
Theory underlying pulver 

A general linear regression model is given as 

𝑦 = 𝑋𝛽 +  𝜖,    𝜖~ 𝑁(0, 𝜎2𝐼). 

Here 𝑦𝑇 = (𝑦1, 𝑦2, … , 𝑦𝑛) is an 𝑛 × 1 vector, the dependent variable. X represents the 𝑛 ×

(𝑝 + 1) covariate matrix with corresponding 𝛽𝑇 = (𝛽0, 𝛽1, … . 𝛽𝑝) a (𝑝 + 1) × 1 vector of 

unknown regression coefficients. The 𝑛 × 1 vector 𝜖 serves as error term has variance 𝜎2, and 

𝜖1, … , 𝜖𝑛 are independent and identical distributed (i.i.d.). 

Let 𝑋 = (

1 𝑥1 𝑧1 𝑤1 = 𝑥1 ∙ 𝑧2
1 𝑥2 𝑧2 𝑤2 = 𝑥2 ∙ 𝑧2
⋮ ⋮ ⋮ ⋮

1 𝑥𝑛 𝑧𝑛 𝑤𝑛 = 𝑥𝑛 ∙ 𝑧𝑛

), and the unknown regression coefficients 

𝛽𝑇 = (𝛽0 𝛽1 𝛽2 𝛽3 ). The then above general linear model reduces to the following linear regression 

model 

𝑦 =  𝛽0 + 𝛽1 𝑥 + 𝛽2 𝑧 +  𝛽3 𝑤 +  𝜖,    𝜖~ 𝑁(0, 𝜎
2) , 

with 𝜖1, … , 𝜖𝑛 being independent and identical distributed (𝑖. 𝑖. 𝑑.).  

We want to test the null-hypothesis that 𝛽3 =  0 against the alternative hypothesis that 𝛽3 ≠  0, 

where 𝛽3 is the regression coefficient of 𝑤. In order to eliminate the intercept 𝛽0, we center all 

variables, such that ∑ 𝑦𝑖𝑖 = ∑ 𝑥𝑖𝑖 = ∑ 𝑧𝑖𝑖 = ∑ 𝑤𝑖𝑖 = 0, to obtain the following simplified 

regression model: 

    𝑦 =  𝛽1 𝑥 + 𝛽2 𝑧 +  𝛽3 𝑤 +  𝜖, 𝜖~ 𝑁(0, 𝜎2) 𝑖. 𝑖. 𝑑. 

(For simplicity, we retain the notations from above for the simplified model (for variable 

names 𝑦, x, 𝑧, and 𝑤 for the centered variables, regression coefficients, error term)) 

The vectors 𝑥, 𝑧 and 𝑤 span a subspace 𝑆 of ℝ𝑛. The ordinary least-squares (OLS) estimates of 

𝛽̂ are found by minimizing the residual sum of squares over 𝑦 − 𝑋𝛽: 

    𝛽̂  = arg min𝛽  (𝑦 − 𝑋𝛽)
𝑇(𝑦 − 𝑋𝛽). 

Geometrically, this means that 𝛽̂1, 𝛽̂2, and 𝛽̂3 must be selected such that 

    𝑦′ = 𝛽̂1 𝑥 + 𝛽̂2 𝑧 + 𝛽̂3 𝑤               (1)            

is the orthogonal projection of 𝑦 onto 𝑆, the subspace spanned by 𝑤, 𝑥, and 𝑧. It can be shown 

that if 𝑥, y, and z form an orthogonal basis of S, the coefficients of the orthogonal projection 𝑦′ 

of 𝑦 onto 𝑆 are given by 



𝛽̂1  =  
〈𝑦,𝑥〉

〈𝑥,𝑥〉
  , 𝛽̂2  =  

〈𝑦,𝑧〉

〈𝑧,𝑧〉
 , 𝛽̂3  =  

〈𝑦,𝑤〉

〈𝑤,𝑤〉
   [1]. 

Unlike the usual formula for computing OLS coefficient estimates (𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦), this 

formula does not involve an expensive matrix inversion, but instead is easy and fast to compute. 

In general, 𝑤, 𝑥, and 𝑧 do not form an orthogonal basis, so we proceed as follows. 

1. Create an orthogonal basis 𝑣1, 𝑣2,  and 𝑣3 for 𝑆 based on 𝑥, 𝑧, and 𝑤, respectively.  

2. Compute 𝑦′, the orthogonal projection of 𝑦 onto 𝑆, using the orthogonal basis created in 

step 1. 

3. Deduce the estimate of the regression coefficient for 𝑤 from the regression coefficients 

for 𝑦′. 

