
Extended Materials and Methods 

Sequence databases and software dependencies 

miRNA libraries were obtained from both miRBase.org [1] and MirGeneDB [2]. mRNA and 

noncoding libraries were obtained from Ensembl (www.ensembl.org) unless otherwise noted. 

Human tRNAs were obtained from the Genomic tRNA Database [3]. Human snoRNA was 

obtained from the snoRNABase (www-snorna.biotoul.fr). Repeat element locations were obtained 

from the UCSC genome browser track on Hg38. The redundant sequences in non-miRNA libraries 

were removed and the regions in these sequences which were identical to mature miRNAs were 

substituted with Ns. miRge 2.0 was written in Python (2.7.12) and utilizes the following tools and 

libraries: Bowtie (v1.1.1) [4],  RNAfold (v2.3.5) [5], SAMtools (v1.5) [6], cutadapt (v1.11) [7], 

biopython (v1.68; http://biopython.org), sklearn (v0.18.1; http://scikit-learn.org), numPy (v1.11.0; 

http://www.numpy.org), SciPy (v0.17.0; https://www.scipy.org), pandas (v0.21.0; 

http://pandas.pydata.org), reportlab (v3.3.0; http://www.reportlab.com) and forgi (v0.20; 

https://viennarna.github.io/forgi). An installer incorporating all of these tools except Bowtie, 

SAMtools and RNAfold is included and the entire package is available through Bioconda. miRge 

2.0 runs on a Linux platform (Ubuntu 16.04.3). 

miRge 2.0 Workflow 

Figure 1 shows the workflow of miRge 2.0. In Figure 1, similar to the original miRge, the input 

FASTQ or FASTQ.gz file(s) undergo prealignment steps of quality control, adaptor removal 

(cutadapt v1.11) and collapse into unique reads and their observed counts with subsequent merging 

across all unique samples [8]. This file is then annotated against these search libraries:  mature 

miRNA, miRNA hairpin, mRNA, mature & primary tRNA, snoRNA, rRNA, other non-coding 



RNA, and (optional) known RNA spike-in sequences [9, 10]. A full rationale of the method was 

given previously [8]. Briefly, the initial alignment to mature miRNAs allows 0 mismatches.  

Alignments to all other species allows 1 mismatch. In the second alignment to the mature miRNAs 

(the isomiR step), the Bowtie search was modified from “bowtie -l 15 -5 1 -3 2 -n 2 –f” to “bowtie 

-5 1 -3 2 –v 2 –f –norc –best –S.” As an update from the original miRge approach, only forward 

strand direction matching was allowed in the Bowtie step to search miRNAs with greater accuracy 

[11]. 

We addressed the effect of reads cross-mapping to more than one miRNA. We approach this by 

clustering the reads of the two or more similar miRNAs together (ex. hsa-miR-215-5p/192-5p). 

We made several improvements over the original miRge approach including systematically 

analyzing sequence similarity and merging miRNAs together if no mismatch is present in the main 

region of the miRNA. This was hand-curated and experimentally validated by repeated Bowtie 

alignments investigating random placement of reads. More specifically, Bowtie can be run so that 

if it aligns a read equally to two different sequences it randomly picks one assignment. Since we 

pre-cluster identical reads from the FASTQ file, we have essentially forced reads to all be assigned 

to one sequence over the other.  Because of the randomness factor, if one repeats Bowtie 

alignments, these “equal alignment” reads can be noted to “jump” from one sequence to another.  

We identified these reads and used that information to cluster similar miRNAs together.  

