SUPPLEMENTARY MATERIALS FOR:

NASQAR: A web-based platform for High-throughput sequencing data analysis and visualization

Ayman Yousif¹, Nizar Drou¹, Jillian Rowe¹, Mohammed Khalfan² and Kristin C. Gunsalus^{1,2, -}

¹NYU Abu Dhabi Center for Genomics & Systems Biology, Division of Biological Sciences, Abu Dhabi, United Arab Emirates and

²Center for Genomics & Systems Biology, Department of Biology, New York University, New York, 10003, United States. -To whom correspondence should be addressed.

1) NASQAR platform and implementation details:

Fig. 1. NASQAR Platform Architecture. A cluster of virtual machines at NYU Abu Dhabi serves NASQAR applications to multiple concurrent users. Applications are containerized and managed on the cluster using Docker and Swarm, while Traefik load-balances requests among available server nodes. Functionality includes merging gene counts, conversion of gene IDs to gene names, analysis of differential mRNA expression, metagenomics analysis, and gene set and functional enrichment analysis. Applications for bulk expression analysis include DESeq2, limma, and EdgeR. Single-cell RNAseq analysis with Seurat Wizards is built on top of the Seurat R package and includes options for filtering, normalization, dimensionality reduction (PCA), clustering, and t-SNE. Enrichment analysis includes applications for Gene Set Enrichment Analysis (GSEA) and Over-representation Analysis (ORA) built using the clusterProfiler R package.

The architectural framework of the NASQAR web platform is illustrated in Figure 1. NASQAR has been deployed on a cluster of virtual machines and is publicly accessible at http://nasqar.abudhabi.nyu. edu/. Docker (Merkel 2014) and Swarm (Soppelsa and Kaewkasi 2017) provide containerization and cluster management, and the Traefik reverse proxy / load balancer (https://traefik.io/) manages requests and maintains sticky user sessions, which is essential for hosting Shiny applications. This framework allows access to multiple users concurrently while providing sufficient resources (RAM/CPU) for the applications. In anticipation of growing computational demand and the addition of

more applications, the scalable design makes it relatively easy to increase dedicated resources simply by adding more nodes to the cluster.

A Docker image of NASQAR is publicly available through DockerHub and can be used to deploy the application seamlessly on any system with Docker installed, whether a local computer or a public server. In addition, each application can be installed and launched on its own, saving users from the hassle of satisfying the different software and hardware requirements. The source code is available publicly on GitHub and is actively maintained. All applications have clear user guides with example data sets to help users get started and acclimate quickly.

NASQAR comprises a collection of applications primarily implemented in R, a widely used and freely available statistical programming language (R Core Team 2017). Most of the analysis workflows are built using R libraries for genomics and computation. The front-end design utilizes the R Shiny (Chang *et al.* 2018) library and is supported by JavaScript/CSS to enhance usability and improve overall user experience.

In addition to previously published software, we introduce here several new applications we have developed that wrap around popular analysis packages, such as DESeq2 (Love *et al.* 2014) and Seurat (Butler *et al.* 2018) for bulk and single-cell RNA-seq analysis and visualization, respectively. Since most of the analysis applications in NASQAR require a matrix of gene counts as input, we have also built a convenient tool to assist with preprocessing, GeneCountMerger. Some of the applications have been integrated to provide a seamless transition from data preprocessing to downstream analysis. This implementation gives users the option of using multiple analysis applications without having to modify/reformat the input data set, thus allowing them to easily benchmark and compare the performance of different analysis software packages.

