lee Lee et all.[4] 27 SYBR MKN-28 Mean over 3 replicates
Supplementary methods

Modified suffix array that clusters positions of identical sequences on the transcriptome

For computing all the segment lengths in the transcriptome, we modified the concept of a suffix array [29,
30]. EMSAR builds an array of the starting positions of all the substrings of length R on the concatenated
transcriptome sequence S. Then, the array is alphabetically sorted by the substrings. For unstranded RNA-

seq, S includes both strands of the transcriptome and the array stores the position on S of the

alphabetically smaller of a sense substring and its reverse complement (Figure S7a). For strand-specific
RNA-seq, the S includes only the sense transcriptome. Linear-time sorting is possible for a suffix array



[31-33], but because of the modification, we used a quick sort algorithm [34], which we also modified for
multi-threading.

Data structure for transcriptome index that stores information of all segments

Figure S8a provides a scheme of the structure. The purpose of this structure is to have a hash-like fast
access to individual segments given the set of associated transcripts, while using a minimal amount of
memory.

An individual segment is implemented as a structure with member variables (effective) segment length,
read count and an array of transcript ID’s. The transcript ID’s are sorted and the first ID is omitted from
the structure and instead used as an index to point to a sorted linked list of segment structures that share
the first transcript ID. The linked lists are grouped by the number of transcripts in the segments and linked
to a pointer array whose index corresponds to the number of transcripts - 2. For segments associated with
a single transcript, the transcript array is omitted.

Finding closed sets of transcripts using recursive propagation

Given a set of segments and their associated transcripts, we want to find disjoint sequence-sharing sets of
transcripts that are ‘connected’ by a segment either directly or indirectly. The problem can be solved
using a classic connected component algorithm, using a graph representation with transcripts as vertices
that are connected when two transcripts share a segment. An alternative graph can be represented by
segments as vertices that are connected when two segments share a transcript. For our purpose, both types
needed because all the transcripts in a sequence-sharing set is simultaneously estimated using a set of all
the segments associated with the transcripts in this set, which equals the equivalence class for segments.
In other words, a sequence-sharing set of trasncripts needs to be assigned to a set of transcripts and a set
of segments. Therefore, we used an algorithm that does both simultaneously, rather than using a one-way
graph structure with either transcript or segment as vertices. The algorithm is reminiscent to the
traditional recursive depth-first search [7].

Figure S8b describes the recursive algorithm used for finding a sequence sharing set (sid) and assigning it
to a set of transcripts (tid’s) and a set of segments (cid’s). Two output arrays are generated; CS array, with
indices representing cids and elements representing an associated sid, and TS array, with indices
representing tids and elements representing an associated sid. For this purpose, it uses two arrays, CT
array, with indices representing cids and elements representing a set of tids, and a TC array, with indices
representing tids and elements representing a set of cids. Below is a brief description of the algorithm in
steps.

Step 1: start from the first segment (cid=0) and assign the first sequence-sharing set (sid=T=0) to
elements of CS array.

Step 2: find all associated transcripts (tid’s) from CT array and assign sid=T to elements of TS
array.



Step 3: for each of these transcripts, find all associated cid’s from TC array.
Step 4: repeat step 1~3 for the cid’s found at step 3, until there is no new assignment.
Step 5: Find the next unassigned cid and use a different sid =T+1 and repeat step 1~4.

Step 6: Repeat steps 1~5, until there is no unassigned cid.

Fragment size-weighted segment length for paired-end data and single-end data variable read length.

Given a fixed fragment size d, the expected number of RNA-seq fragments of size d in a segment C is

Ad,c = (ZiEV(C) el’)Ld’CWdS g e eeaaeeeaiaeeei e (1)

where e; is the expression level of transcript i associated with C, L . the number of possible positions for
fragments of size d in segment C, w, is the observed probability of fragments of size d and S is the total
read count in the RNA-seq data. Since S" = w,S is the total number of reads of fragment size d in the
library, it is equivalent to an imaginary situation in which we’re using only a subset of the RNA-seq
library with a fixed fragment size and estimating the expected portion of that library that came from a
specific segment C.

For convenience of computation, EMSAR merges a range of fragment lengths and uses a single number
for A and L, as follows.

The expected total count of reads in C can be obtained by summing A, . over all fragment sizes.

