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1 Methods and parameters
We selected 14 network inference methods based on several statistical measures,

such as: correlation, mutual information, entropy maximization, regression. The

methods were applied to reverse-phase protein arrays (RPPA) datasets retrieved

from TCPA containing expression levels of 190 proteins and phosphoproteins in 16

cancer types (Table S1). Below we report the description of the procedures used to

execute the methods. The complete analysis was implemented in R language. Table

S2 reports the used R packages and parameters.

Network inference methods description

Concerning correlation, we used Pearson, Spearman, and Partial Correlation. The

last measure has been computed using the inverse of the Pearson correlation matrix

through the R function cor2pcor which makes use of Singular Value Decomposition

(SVD) [1]. Among correlation-based approaches, the Weighted correlation network

analysis (WGCNA) yields module detection, network of co-expressed genes, gene

significance evaluation and topological analysis [2]. We used the Topological Over-

lap Matrix (TOM) similarity [3] to predict putative edges between proteins in the

datasets. The analysis have been carried out by considering the best power com-

puted with pickSoftThreshold for correlation network reconstruction such that it

resembles a scale-free topology. The blockwiseModules function reconstructs the

network from data and finds module of interconnected nodes with minimum module

size of 30. The dynamic tree cut approach to select best cut was also assessed with

cutreeDynamic function by using average linkage hierarchical clustering of dissim-

ilarity TOM matrix (1 − TOM).

The Ridge and Lasso regression methods compute penalized estimates of the re-

gression coefficients which tend to vanish when using L2 or L1 norm, respectively.

These methods are applied to the inverse covariance matrix. Ridge method com-

puted from ridge.net creates a vector lambda of 1, 000 penalty terms that depends

on the number of samples n and the number of splits in k-fold cross-validation, then

applies ridge regression.

The advantage of Lasso regression represents its low computational complexity. For

this reason, it has been applied to high dimensional data [4]. On the other hand

the main shortcoming to work on biological data is that it needs space reduction

procedures to reduce false positives. The implementation through adalasso.net

yields best coefficient from cross-validation-optimal regression, then computes par-

tial correlation.
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Table S1 Cancer types from TCPA analyzed in this work and related number of samples.

Cancer Type Abbreviation Observations
Bladder Urothelial Carcinoma BLCA 127
Breast invasive carcinoma BRCA 750
Colon adenocarcinoma COAD 334
Glioblastoma multiforme GBM 215
Head and Neck squamous cell carcinoma HNSC 212
Kidney renal clear cell carcinoma KIRC 454
Lower grade glioma LGG 260
Lung adenocarcinoma LUAD 237
Lung squamous cell carcinoma LUSC 195
Ovarian serous cystadenocarcinoma OV 412
Prostate adenocarcinoma PRAD 164
Rectum adenocarcinoma READ 130
Skin Cutaneous Melanoma SKCM 207
Stomach adenocarcinoma STAD 299
Thyroid carcinoma THCA 375
Uterine Corpus Endometrial Carcinoma UCEC 404

Table S2 Methods, functions and default parameters used in the analysis.

ID Method name Command Parameters Library
M1 PEARSON cor method = "pearson" stats
M2 SPEARMAN cor method = "spearman" stats
M3 SPC cor2pcor cor(pearson) corpcor
M4 GENENET ggm.estimate.pcor GeneNet

M5 GLASSO
glasso

invcov2parcor
cov(data), rho=0.01

glasso$wi
glasso

M6 PLS pls.net parcor
M7 RIDGENET ridge.net parcor
M8 LASSO adalasso.net parcor
M9 ELASTICNET elasticNetwork nfold = 3, alpha = seq(0.01, 0.99, length.out=10)

M10 ARACNEA aracne.a mi = knnmi.all(data) parmigene
M11 ARACNEM aracne.m mi = knnmi.all(data) parmigene
M12 CLR clr mi = knnmi.all(data) parmigene
M13 MRNET mrnet mi = knnmi.all(data) parmigene