The following is a description of each application currently hosted by NASQAR:

1.1 GeneCountMerger

This preprocessing tool is used to merge individual raw gene count files produced from software such as htseq-count (Pyl *et al.* 2014) or featurecounts (Smyth *et al.* 2013). Options include:

- Merge individual sample count files into one matrix _
- Merge multiple raw count matrices _
- Convert Ensembl gene IDs to gene names _
- Select from available genomes / versions _
- Add pseudocounts _
- Rename sample column headers _
- Download merged counts file in .csv format _
- Seamless transcriptome analysis following count merger (Seurat _Wizard for single-cell RNA analysis; DESeq2Shiny or START (Sklenar *et al.* 2016) for bulk RNA analysis) _

1.2 Seurat Wizards

Seurat Wizards are wizard-style web-based interactive applications to perform guided single-cell RNAseq data analysis and visualization. They are based on Seurat, a popular R package designed for QC, analysis, and exploration of single-cell RNAseq data. The wizard style makes it intuitive to go back and forth between steps and adjust parameters based on the results/feedback of different outputs/plots/steps, giving the user the ability to interactively tune the analysis. SeuratWizard and SeuratV3Wizard implementations provide support for Seurat versions 2 and 3 (Stuart *et al.* 2019), respectively. _

Another web-based tool for scRNA-seq analysis, IS-CellR(Patel 2018), has recently been described that also utilizes Seurat v2. The SeuratWizard and SeuratV3Wizard take a different approach to design and implementation and follow closely the Seurat Guided Clustering Tutorials devised by the authors (https://satijalab.org/seurat/v3. 0/pbmc3k_tutorial.html). Users can follow the tutorials while using the Wizards and can edit parameters at almost every step, which is instrumental in producing accurate results. A unique feature of the Seurat Wizards is that they can accept as input processed 10X Genomics data files in place of a matrix of gene counts, which eliminates the need for this additional pre-processing step. SeuratV3Wizard integrates several additional features like the UCSC Cell Browser (https://github. com/maximilianh/cellBrowser), enabling users to interactively visualize clusters and gene markers, and the newly published sctransform method (Hafemeister and Satija 2019), which gives users the ability to run the analysis using two slightly different workflows and compare the results. These differences in features and design give the Seurat Wizards more versatility and improve usability in comparison with other publicly available implementations of Seurat.

1.3 Deseq2Shiny

The Deseq2Shiny app is a Shiny wrapper around DESeq2, a popular R package for performing differential mRNA expression analysis of RNA-seq data. This web-based application implements the standard default workflow outlined in_the DESeq2 Bioconductor tutorial (https://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2. html). This includes normalization, data transformation (e.g., rlog and _vst for clustering), and estimation for dispersion and log fold change. This app follows the same implementation as other apps on NASQAR, whereby users can fine tune the analysis parameters interactively.

1.4 ClusterProfilerShiny

The ClusterProfilerShiny apps wrap the popular clusterProfiler (Yu *et al.* 2012) package, which implements methods to analyze and visualize functional profiles of genomic coordinates, genes, and gene clusters. Users can upload their own data from DESeq2 or import data from the upstream Deseq2Shiny app. These apps allow for quick and easy over-representation analysis (ORA) and gene set enrichment analysis (GSEA) of GO terms and KEGG pathways. Visuals produced include dot plots, word clouds, category net plots, enrichment map plots, GO induced graphs, GSEA plots, and enriched KEGG pathway plots using the Pathview package (Luo and Brouwer 2013).

1.5 Other open-source apps

- START: a web-based RNA-seq analysis and visualization resource. We have modified this
 application slightly from the open-source version to add options to some plots. We have also
 integrated it with GeneCountMerger so that once merging gene counts is complete, users can
 launch the START app and have their merged matrix data loaded automatically. _
- DEApp (Li and Andrade 2017): an interactive web application for differential expression analysis. _

 Shaman (Quereda *et al.* 2016): a Shiny application that enables the identification of differentially abundant genera within metagenomic datasets. It wraps around the Generalized Linear Model implemented in DESeq2. It includes multiple visualizations, and is compatible with common metagenomic file formats. _

2) Launch NASQAR using Docker (Recommended):

The recommended way to get NASQAR running is using Docker. The reason is that applications hosted within NASQAR have many package dependencies (R and OS) that might be tedious and very time consuming for the average user especially when trying to support different OS's (Windows/Linux/OSX). **Prerequisite**: Make sure Docker (version >= 17.03.0-ce, <u>https://docs.docker.com/install/</u>) is installed.