From (1) and (2), we get

e = Cicc @) (ZaLacWa)S cvvveeeeeiiiiiiiiiiiiieeee 3)
Therefore, we define a segment length L. as below:
Le= 2aLlaeWa cooooiiiiiiiiiiiii 4)
Ao = (iec@)LeS woe i (5)

Unambiguous fragment length filtration

EMSAR does not use reads with an ambiguous fragment length, or reads that map to two or more
locations on the transcriptome with different fragment lengths. This does not cause underestimation due
to missing reads because the positions associated with ambiguous fragment lengths are also excluded
from segments. The only way that reads with ambiguous fragment lengths can contribute is by providing
information of which fragment length is more likely and how much more likely. A read is more likely to



have come from the transcript to which it is mapped with a fragment length with a higher probability.
However, to effectively use this information, an accurate fragment length distribution is critical. An
incorrect distribution, (e.g. an assumed Gaussian distribution), could even be detrimental to the accuracy.
EMSAR is not sensitive to such deviation of fragment length distribution.

An illustration is shown in Figure S9, as to what types of read are used versus not used (both RNA-seq
reads and for identifying segments).

Hill-climbing method

The following is the pseudocode for the hill-climbing algorithm used by EMSAR. In the pseudocode, sid,
cid and tid refer to a specific sequence-sharing set, segment and a transcript, respectively. The final
estimates are saved in the array FPKM with length equal to the number of transcripts. Function Fp
calculates a log likelihood without constant. The global variable

CONVEERGENCE EPSILON_STEPSIZE is the precision that can be specified by the user which is set
to 10" by default.



FOR EACH sid

SET C to the_ array of cids_associated with sid
SET init_max to 100

SET init_min to 0

SET init stepSize to 100

SET acc to 2.0

SET nLoop to 0

DO
/* number of iterations, if this is too large, then go back and choose a different initial values */
SET nIter to 0
SET notconverged to 0

/* random initial point betweeen init min and init_max (FPKM = 'currentPoint') */
FOR EACH tid associated with sid

Assign random number to FPKM[tid]
END FOR

FOR i = 0 to Number of tids in sid
SET stepSize[i] = init stepSize;

DO
INCREMENT nIter
SET premaxF to Fp(C)
SET max_stepSize to 0

FOR i = 0 to Number of tids in sid
SET tid to the_ith tid in_sid

IF stepSize[i]<CONVERGENCE EPSILON_ STEPSIZE
CONTINUE TO THE NEXT ITERATION OF THE LOOP
END IF

SET candidate[0] to 0;

SET candidate[l] to -stepSize[i]*acc*2
SET candidate([2] to -stepSize[i]

SET candidate[3] to stepSizel[i]

SET candidate[4] to stepSize[i]*acc*2
SET best to -1

SET maxF to LOWEST_ NUMBER

FOR j = 0 to 4
SET FPKM[tid] to FPKM[tid]+candidate[]j]
SET F to Fp(C)
SET FPKM[tid] to FPKM[tid]-candidate[j]
IF EF>maxF
SET maxF to F
SET best to j
END IF
END FOR

IF best==
SET stepSize[i] to stepSize[i]/acc
ELSE IF best==2 OR best==
SET FPKM[tid] to FPKM[tid]+candidate[best]
ELSE
SET FPKM[tid] to FPKM[tid]+candidate[best]
SET stepSize[i] to stepSize[i]*acc
END IF

IF stepSize[i] > max stepSize
SET max_stepSize to stepSize[i]
END IF

END FOR

IF nIter> MAX NITER MLE
SET notconverged to 1
BREAK OUT OF THE LOOP

END IF

WHILE Fp(C) - premaxF >= CONVERGENCE _EPSILON OR max_stepSize > CONVERGENCE_EPSILON_STEPSIZE
INCREMENT nLoop