M14 WGCNA TOMsimilarityFromExpr

networkType = "unsigned",
TOMType = "unsigned",
power = best.power

WGCNA

Graphical lasso solves the lack of reductions procedures by using the block coordi-

nate descent algorithm. Elastic Net combines the Lasso and Ridge penalties achiev-

ing better results compared to Lasso with several real world data [5]. Complemen-

tary approaches, e.g. Shrinkage (Gene net) and Partial Least Square Regression,

try to estimate covariance matrices in order to infer dependencies among genes.

Results were filtered according to the significance of the method’s predictions. In

particular, for each predicted protein-protein edge a p-value, based on Graphical

Gaussian Model [1], is computed. Graphical Gaussian models are used to describe

gene association networks from partial correlation. The original model hypothesizes

that the genomic data follows a multivariate normal distribution and has positive

definite covariance matrix. It states that correlation coefficients represent direct or

undirect regulations by common genes. The higher the partial correlation between

two genes is the more is the strength of the direct interaction between them. It fur-

ther computes the partial correlation matrix from the inversion of the correlation

coefficients. This model has been improved for small sample size in [1] by esti-

mating partial correlation coefficients from the inversion of the correlation matrix

with Moore–Penrose pseudoinverse matrix and then used bootstrap aggregation to

stabilize the estimator.

ARACNE [6], CLR [7], and MRNET [8] are based on the estimation of the mu-

tual information between variables. ARACNE exploits the data processing inequality
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(DPI) to delete false positives (i.e. indirect edges). It has been applied both on syn-

thetic and biological gene expression data to create large networks with more than

120, 000 gene interactions. CLR computes the distribution of the values of mutual

information for all the pairs of variables. Next, it applies the relevance network

approach to filter non-significant interactions. Minimum-redundancy-maximum-

relevance (MRNET) algorithm selects the variables with maximum relevance in

terms of mutual information. The indirect interactions caused by interdependence

among selected variables are penalized through a minimum redundancy criterion.

2 Inferred Networks Properties and Statistics
Table S3 reports the topological measures in the networks inferred by our approach

INBIA with respect to those computed by PERA [9]. For each undirected network

we computed:

1 Number of nodes;

2 Number of edges;

3 Edge density: the ratio of the network edges and the total possible edges;

4 Transitivity: the global transitivity represents the number of triangles divided

by the number of triples in the network;

5 Diameter: the maximum length of the shortest path between any two vertices

in the network;

6 Degree centralization: obtained from vertices degree, represents the level of

network centralization normalized by the maximum centrality level;

7 Closeness centrality: similar to degree centralization, is the normalized close-

ness centralization index, where the closeness for each vertex is defined as

C(v) = 1∑
u
d(u,v)

, where d(u, v) is the shortest path connecting nodes u and

v in the network;

8 Betweenness centrality: for each vertex v, the fraction of shortest paths be-

tween every other two nodes in the networks that contain v as an intermediate

vertex;

9 Mean distance: the average of the length of all network’s shortest paths.

Table S4 reports the F-measure, i.e. a combination of precision and recall, con-

sidering direct (k = 1) and indirect (k = 2, 3, 4) interactions, where k represents

the length of paths within the gold standard connecting the proteins. For each tis-

sue, the best method is selected by computing the maximum F-measure across all

methods.

To assess the quality of predicted edges, inferred networks are compared with

tissue-specific networks from TissueNet v.2 [10] and GIANT[11]. For example, in

order to find the best match between cancer and normal counterpart we sought if a

specific cancer can occur in that tissue, e.g. BLCA corresponds to urinary bladder,

BRCA to mammary gland, GBM to brain, PRAD to prostate gland, and so on.