4. Compute the Student's t-test statistic to test 𝛽3 =  0 as a function of the correlation 

coefficient 𝑟 between 𝑦′ and 𝛽3𝑣3. 

 

1. Create an orthogonal basis for S 

Let 

    𝑣1  =  𝑥, 

    𝑣2  =  𝑧 −  𝑝𝑟𝑜𝑗(𝑧, 𝑣1), and 

   𝑣3  =  𝑤 −  𝑝𝑟𝑜𝑗(𝑤, 𝑣1)  −  𝑝𝑟𝑜𝑗(𝑤, 𝑣2), 

where  

𝑝𝑟𝑜𝑗(𝑎, 𝑏) =  
〈𝑎, 𝑏〉 

〈𝑏, 𝑏〉 
𝑏 

is the orthogonal projection of 𝑎 onto 𝑏. The vectors 𝑣1, 𝑣2 and 𝑣3 form an orthogonal basis of 

𝑆. By construction, we clearly observe that 𝑣1 is dependent on 𝑥 only, 𝑣2 is dependent on 𝑧 and 

𝑥 and 𝑣3 depends on 𝑥, 𝑧, and 𝑤.  

2. Orthogonally project y onto S 

The orthogonal projection 𝑦′ of 𝑦 onto 𝑆 has the form 

    𝑦′ = 𝛽1
′  𝑣1  +  𝛽2

′  𝑣2  +  𝛽3
′  𝑣3               (2)        

where 

𝛽𝑖
′  =  

〈𝑦, 𝑣𝑖〉

〈𝑣𝑖 , 𝑣𝑖〉
    (𝑖 =  1, 2, 3),   



with ‖𝑎‖ = √〈𝑎, 𝑎〉,  

 and 〈𝑎, 𝑏〉 =∑ 𝑎𝑖𝑏𝑖
𝑛

𝑖=1
 being the inner product of vectors 𝑎 and 𝑏 in ℝ𝑛. 

3. Deduce the estimate of w's regression coefficient 

We want to estimate the regression coefficient 𝛽3 of the vector 𝑤 given in Equation 1 using 

Equation 2. The vector 𝑤 occurs in 𝑣3 but not in 𝑣1 or 𝑣2. This allows us to write 𝑦′ as 

  

 𝑦′ =  𝛽1
′  𝑣1  +  𝛽2

′  𝑣2  +  𝛽3
′  𝑣3

 
=  𝛽1

′  𝑣1  +  𝛽2
′  𝑣2  +   𝛽3

′  (𝑤 −  𝑝𝑟𝑜𝑗(𝑤, 𝑣1) −  𝑝𝑟𝑜𝑗(𝑤, 𝑣2))

=  𝛽1
′  𝑣1  +  𝛽2

′  𝑣2  +   𝛽3
′  𝑤 −  𝛽3

′  𝑝𝑟𝑜𝑗(𝑤, 𝑣1) − 𝛽3
′  𝑝𝑟𝑜𝑗(𝑤, 𝑣2)

=   𝛽3
′  𝑤 + 𝛽1

′  𝑣1  +  𝛽2
′  𝑣2  −   𝛽3

′  𝑝𝑟𝑜𝑗(𝑤, 𝑣1) − 𝛽3
′  𝑝𝑟𝑜𝑗(𝑤, 𝑣2)

 =  𝛽3
′  𝑤 + 𝛽1

′  𝑣1  +  𝛽2
′  𝑣2  −   𝛽3

′  
〈𝑤, 𝑣1〉 

〈𝑣1, 𝑣1〉 ⏟      
𝑠𝑐𝑎𝑙𝑎𝑟

𝑣1 − 𝛽3
′  
〈𝑤, 𝑣2〉 

〈𝑣2, 𝑣2〉 ⏟      
𝑠𝑐𝑎𝑙𝑎𝑟

𝑣2

= 𝛽3
′  𝑤 +  𝑐 ( 𝑣1⏟

𝑐(𝑥)

, 𝑣2⏟
𝑐(𝑥,𝑧)

)

=  𝛽3
′  𝑤 +  𝑐(𝑥, 𝑧)

 

       

where 𝑐(… ) represents a linear combination of 𝑥 or  𝑥 and 𝑧, accordingly. This allows us to 

identify 𝛽3, and we estimate the regression coefficient of 𝑤 in Equation (1): 

 𝛽3 = 𝛽3
′ =  

〈𝑦, 𝑣3〉

〈𝑣3, 𝑣3〉
 . 

4. Compute the Student's 𝒕-test statistic to test 𝜷𝟑 =  𝟎 as a function of the correlation 

coefficient 𝒓 between 𝒚′ and 𝜷𝟑 𝒗𝟑. 