WHILE notconverged==1 OR nLoop < MAX NLOOP_MLE

END FOR
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Figure S1. Distribution of read positions and fragment length in the simulated data. (a)
Distance from 5’end, (b) distance from 3’end, (c¢) relative position within a transcript, (d)
fragment length, from one of the simulated data sets with 5 million reads each. The plots were
obtained directly from the information from the simulated reads not from the mapping, and thus
do not include ambiguity introduced by alignment.
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Figure S2. Comparison of accuracy across multiple methods for paired-end RNA-seq. (a) A
schematic diagram showing the number of isoforms estimated by individual methods and the commonly
estimated ones. Diagrams are not drawn in exact scale. (b)-(e) Four different evaluation criteria are
applied to multiple quantifiers on the common set of isoforms indicated in (a). (b) Pearson correlation
coefficient (¢) root mean squared error (d) number of false positives, i.e., isoforms with zero true
expression and with 1 or larger value in log(estimated TPM: c+1), (e) number of false negatives, i.e.
isoforms with 1 or larger value in log(true TPM+1) and zero estimated expression. (f) total number of
transcripts whose expression level is reported. EMSAR, RSEM, Sailfish and IsoEM report all transcript
levels. Error bars indicate standard deviation, not standard error of mean.
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Figure S3. Pairwise comparison of accuracy between EMSAR and another method for paired-end
RNA-seq. (a) A schematic diagram showing the number of isoforms estimated by individual methods and
the commonly estimated ones. Diagrams are not drawn in exact scale. (b)-(e) Figure scheme is the same
as in Figure S2 except that the differences of the method of choice and EMSAR are plotted.
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Figure S6. Comparison of accuracy as measured by concordance to qRT-PCR on real RNA-seq
data. The same figure 6, except the inclusion of Sailfish. Pearson correlation between RNA-seq-based
gene expression level estimates (log(TPM*t+1)) and qRT-PCR-based measurements (ACt), across
independently performed experiments. T was used to maximize the correlation to adjust for any scale
effect of the pseudocount, which allowed inclusion of zero estimates. Six RNA-seq data sets (UHRR-1 to
-4, HBRR-1, MKN-28) and four qRT-PCR sets (UHRR MAQC [19], HBRR MAQC [19], UHRR Wang
etal. [20], MKN-28 from Lee et al. [6]) were compared. RNA-seq-based quantification was run on two
independent transcriptome models (ENSEMBL (E) and RefSeq (R)). The results from Lee et al. on an
older version of RefSeq model (R”) was shown to the right for comparison (grey box). Gene-level
estimates were obtained by summing the relevant isoform-level estimates, except for NEUMA, for which
gene-level estimates were obtained either from the reads common to all the isoforms of a gene or by
summing the isoform-level estimates derived from reads unique to individual isoforms.
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Figure S7. Detailed algorithm description of EMSAR. (a) The algorithm of computing segment
lengths for unstranded single-end RNA-seq is illustrated using a simplified transcriptome. First, all the
transcript sequences (in this case, three) are concatenated followed by their reverse complementary
sequences. Then, an array is created to store the start positions of substrings of a specific length (in this
case, 6 bp) on the concatenated sequence. The length of the substrings is identical to the read length. Any
substring that contains a delimiter character (e.g. ‘@’ or ‘$’) is skipped. Only the alphabetically smaller
between a sense substring and its revere complement is stored (eg. position 54 is stored but not 3.). This is
to ensure that a substring and its reverse complement are treated as indistinguishable, like the reads from
an unstranded RNA-seq experiment. Then, this array is sorted by the associated substrings, to identify
clusters of identical substrings and count the shared substrings for each unique combination of transcripts.
(b) A simplified algorithm of computing segment lengths for paired-end RNA-seq. First an array
containing start positions of all substrings of a specified length is created and sorted, which serves as a
matel array. Then, for every cluster of identical matel substrings, a mate2 array of all start positions that
can be paired with matel is created within a specified fragment length range, and is sorted by the mate2
substrings. For unstranded data, the mate2 array only includes cases in which the second mate is
alphabetically smaller than its reverse complement. The mate2 array is removed after being scanned for
counting shared substrings. The length of segment is computed for individual fragment lengths during
indexing, and later weighted by the data-specific fragment size distribution.
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Figure S8. Algorithmic details of EMSAR. (a) The data structure for transcriptome index. The data
structure is constructed as the suffix array is scanned, can be stored as an index file and reconstructed
from the index file, and is used to count reads for each segment as the program reads through RNA-seq
alignments. The structure uses relatively stable amount of memory and allows relatively fast access to
individual segments. For segments associated with multiple transcripts, the number of transcripts (tsize)
and the first transcript ID (tid0) are directly accessed as indices of a two-dimensional array that stores the
pointer to a linked list of all segments with the corresponding tsize and tid0. An individual node in the
linked list corresponds to a segment and it contains the rest of the transcript ID’s (tid’s) associated with
the segment, as a numerically sorted array. Each node also stores a read count and an array of segment
lengths computed for individual fragment sizes. The linked list is sorted by the tid array, as it is created.
For segments that consist of a single transcript, a one-dimensional array is used with indices representing
transcript IDs. (b) A recursive propagation strategy used for identifying sets of segments. cid: segment ID;
tid: transcript ID; sid: sequence-sharing set ID. The first segment (cid=0) is fed to the recursion, in which
cid is assigned sid=T and all of its associated tids are also assigned sid=T. Then, for each of the tid’s, all
of its associated cid’s is fed to the same function with sid=T. This process is repeated until no new
assignment is possible. Then, pick the next unassigned cid and do the same with sid=T+1. Do this until no
more unassigned segment is available.
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Figure S9. Reads with ambiguous fragment size. An example illustration of two isoforms, one with and
one without a skipped exon. Top: Two different types of shared reads are shown. The one with
unambiguous fragment size (green) is used by EMSAR, whereas the one with ambiguous fragment size
(red) is not. Bottom: Various types of transcript-specific reads that are always used by EMSAR (blue).