Every file, e.g. urinary bladder in GIANT, contains in each row an edge between

two proteins and the corresponding class as defined in [11]. We verified the overlap

of predicted PPIs from INBIA with those contained in the normal counterpart

in GIANT and collected the classes. Cancer types were associated to tissues in

TissueNet v.2 and GIANT following the search keywords reported in Table S5.
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Table S3 Properties of inferred networks: Number of nodes and edges(N, E), Edge density (ED),
Transitivity (T), Diameter (D), Degree centrality (DC), Closeness centrality (CC), Betweenness
centrality (BC), and Mean distance (MD). For each cancer type, the first tuple highlighted in
boldface refers to the inferred network from the induced iRefIndex human networks (INBIA) with
k = 1. The second tuple refers to the inferred networks from Pathway Commons by using PERA,
with k = 1. The p-value is obtained with Wilcoxon-Rank Test using those measures as
components.

Cancer Type N E ED T D DC CC BC MD pvalue

BLCA 142 671 0.06702627 0.1963033 5 0.2166617 0.2864414 0.1016215 2.508341 0.4258
97 205 0.04402921 0.1918482 8 0.1538875 0.09021319 0.1223768 3.518809

BRCA 132 405 0.04684247 0.1471906 6 0.2432339 0.3460722 0.1919149 2.743697 0.8203
99 241 0.04968048 0.2042827 9 0.2258297 0.07253683 0.1967823 3.154284

COAD 142 657 0.06562781 0.199939 5 0.2464289 0.3044054 0.1292083 2.521327 0.7344
103 248 0.04721112 0.1459378 7 0.2174948 0.3073537 0.238328 3.137636

GBM 115 310 0.04729214 0.1563299 6 0.2246377 0.107646 0.2157567 2.844999 0.1834
105 275 0.0503663 0.2058252 6 0.2669414 0.02724174 0.1849262 2.777559

HNSC 114 286 0.04440304 0.1568483 6 0.2122341 0.09678212 0.1917622 2.908155 0.7263
94 244 0.05582247 0.1914406 6 0.342027 0.1139639 0.2582048 2.761166

KIRC 121 311 0.04283747 0.150108 6 0.1738292 0.09916003 0.1354939 3.012674 0.7263
96 234 0.05131579 0.1680672 7 0.2539474 0.1111332 0.2441754 2.927951

LGG 114 320 0.04968173 0.1638697 6 0.215805 0.1017394 0.220757 2.824513 0.3627
104 294 0.05489171 0.2197422 6 0.2363704 0.04431486 0.1857532 2.833162

LUAD 142 703 0.07022275 0.2004164 5 0.2489262 0.3106102 0.1096263 2.470582 1
74 169 0.06256942 0.300216 7 0.2798963 0.07108361 0.3380722 3.161357

LUSC 144 670 0.06507382 0.2101576 5 0.2496115 0.3134406 0.1073905 2.546134 0.9102
87 182 0.04865009 0.3047493 8 0.2536755 0.02952232 0.2165 3.22825

OV 132 451 0.05216285 0.1501694 7 0.2150127 0.2993841 0.1249435 2.719176 1
101 283 0.0560396 0.1852363 9 0.2739604 0.1075113 0.2447867 3.023908

PRAD 144 664 0.06449106 0.197111 6 0.2362082 0.2955189 0.1151613 2.558858 0.7344
103 253 0.04816295 0.1758865 8 0.1969351 0.2978846 0.2148186 3.211117

READ 143 658 0.06480843 0.182904 5 0.2450507 0.2976828 0.113238 2.529597 1
123 559 0.07450353 0.2586023 6 0.2451686 0.09234062 0.1289971 2.610384

SKCM 144 672 0.06526807 0.1901693 6 0.2494172 0.3271877 0.1368997 2.501457 0.7344
102 284 0.05513493 0.237699 7 0.2121918 0.09705498 0.170387 2.929711