Run NASQAR docker image as follows:

- a) docker run -p 80:80 aymanm/nasqarall:nasqar (runs on port 80)
 If you are running this in your personal laptop/PC, access NASQAR using a modern web browser at the following URL <u>http://localhost/</u>
- b) docker run -p 8083:80 aymanm/nasqarall:nasqar (runs on port 8083)
 If you are running this in your personal laptop/PC, access NASQAR using a modern web browser at the following URL <u>http://localhost:8083/</u>
- c) If you are hosting this as a service at your organization, make sure the specified port is not blocked with a firewall so users can access the service. Execute the same commands as a) and b). Users can access NASQAR using a modern web browser at the following URL :port/">http://server_ip>:port/

Note: All apps in NASQAR can be launched individually. Visit each app's GitHub page for relevant instructions. For 3rd party apps hosted on NASQAR, please refer to their Github repositories.

App GitHub pages:

- SeuratV3Wizard (scRNA): https://github.com/nasqar/seuratv3wizard
- _ SeuratWizard (scRNA): https://github.com/nasqar/SeuratWizard
- deseq2shiny (Bulk RNA): <u>https://github.com/nasqar/deseq2shiny</u>
- _ GeneCountMerger (Pre-processing): <u>https://github.com/nasqar/GeneCountMerger</u>
- _ ClusterProfShinyGSEA (Enrichment): <u>https://github.com/nasqar/ClusterProfShinyGSEA</u>
- _ ClusterProfShinyORA (Enrichment): <u>https://github.com/nasqar/ClusterProfShinyORA</u>
- _ NASQAR (main page): <u>https://github.com/nasqar/NASQAR</u>

3) Example Use Case 1 (DGE and GSEA):

In this example we will show, using only your web browser, how you can start with individual sample gene count files (eg output of htseq counts) and carry out Differential Gene Expression (DGE) and Gene Set Enrichment analysis using DESeq2 and clusterProfiler R packages respectively.

The datasets provided in this example use case have been download from the ENSEMBL expression ATLAS (<u>https://www.ebi.ac.uk/gxa/experiments/E-MTAB-970/Results</u>). They belong to the ENSEMBL expression ATLAS experiment title "*Transcription profiling by high throughput sequencing of Sox17.Epi and Endo cells from mouse embryos*" ([dataset] 2016). The data comprises of 6 mouse RNA-seq samples, across two conditions. They were selected as an example dataset only, no other criteria were used in their selection.

Step 1: Merge counts (GeneCountMerger):

- a) Download example count files zip from here (https://drive.google.com/file/d/1OB2vojHqscLAHZWGETHdGK0yaZ9r06PT/iew?usp=sharing)
- b) Extract zip file
- c) Launch GeneCountMerger http://nasqar.abudhabi.nyu.edu/GeneCountMerger/
- d) Click browse and select all gene count files:

Gene Count Merger (Pre-processing)	😤 Home	Favorites	Name			Date Modified	~	Size	Kind
		iCloud Drive	EPI_3.txt			Today, 10:09 AM		1.2 MB	Plain Text
		Applications	EPI_2.txt			Today, 10:09 AM		1.1 MB	Plain Text
			ENDO_3.b	t		Today, 10:09 AM		1.1 MB	Plain Text
Upload Files		Desktop	ENDO_2.b	t		Today, 10:09 AM		1.1 MB	Plain Text
		Documents	ENDO_1.b	t		Today, 10:09 AM		1.1 MB	Plain Text
 Select multiple files containing counts to upl 	load (eg. outpu	projects	EPI_1.txt			Today, 10-06 AM		1.1 MB	Plain Text
FBgr000003 0 FBgr000006 1727 FBgr000001 18 FBgr0000015 20		Downloads							
FBgr0000017 15408 FBgr0000018 50 FBgr0000022 0		Deleted Users							
F8gn0000024 10081 F8gn0000028 1642		Devices							
Pegn0000032 196 PBg+0000036 6325 FBe+000007 2236		Remote Disc							
Note: File names will be used as sample (colur	nn) names in c	VNC-View ≜							
			_						
 Merge individual sample counts 		E pgAdmin 4 =							
 Merge 2 or more matrices 		Shared							
0		li							
		Tage							
Browse No file selected		Pod							
		Red							
		Orange							
		Yellow							
		Green							
Options		Blue							
		Options						Canc	el Open
								_	
			2)	Sample Input Files:					
				Select multiple files to upload. E.g.	. Input files:				
				File 4 -4 9: 0TC 4 ht	F% 0 -40. 070 0				
				File 1 of 8: C16_1.txt	File 2 of 8: CT6_2.	DXT	etc		
				F8gn0000003 0 F8gn0000008 1722	FBgn0000003 0 FBgn0000008 1727				
				F8gr0000014 18 F8gr0000015 20 F8gr0000017 15408	FBgr0000014 18 FBgr0000015 20 FBgr0000017 15408				
				F8gn0000018 50 F8gn0000022 0	Fbgn0000018 50 Fbgn0000022 0				
				Pagnox0024 10081 Pagn0x0028 1642 FBan000028 166	F8gn0000024 10081 F8gr0000028 1642 F8gr0000028 1662				
				F8g/0000036 6125 F8g/0000037 2236	FBgrd000036 6125 FBgrd000037 2236				

3) Sample Output File:

Output depending on options selected:

e) Once loaded, click the red Merge button. Now all counts files have been consolidated into one table. You can now download and save it as a .csv file

Gene Count Merger (Pre-processing)	me Terms of Use					
Upload Files		User Guide Output				
Options		Merged counts				
 Add +1 to counts (Pseudocounts) Retrieve gene names from ensembl ids Merge Files 		Edit Column Names				
Transcriptome Analysis (Optional):	cation for your data	Show 10 + entries gene.ids	EPI_3	♦ EPI_2	♦ ENDO_3	≑ EN
Your merged counts data will be automatically loa	ded	ENSMUSG0000000001	3526	1439	2578	2684
		ENSMUSG0000000003	0	0	0	0
Select Analysis Type:		ENSMUSG000000028	550	959	531	483
		ENSMUSG0000000031	122670	141366	46628	3930
		ENSMUSG0000000037	58	56	63	52
		ENSMUSG0000000049	0	0	0	0
Single-Cell RNA	Bulk RNA	ENSMUSG0000000056	1006	2090	395	229
Seurat Wizard	DESeq2	ENSMUSG0000000058	31	170	149	157
		ENSMUSG0000000078	714	678	1947	1601
	START	ENSMUSG0000000085	1035	199	407	252
		gene.ids	EPI_3	EPI_2	ENDO_3	END
		Showing 1 to 10 of 53,465 e	entries			

Step 2: Differential Gene Expression analysis (Deseq2Shiny):

a) Carrying on from the previous step, under "Select Analysis Type" select "DESeq2"

Gene Count Merger (Pre-processing) A Home	Terms of Use					
Upload Files		User Guide Output				
Options		Merged counts				
Add +1 to counts (Pseudocounts) Retrieve gene names from ensembl ids		Edit Column Names				
Merge Files		Download Merged File				
Transvinterna Analysia (Ontional)		Show 10 \$ entries				
Start your analysis by launching the appropriate application	on for your data	gene.ids 🔶	EPI_3	♦ EPI_2	♦ ENDO_3	≑ EN
Your merged counts data will be automatically loaded		ENSMUSG0000000001	3526	1439	2578	2684
		ENSMUSG0000000003	0	0	0	0
Select Analysis Type:		ENSMUSG000000028	550	959	531	483
<u> </u>		ENSMUSG0000000031	122670	141366	46628	3930
		ENSMUSG0000000037	58	56	63	52
		ENSMUSG0000000049	0	0	0	0
Single-Cell RNA	Bulk RNA	ENSMUSG0000000056	1006	2090	395	229
Seurat Wizard	DESeq2	ENSMUSG0000000058	31	170	149	157
		ENSMUSG0000000078	714	678	1947	1601
	START	ENSMUSG0000000085	1035	199	407	252
		gene.ids	EPI_3	EPI_2	ENDO_3	END
		Showing 1 to 10 of 53,465	entries			

b) The Deseq2Shiny app will be launched in a new tab, with all counts data already loaded onto it. You can set the minimum number of counts to 1000 for example (this is mainly for speed up, you can continue with out it) and click "Filter". Then click "Next: Conditions"