We want to show that the Student's 𝑡-test statistic usually used to test for 𝛽3 = 0 in a linear 

regression model, with 𝑡 ≥ 𝑡∗ for significant threshold 𝑡∗ can be computed using the 

Pearson’s correlation coefficient 𝑟. The Pearson’s correlation coefficient 𝑟 between 𝑦′ and 𝑣3 

(both centered) is computed as follows: 



𝑟 =
∑ 𝑦𝑖

′2𝑣3𝑖
𝑁
𝑖=1

‖𝑦′‖‖𝑣3‖
=

∑ 𝑦𝑖
′2𝑣3𝑖

𝑁
𝑖=1

√∑ 𝑦𝑖
′2𝑁

𝑖=1 √∑ 𝑣3
2
𝑖

𝑁
𝑖=1

. 

It then has to hold that 𝑟 ≥ 𝑡∗ ∙ √
1

𝐷𝐹+𝑡∗2
  if we want to reject the null-hypotesis. 

The fact that 𝑣1, 𝑣2,  and 𝑣3 are orthogonal means that 𝛽3 is actually the OLS estimate of the 

regression coefficient 𝑟 in the simple linear regression 

𝑦′ = 𝛽3  𝑣3   + 𝜖,    𝜖 ~ 𝑁(0, 𝜎
2) 𝑖. 𝑖. 𝑑               (3)        

The Student's 𝑡 –statistic to test for coefficient 𝛽3 = 0  is given by 

    𝑡 =  
𝛽3

𝑠𝑒(𝛽3)
   

and it has a Student’s t distribution with 𝐷𝐹 =  𝑛 −  4 degrees of freedom. Subtracting 4 

results from the number of regression coefficients in the initial model and the estimated 

variance of 𝜖: 𝛽̂1, 𝛽̂2, 𝛽̂3, 𝑠
2.  

From the theory of simple linear regression, we know the following relationships (e.g., see 

Snedecor and Cochran 1967 [2], chapter 7.3, p. 175 ff.): 

a) 𝛽3 =  𝑟 
𝑠𝑒(𝑦′)

𝑠𝑒(𝑣3)
   

b) 𝑠𝑒(𝛽3)  = 𝑠 /√∑ 𝑣3𝑖
2  𝑛

𝑖=1   

c) 𝑠2  =
1 − 𝑟2

𝐷𝐹
 ∑ 𝑦𝑖

′2  𝑁
𝑖=1  

d) 𝑠𝑒(𝑎) = √
1

𝑛−1
∑ 𝑎𝑖

2𝑛
𝑖=1 , with vector 𝑎 in ℝ𝑛 and ∑ 𝑎𝑖 = 0𝑖 , 

where 𝛽3 is the OLS estimate of Equation 3; se(𝑦) and se(𝑣3) are the sample estimates of 

the standard deviations of 𝑦 and 𝑣3, respectively; se(𝛽3) is the estimate of the standard 

deviation of 𝛽3; 𝑠
2 is the OLS estimate of 𝜎2, the variance of the error term 𝜖; 𝑟 is the 

Pearson’s correlation coefficient of 𝑦 and 𝑣3; and 𝐷𝐹 is the degree of freedom. 

After plugging Equations a–d into the formula for the Student's t, we obtain the following: 



𝑡 =
𝛽3

𝑠𝑒(𝛽3)

=
𝑟
𝑠𝑒(𝑦′)
𝑠𝑒(𝑣3)
𝑠

√∑ 𝑣3
2
𝑖

𝑁
𝑖=1

=

𝑟 𝑠𝑒(𝑦′)√∑ 𝑣3
2
𝑖

𝑁
𝑖=1

𝑠𝑒(𝑣3 )√
(1 − 𝑟2)
𝐷𝐹

∑ 𝑦𝑖
′2𝑁

𝑖=1  

=
𝑟 √𝐷𝐹

√(1 − 𝑟2) 
∙

 𝑠𝑒(𝑦′)√∑ 𝑣3
2
𝑖

𝑛
𝑖=1

𝑠𝑒(𝑣3)√∑ 𝑦𝑖
′2𝑛

𝑖=1  

=
𝑟 √𝐷𝐹

√(1 − 𝑟2) 
∙

 √
1

𝑛 − 1
∑ 𝑦𝑖

′2𝑛
𝑖=1 √∑ 𝑣3

2
𝑖

𝑛
𝑖=1

√ 1
𝑛 − 1

∑ 𝑣3
2
𝑖

𝑛
𝑖=1 √∑ 𝑦𝑖

′2𝑛
𝑖=1  

=
𝑟 √𝐷𝐹

√(1 − 𝑟2) 
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