STAD 119 317 0.04515026 0.1358713 6 0.209087 0.3025159 0.1756729 2.941461 0.5703
102 259 0.0502815 0.1824548 9 0.2467482 0.3245042 0.3063334 3.174723

THCA 122 325 0.04403197 0.1443651 7 0.1956374 0.2922507 0.1641396 2.951633 1
100 262 0.05292929 0.1897757 8 0.260202 0.1019998 0.2305338 2.971603

UCEC 120 325 0.04551821 0.1369458 6 0.2401961 0.3300713 0.232514 2.886975 0.8203
96 205 0.04495614 0.1850467 9 0.2287281 0.1029186 0.2576515 3.320448

Table S6 reports the number of interactions predicted by the compared methods

(INBIA and PERA) and the number of such intersections present in TissueNet. The

differences of overlaps among INBIA and PERA was statistically significant with

p-value < 0.001 (by using T-test).

The Figure S1 reports the consensus networks for INBIA (a) and PERA (b)

constructed by considering common predictions in all predicted cancers network (for

each cancer type we take the ensemble network). Each node size in the INBIA’s (a)

and PERA’s (b) network corresponds to collective influence and nodes are colored

in red if they belong to MDS.

We further analyzed the INBIA consensus network by considering OncoPanel [12],

a custom targeted next-generation sequencing assay for cancer composed by 282

genes. Only 49 genes out of 282 are present in TCPA datasets but, interestingly,

the consensus network obtained in Figure S1 contains a total of 42 genes and 15

of these are also present in OncoPanel. Figure S2 represents the labeled INBIA

consensus network. The complete results of this analysis are reported in Additional

File 5.

3 Functional analysis
Table S7 reports gene set enrichment analysis for all genes in the TCPA dataset.

Most genes related to TCPA proteins overlap with genes up-regulated by activa-
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Table S4 Cancer types and best performing inference network methods with maximum F-measure
value between round brackets on varying path length k.

Cancer Type k INBIA PERA

BLCA 1 CLR (0.188) ELASTICNET (0.179)
2 MRNET (0.686) MRNET (0.556)
3 CLR (0.799) CLR (0.692)
4 CLR (0.806) CLR (0.714

BRCA 1 GLASSO (0.186) PLS (0.179)
2 MRNET (0.684) MRNET (0.550)
3 CLR (0.805) MRNET (0.691)
4 CLR (0.814) CLR (0.714)

COAD 1 CLR (0.182) ARACNEA (0.166)
2 MRNET (0.683) MRNET (0.557)
3 MRNET (0.792) MRNET (0.690)
4 MRNET (0.798) MRNET (0.712)

GBM 1 PLS (0.196) PLS (0.191)
2 CLR (0.683) CLR(0.546)
3 CLR (0.811) CLR(0.685)
4 CLR(0.819) CLR(0.708)

HNSC 1 PLS (0.184) PLS (0.178)
2 CLR (0.694) CLR (0.563)
3 CLR (0.808) CLR (0.698)
4 CLR (0.815) CLR (0.722)

KIRC 1 PLS (0.210) PLS (0.180)
2 CLR (0.681) CLR (0.564)
3 CLR (0.796) CLR (0.698)
4 CLR (0.803) CLR (0.717)

LGG 1 PLS (0.193) PLS (0.194)
2 MRNET (0.678) MRNET (0.548)
3 MRNET (0.783) MRNET (0.673)
4 MRNET (0.791) MRNET (0.693)

LUAD 1 CLR (0.187) SPEARMAN (0.188)
2 CLR (0.690) CLR (0.569)
3 CLR (0.801) CLR (0.702)
4 CLR (0.806) CLR (0.723)

LUSC 1 CLR (0.184) SPEARMAN (0.184)
2 CLR (0.691) CLR (0.557)
3 CLR (0.797) CLR (0.693)
4 CLR (0.802) CLR (0.716)