DESeq2 Shiny						
 0. User Guide 1. Input Data 	Upload Gene Counts +	Gene Counts Table				
	Config & Prefilter	Show 10 A entries				
	□ No Replicates	Show To A burnes	EPI_3 🕸	EPI_2 🕴	ENDO_3 🕸	EN
	* Column names must indicate replicates by underscores (eg. sampleX_1,sampleX_2, etc)	ENSMUSG000000001	3526	1439	2578	
		ENSMUSG000000028	550	959	531	
	(Optional) Minimum number of counts to include for each gene (Default 0, to include all)	ENSMUSG000000031	122670	141366	46628	
	1000	ENSMUSG0000000056	1006	2090	395	
	Filter	ENSMUSG000000078	714	678	1947	
	This step is not necessary, but can speed up the processing	ENSMUSG000000085	1035	199	407	
	time	ENSMUSG000000088	559	304	837	
		ENSMUSG0000000131	1697	1407	1766	
	Next: Conditions	ENSMUSG000000134	301	267	388	
		ENSMUSG0000000142	1011	485	111	
		Showing 1 to 10 of 7,552 entries			Previous	1

c) You can verify the sample/conditions table on the left, then click "Run DESeq2". The replicate/condition IDs are inferred from the naming of the raw counts files. For example, ENDO_1 will be automatically determined to mean that the sample belongs to the condition

"ENDO", and that it is the first replicate. In case a user supplies filenames that are named differently, this page will allow users to tag their replicates to the appropriate conditions.

d) Once DESeq2 has completed, you will be able to see rlog/vst transformation matrices and PCA and distance heatmap plots.

e) Next, go to "**DE Results**" to be able to run comparisons between different sample conditions. Select two different conditions, for example "EPI" and "ENDO" and then click "**Get Results**"

DESeq2 Shiny	=
i 0. User Guide	Differential Expression Comparison
🏂 1. Input Data	
🗱 2. Edit Conditions & Run	Condition 1 Condition 2 Get Results
년 3. Run DESeq 2 🛛 🕗	
迪 DE Results	
ய Gene Boxplot	
ய Heatmap	

f) Scroll down and you can see the DE comparison results. Click "**Download .csv**". This will save a CSV file locally called "EPI_vs_ENDO.csv".

DESeq2 Shiny	=						
● 0. User Guide ▲ 1. Input Data # 2. Edit Conditions & Run ﷺ 3. Run DESeq2	Differential Expression C Condition 1 EPI	omparison vs	Condition 2 ENDO	•		Get Results	
네 Gene Boxplot 네 Heatmap	MA Plot Settings			MA Plot			
	Adjusted p-value treshol Vaxis range abs value 8 Show 5 ¢ entries	d		s s s s s s s s s s s s s s s s s s s	12 1s.03 m	EP1_vs_ENDO	10000000 Z20
		baseMean ≑	log2FoldChange 🔷	lfcSE ≑	stat ≑	pvalue 🖗	padj ≑
	ENSMUSG000000001	2581.00387520778	-0.600010672809525	0.312118852206317	-1.92237882642509	0.0545581078433861	0.19016304972141
	ENSMUSG0000000031	88199.6173627417	1.01727552759025	0.319192101254636	3.18703227176264	0.0014374073567019	0.0129737947109751

g) There are other visualization plots like gene box plots and clustered heatmap

Box Plots:

Clustered Heatmap:

Step 3: Gene Set Enrichment Analysis (GSEA):

a) Launch ClusterProfShinyGSEA <u>http://nasqar.abudhabi.nyu.edu/ClusterProfShinyGSEA/</u>