Two new optional modules added in miRge 2.0 are the identification of ADAR A-to-I editing 

positions in the miRNAs and the search for putative novel miRNAs from unannotated reads 

(described below). Output files contain: 1) a .csv file containing all the annotated sequences; 2) 

two .csv files containing reads counts or reads per million (RPM) per miRNA; 3) an optional .csv 

file containing miRNA entropy and % canonical reads per miRNA; 4) an optional .csv file on the 



entropy of each isomiR across samples; 5) a .pdf report file containing an annotation log of the 

unique sequences identified across the entirety of the sample set analyzed along with per sample 

information on total reads, sequence length histograms, and the composition of the sample with 

respect to miRNA, mRNA, ncRNA, genomic, and unaligned reads; 6) an optional .gff file on the 

miRNAs and isomiRs (including CIGAR annotation) across samples; 7) an optional .csv file 

containing the identified significant A-to-I editing site in miRNAs and their proportion and 

adjusted p value; 8) an optional .pdf file showing a heat map of the A-to-I editing sites across 

samples; 9) an optional .csv report file of each sample containing the identified novel miRNAs; 

10) Multiple .pdf files containing the structure of precursor miRNAs, the location, and reads 

alignment of novel miRNAs.  

Datasets to model novel miRNA detection 

Sequencing datasets from 17 tissues in human and mouse (adrenal, bladder, blood, brain prefrontal 

cortex, colon, epididymis, heart, kidney, liver, lung, pancreas, placenta, retina, skeletal muscle, 

skin, testes and thyroid) were retrieved from Sequence Read Archive (Table 1). These samples 

were processed through miRge 2.0 to identify the different RNA species for machine learning 

controls. MirGeneDB miRNAs were used to assemble positive clusters (known miRNAs). RNAs 

in the categories of tRNA, snoRNA, rRNA or mRNA were used to assemble negative clusters 

(known non-miRNAs). Sequences in repeat elements were excluded. The details regarding the 

final selection of RNA species used are listed in “Generation of read clusters.” The collected 

miRNAs were further subselected by removing those that had less than 3 unique sequences, less 

than 10 overall reads, and are unable to form putative pre-miRNA structures. This yielded 12,048 

and 7,795 known miRNAs (positive clusters) and 52,395 and 7,044 non-miRNAs (negative 

clusters) for the human and mouse datasets, respectively. To balance the positive and negative 



cluster data, 12,048 non-miRNA elements were randomly sampled from the original 52,395 in the 

human dataset and 7,044 miRNA elements were randomly sampled from the original 7,795 in the 

mouse dataset. 

Clustering reads to determine features for model construction and novel miRNA detection 

Figure 2A illustrates the process of construction of the predictive model. The goal of this step is 

two-fold.  The first is to use known positive (miRNA) and negative (non-miRNA) sequences to 

cluster reads together to a genomic location and allow compositional and structural features to be 

determined for each cluster. These are used to build a predictive model. Secondly, this method is 

applied to the unmapped.csv output of user inputted FASTQ data. Clusters from the unmapped 

reads are used to establish features evaluated by the predictive model to detect novel miRNAs. 

The steps of this method (as described for developing the model) are: 1) Annotated reads 

previously from a FASTQ file are classified into positive reads (miRNAs and isomiRs based on 

miRGeneDB) and negative reads (mRNAs and noncoding RNAs); 2) These raw sequence reads 

are mapped to the human genome using Bowtie with 0 mismatches, seed length of 25 bp and 

alignment to 3 or fewer loci and then assembled based on coordinates with perfect alignment. A 

new sequence cluster is generated based on their overlapping coordinates. To form a cluster, two 

or more overlapping reads must have the same strand directionality with a minimum overlapped 

length of 14 bp. We removed assembled cluster sequences with length > 30 bp, a 6+ bp poly-A at 

the 3’ end, a 6+ bp poly-T at the 5’ end, or if they were located in a repetitive element region; 3) 

All the reads were then mapped to these assembled cluster sequences with 0 mismatches, seed 

length of 25, and forward direction. The reads that did not align in this first step were mapped to 

the clusters in a less stringent manner, in which the first and last 3 nucleotides were ignored, up to 