OV 1 GLASSO (0.191) PLS (0.174)
2 MRNET (0.681) MRNET (0.557)
3 MRNET (0.785) MRNET (0.684)
4 MRNET (0.791) MRNET (0.702)

PRAD 1 MRNET (0.191) WGCNA (0.168)
2 MRNET (0.678) MRNET (0.556)
3 MRNET (0.780) MRNET (0.678)
4 MRNET (0.788) MRNET (0.699)

READ 1 MRNET (0.186) CLR (0.166)
2 MRNET (0.682) MRNET (0.554)
3 MRNET (0.789) MRNET (0.687)
4 MRNET (0.792) MRNET (0.709)

SKCM 1 MRNET (0.188) WGCNA (0.166)
2 CLR (0.679) MRNET (0.561)
3 CLR (0.792) MRNET (0.692)
4 CLR (0.799) MRNET (0.712)

STAD 1 PLS (0.179) PLS (0.165)
2 MRNET (0.678) MRNET (0.552)
3 MRNET (0.791) MRNET (0.684)
4 MRNET (0.797) MRNET (0.708)

THCA 1 PLS (0.196) PLS (0.174)
2 MRNET (0.692) MRNET (0.558)
3 MRNET (0.809) MRNET (0.687)
4 MRNET (0.816) MRNET (0.707)

UCEC 1 PLS (0.189) WGCNA (0.178)
2 MRNET (0.680) MRNET (0.558)
3 MRNET (0.786) MRNET (0.689)
4 MRNET (0.794) MRNET (0.709)

tion of the PI3K/AKT/mTOR pathway and mediating the programmed cell death

by activation of caspases [13]. Other significant enriched gene sets are hypoxia,

that contain genes up-regulated in response to low oxygen levels and genes down-

regulated in response to ultraviolet radiation [13]. Nodes are valuated associating

their function to a measure called node collective influence and to the beloging of
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Table S5 Cancer types contained in TCPA and the corresponding normal tissues in TissueNet v.2
and GIANT. The normal tissue counterpart was selected by checking the occurrence of cancer in
that tissue in literature and the keyword was used to match the normal tissue filenames in
TissueNet and GIANT.

Cancer type Keyword TissueNet Normal Tissues GIANT Normal Tissues
BLCA bladder urothelial urinary bladder urothelial cells urinary bladder
BRCA breast breast mammary gland
COAD colon colon colon

GBM brain

brain - cerebellum
brain - cerebral cortex
brain - hippocampus

brain - lateral ventricle

brain

HNSC nasopharynx nasopharynx respiratory epithelial cells pharynx
KIRC kidney kidney kidney
LGG hippocampus brain - hippocampus hippocampus

LUAD lung lung lung
LUSC lung lung lung

OV ovary ovary ovary
PRAD prostate prostate glandular cells prostate gland
READ rectum rectum glandular cells rectum
SKCM skin skin skin
STAD stomach stomach stomach

THCA thyroid
parathyroid gland

thyroid gland
thyroid gland

UCEC endometrium endometrium uterine endometrium

Table S6 Comparison of INBIA and PERA with TissueNet. The columns report the number of
predictions for a specific cancer type related to INBIA and PERA followed by the corresponding
overlap with TissueNet, and the normal tissue counterpart used for the comparison. If there were
multiple normal counterparts for a specific cancer, the comparison was repeated for each of them.