ClusterProfShinyGSEA	=								
3 User Guide	User Guide								
🏝 Input Data	Introduction								
	This is a web-based interactive application that wraps t genomic coordinates, gene and gene clusters.	he popular clusterProfiler package which implements m	ethods to analyze and visualize functional profiles						
	Users can upload their own differential gene expression (DGE) data from DESeq2 or import data from the upstream Deseq2Shiny app.								
	This app allows for quick and easy Gene Set Enrichme	nt Analysis (GSEA) of GO-Terms and KEGG pathways.							
	It is meant to provide an intuitive interface for research in R.	ers to easily upload and perform GSEA on RNA-seq data	interactively with no prior programming knowled						
	Visuals produced include dot plots, category net plots, package. The application follows this tutorial See Figure 1 below for example output plots (Click on i	enrichment map plots, GO induced graphs, gsea plots, an mage to enlarge).	d enriched KEGG pathway plots using the Pathvie						
	Figure 1: Example plots								
		Category Netplot	Ridge Plot						
	GO induced graph	Pathview plot	PubMed Trends						

b) Go to "Input Data" tab and click "Browse"

ClusterProfShinyGSEA	=	
3 User Guide		
🥼 Input Data	Upload Data –	Data Contents Table:
	Use example file or upload your own data Upload .CSV Example Data CSV counts file Choose File(s) Containing Data Browse No file selected	Note: if there are more than 20 columns, Please select a file

- c) Select the DE results file downloaded in the previous section (Section 2, Step f) from Deseq2Shiny (EPI_vs_ENDO.csv) to upload.
- d) In the tab "Initialize Parameters", make sure to select the correct column name that corresponds to the LogFC column and click "**Next**"

	-									
~	Upload Data		+	Data	Contents Table	2:				
	Initialize Parameters		-	Not Sho	e: if there are mo w 10 💠 entri	20 will show here	Search:			
	Select Genes column:		Select Log2FC column:		x	÷	baseMean 🖨	log2FoldChange ≑	lfcSE 🕴	÷
	X	•	log2FoldChange 👻	1	ENSMUSG00	00000001	2581.00387520778	-0.600010672809525	0.312118852206317	
				2	ENSMUSG00	00000028	589.717664209934	-0.0883117307996088	0.536854240184615	-
		Nex	t	3	ENSMUSG00	00000031	88199.6173627417	1.01727552759025	0.319192101254636	
				4	ENSMUSG00	000000056	795.477625243704	1.67324663007695	0.545191067970216	
	gseGO object Parameters		+	5	ENSMUSG00	00000078	1301.32984150348	-1.91518967548144	0.314279896062619	
				6	ENSMUSG00	00000085	460.01699653675	0.134018162925686	0.597400897223845	
				7	ENSMUSG00	880000008	644.695846291811	-0.518993974265429	0.514609171387553	
				8	ENSMUSG00	000000131	1465.26321917403	-0.0483227098953547	0.304714852161395	
				9	ENSMUSG00	000000134	277.421425670315	0.254155091724301	0.602604570954306	
				10	ENSMUSG00	000000142	423.876752051572	2.10181536714133	0.473297112716227	
				Sho	wing 1 to 10 of 7	,552 entrie	s Previou	s 1 2 3	4 5	75
		 Upload Data Initialize Parameters Select Genes column: X gseGO object Parameters	Upload Data Initialize Parameters Select Genes column: X gseGO object Parameters	Upload Data Initialize Parameters - Select Genes column:	Upload Data Initialize Parameters Select Genes column: Select Log2FC column: X Ug2FoldChange Next gseGO object Parameters 9 10 Short	Upload Data Initialize Parameters Select Genes column: Select Log2PC column: X Image BeseGO object Parameters (*) Columniant of the second s	 Upload Data Initialize Parameters Select Genes column: X log2FoldChange log2FoldChange ENSMUSC0000000031 ENSMUSC0000000085 ENSMUSC0000000088 ENSMUSC0000000088 ENSMUSC00000000131 ENSMUSC0000000131 	Upload Data Initialize Parameters Select Genes column: Select Log2PC column: X Iog2FoldChange Next Iog2FoldChange gseGO object Parameters Imitialize Parameters For Select Contents Iog2FoldChange Imitialize Parameters Imitialize Parameters Imitialize Parameters Imitialize Parameters Imitialize Parameters Imitialize Parameters	Upload Data + Initialize Parameters - K • baseMean • bg2FoldChange • seeGO object Parameters • baseMean • bg2FoldChange • * • baseMean • bg2FoldChange • * Next • baseMean • bg2FoldChange • * Bg2FoldChange • * Next • baseMean • bg2FoldChange • geeGO object Parameters • * bsstulscoppondocol 2581.00387520778 • 0.6803173692748741 0.67232421741 0.1723242466307695 5 1 bsstulscoppondocol 268231912403 0.483227998953474 0.	Upload Data Initialize Parameters Select Genes column: Select Log2FC column: X Image: I