1 misaligned base pairs was allowed, the seed length was set to 15 bp. The most stable region of 



each cluster is extracted as a putative mature miRNA in the three steps, shown in Figure 2B. First, 

all reads were aligned to the cluster; then we calculated the ratio of the read counts of each base 

along the cluster to the total read number for the cluster and finally set the start and end position 

of the putative miRNA as the first and last base with a ratio >0.8 of base position reads to total 

reads of the cluster. 4) We used these read structures to determine the optimal candidate pre-

miRNA hairpins based on folding energy (RNAfold) of the surrounding sequence. 5) The 

compositional features and the structural features of the pre-miRNAs were computed for each 

cluster. 6) A support vector machine (SVM) model, described below, was built to calculate the 

probability that a given candidate was a miRNA. 7) The probability of each putative mature 

miRNA is compared to the known positive or negative miRNA status of the read cluster to develop 

test statistics. 

Generating precursor miRNA structural features for candidate novel miRNAs 

From the clustering process described above, genomic positions of the clusters (of known 

miRNAs, known non-miRNAs, and unmapped reads) were obtained. The precursor (hairpin) 

candidate structures were generated as follows: 

1) If a mapped cluster had no adjacent clusters, we determined a most-likely precursor (hairpin) 

structure.  To do this, we generated two potential hairpin structures.  We either added 20 nt 

upstream and 70 nt downstream or 70 nt upstream and 20 nt downstream of genomic sequence. 

Then, the secondary structure of the precursor was predicted by RNAfold. Any sequence without 

a hairpin secondary structure was removed at this step. After prediction, 5 nt was removed from 

the 20 nt side, and a matching length of sequence was removed from the 70 nt side, such that the 

hairpin had no overhang. We determined a 15 nt extended length is optimal for determining 

minimum free energy. 



2) Precursor miRNA hairpin structures were discarded, if: a) a read cluster overlaps with the loop 

by more than 5 bp in the 5p-arm (no overlap is allowed on 3p-arm); b) the pruned pre-miRNA has 

no hairpin; c) the hairpin has less than 15 bindings in the total precursor structure; d) < 60% of 

nucleotides in the putative mature miRNA cluster are paired. If both precursor options remain, we 

chose the precursor with the lowest minimum free energy.  

3) For those sequence clusters that had additional nearby clusters (within 44 bp), which could 

represent 5p and 3p arms, we approached these slightly differently. For these sequences, we 

assigned the neighbor state of each cluster sequence. To do this, we assigned the distance from the 

adjoining upstream sequence “seq1” to the target sequence “seq2” as D1.  If there were three nearby 

sequence clusters, then we determined the distance from the adjoining downstream sequence 

“seq3” to the target sequence “seq2” as D2. If 9 <= D1 <= 44 and the direction of “seq1” is equal 

to the direction of “seq2” or 9 <=D2 <= 44 and the direction of “seq2” is equal to the direction of 

“seq3.” From each plausible scenario, we generated a precursor structure as described in 1) above 

and determined the optimal precursor based on the rules of 2) above.   

A-to-I editing analysis 

We utilized the mapped output file to identify all reads corresponding to each miRNA for A-to-I 

editing, as noted as an A to G change. First, the reads were aligned against the genome with the 

last two nucleotides at the 3’ end trimmed and allowance of up to one mismatch. Here, we 

demanded unique best hits (i.e. a read that cannot be aligned to other locations in the genome with 

the same number of mismatches). Then, for the retained reads that belong to one miRNA and its 

isomiR, all nucleotide positions in the canonical miRNA, except the terminal 5 bp were screened 

for A to G changes based on a binomial test considering the expected sequencing error rate (0.1%), 

as described [12]. A Benjamini-Hochberg-corrected P-value [13] was calculated for each site on 



the miRNA. The A-to-I editing level was defined as the proportion of the mapped reads containing 

the edited nucleotide relative to the total mapped reads at the given location. Finally, we excluded 

the putative A-to-I signals based on four criteria described in the main manuscript.  
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