Cancer type INBIA PERA INBIA-TissueNet PERA-TissueNet TissueNet Normal
BLCA 671 205 346 91 urinary bladder urothelial cells
BRCA 405 241 193 71 breast
COAD 657 248 295 85 colon

GBM 310 275 94|113|87|79 54|74|57|43
cerebellum|cerebral
cortex|hippocampus|lateral ventricle

HNSC 286 244 125 78 nasopharynx respiratory epithelial cells
KIRC 311 234 150 94 kidney
LGG 320 294 105 75 brain - hippocampus
LUAD 703 169 326 70 lung
LUSC 670 182 311 79 lung
OV 451 283 117 63 ovary
PRAD 664 253 262 82 prostate glandular cells
READ 658 559 288 218 rectum glandular cells
SKCM 672 284 363 122 skin
STAD 317 259 137 91 stomach
THCA 325 262 87|131 51|69 parathyroid gland|thyroid gland
UCEC 325 205 158 76 endometrium

the node to the minimum dominating set (MDS). MDS is the minimal subset of

nodes such that every other node in the network that do not belong to this set is

directly connected to a MDS node [14]. The proposed solution to find MDS follows

a greedy approach. At each step it selects the node c with the maximum degree,

sets it as ‘visited’ and adds it to the current MDS. Then c’s neighbors, i.e. nodes

directly connected to c, are set to ‘visited’ too and removed from the set of nodes

to consider at the next step. The procedure ends when every node is visited. It has

been proved that the approximation error is less than ln(δ)+2 where δ is the maxi-

mum degree in the input graph [15]. For each tissue, the network of PPI predictions

related to the best method was selected, then its MDS was computed.

The collective influence (CI) measure, first introduced in [16], finds influencers

within a network. These nodes have a topologically key role in the spreading of

information along the entire network. This can be used to stop the diffusion of

an epidemic disease. The CI measure reveals the importance of ‘weak’ nodes that
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Figure S1 All cancers consensus network. These networks represent the overlap of PPIs between
all best methods predictions provided by INBIA (a) and PERA(b).

Figure S2 The INBIA consensus network obtained from the overlap of PPIs between all best
methods for all cancers. The nodes in green are those present in OncoPanel.

have low degree but also takes into account the contribution of neighbors with high

degree called hubs. In PPI networks related to a specific disease, the influencers

can be proteins with a biological function related to the initiation of the signaling

process for that pathology.
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Table S7 Gene set enrichment analysis of all TCPA genes performed with MSigDB. The proteins are
mostly involved in PI3K/AKT/mTOR pathway and apoptosis regulation. K is the number of genes in
Gene Set, k the number of genes in overlap, p-value and FDR q-value are non-corrected and
corrected significativity of the enrichment, respectively.

Gene Set K k p-value FDR q-value
HALLMARK PI3K AKT MTOR SIGNALING 105 20 7.25E-30 3.63E-28
HALLMARK APOPTOSIS 161 17 6.17E-21 1.54E-19
HALLMARK HYPOXIA 200 17 2.64E-19 4.39E-18
HALLMARK UV RESPONSE DN 144 14 6.30E-17 7.88E-16
HALLMARK APICAL JUNCTION 200 15 2.40E-16 2.00E-15
HALLMARK E2F TARGETS 200 15 2.40E-16 2.00E-15
HALLMARK MTORC1 SIGNALING 200 12 3.65E-12 2.61E-11
HALLMARK COMPLEMENT 200 10 1.43E-09 5.96E-09
HALLMARK ESTROGEN RESPONSE EARLY 200 10 1.43E-09 5.96E-09
HALLMARK G2M CHECKPOINT 200 10 1.43E-09 5.96E-09

Let δBall(i, r) for node i be the set of nodes at distance r from node i through a

shortest path in graph G. Then, collective influence is:

CIr(i) = (dG(i) − 1)
∑

j∈δBall(i,r)

(dG(j) − 1) (1)

where dG(v) is the degree of node v in graph G. As suggested in [16], the CI for

node i is more informative when r ≥ 1 and r is lower than the diameter of the

network, otherwise CI vanishes. For these reasons, we set r = 2.

For each tissue, the network of PPI predictions related to the best method was

selected, then we computed the collective influence for each protein. The higher is

the CI value the higher is the number of hubs a protein is connected to. Additional

File 5 reports the lists of MDSs and collective influence of nodes, for each cancer

PPI network inferred by our approach and PERA.
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