e) Select "Mouse (org.Mm.eg.db)" as the organism and click "Create gseGO Object" to start the analysis

ClusterProfShinyGSEA	=								
User Guide									
🎝 Input Data 🛛 🥹	Upload Data				Data Cont	tents Table:			
					Note: if th	ere are more than 20 o	columns, only the first	20 will show here	
	Initialize Parameters		·		Show 10) 🗘 entries			Search:
	gseGO object Parameters				x	\$	baseMean 🕴	log2FoldChange	lfcSE 🔅
					1 EN	SMUSG0000000001	2581.00387520778	-0.600010672809525	0.312118852206317
	Organism:	Keytype:	Ontology:		2 EN	SMUSG0000000028	589.717664209934	-0.0883117307996088	0.536854240184615
	Mouse (org.Mm.eg.db) 🔻	ENSEMBL	ALL -		3 EN	SMUSG0000000031	88199.6173627417	1.01727552759025	0.319192101254636
	Permutation #s:	minGSSize:	maxGSSize:		4 EN	SMUSG0000000056	795.477625243704	1.67324663007695	0.545191067970216
	1000	10	500		5 EN	SMUSG0000000078	1301.32984150348	-1.91518967548144	0.314279896062619
	P-Value Cutoff:	pAdjustMethod:	keggKeyType:		6 EN	SMUSG0000000085	460.01699653675	0.134018162925686	0.597400897223845
	0.05	none 🔻	ncbi-geneid 👻		7 EN	SMUSG0000000088	644.695846291811	-0.518993974265429	0.514609171387553
					8 EN	SMUSG0000000131	1465.26321917403	-0.0483227098953547	0.304714852161395
		Create gseGO Object			9 EN	SMUSG0000000134	277.421425670315	0.254155091724301	0.602604570954306
				-	10 EN	SMUSG0000000142	423.876752051572	2.10181536714133	0.473297112716227
					Showing	1 to 10 of 7,552 entries	Previou	is 1 2 3	4 5 7

f) Now you can see the gseGO results table. Next go to "gseKegg Results" tab to view gseKEGG results table.

ClusterProfShinyGSEA	=										
User Guide	and Barrilla										
🏦 Input Data 🛛 🥑	gsego Results	Show 10 \$	Show 10 - F entries								
🗱 gseGO Results	Show all columns	-	ONTOLOGY	ID 👳	Description	setSize	enrichmentScore 🖗	NES 🖗	pvalue 🤤	p.adj	
🗱 gseKegg Results	Save Results as CSV File	GO:0022610	BP	GO:0022610	adhesion	480	0.396824511097627	1.63755835165066	0.00107181136120043	0.0010718113612	
네 Go Plots	🕍 gseGo Plots	GO:0003008	BP	GO:0003008	system process	486	0.365788245326475	1.51023602552791	0.00107411385606874	0.0010741138560	
네 KEGG Plots	📥 Search PubMed Trends	GO:0007155	BP	GO:0007155	cell adhesion	478	0.397590628732639	1.63901449069537	0.0010752688172043	0.001075268817	
네 Pathview Plots		GO:0030054	СС	GO:0030054	cell junction	491	0.360044315149601	1.48563748014617	0.0010752688172043	0.001075268817	
া PubMed GO Trends		GO:0060284	BP	GO:0060284	regulation of cell development	491	0.336675292536326	1.38921075041364	0.0010752688172043	0.001075268817	
		GO:0006629	BP	GO:0006629	lipid metabolic process	468	0.3807491380411	1.56746315972686	0.00107758620689655	0.0010775862068	
		GO:0005576	сс	GO:0005576	extracellular region	462	0.480159769800442	1.97894715690213	0.00107874865156419	0.0010787486515	
		GO:0006811	BP	GO:0006811	ion transport	462	0.364631226856369	1.50280380633522	0.00107874865156419	0.0010787486515	
		GO:0045597	BP	GO:0045597	positive regulation of cell differentiation	467	0.340818766673338	1.40309112772801	0.00107874865156419	0.0010787486515	
		GO:0051960	BP	GO:0051960	regulation of nervous system development	461	0.36147718895238	1.48972864598756	0.00107874865156419	0.0010787486515	
		Showing 1 to 1	0 of 1,096 entries						Previous 1 2	3 4 5	

g) Here are the Kegg results with an output that indicates the percentage of genes that were not mapped. Next go to "**GO Plots**" tab

ClusterProfShinyGSEA	≡								
 User Guide 			\						
🍰 Input Data 🛛 📀	gsekegg Results	Show 10 🗘	entries						
gseGO Results	Show all columns		ID 🔶	Description 🗧	setSize 🖗	enrichmentScore 🖗	NES 🖗	pvalue 🖗	p.adj
III gseKegg Results	🛃 Save Results as CSV File	mmu05217	mmu05217	Basal cell carcinoma	31	0.68309777663621	1.95767401179503	0.0015527950310559	0.001552795031
년 Go Plots	🛤 gseKEGG Plots	mmu04979	mmu04979	Cholesterol metabolism	22	0.789899471334981	2.09776722488622	0.00157977883096367	0.0015797788309
년 KEGG Plots 년 Pathview Plots	🛤 Generate Pathview Plot	mmu05142	mmu05142	Chagas disease (American trypanosomiasis)	48	-0.523405778058465	-1.86194139919046	0.0028409090909090909	0.0028409090909
년 PubMed GO Trends	Output warning: 'select()' returned 1:many mapping between keys and columns Warning in bitr(names(original_gene_list) , fromType = inputSkeytype, toType = "ENTREZID": 1.69% of input gene IDs are fail to map	mmu05235	mmu05235	PD-L1 expression and PD-1 checkpoint pathway in cancer	48	-0.527147054601231	-1.87525045685244	0.0028409090909090909	0.0028409090909
		mmu04664	mmu04664	Fc epsilon RI signaling pathway	34	-0.536561190395437	-1.77715263384678	0.00284900284900285	0.0028490028490
		mmu05410	mmu05410	Hypertrophic cardiomyopathy (HCM)	36	-0.546705815577029	-1.82187752874525	0.00285714285714286	0.0028571428571
		mmu04662	mmu04662	B cell receptor signaling pathway	40	-0.581860153083151	-1.99825206980193	0.0028735632183908	0.002873563218
		mmu04380	mmu04380	Osteoclast differentiation	53	-0.472310994305009	-1.71484673072237	0.00302114803625378	0.0030211480362
		mmu00480	mmu00480	Glutathione metabolism	28	0.621775828049997	1.7394231269981	0.0031496062992126	0.003149606299
		mmu04930	mmu04930	Type II diabetes mellitus	22	0.678851836758747	1.80285363566523	0.00315955766192733	0.0031595576619
		Showing 1 to	10 of 57 entrie	S				I	Previous 1

h) There are several plots to explore (Dot plot, Enrichment map)

i) Ridge plot and GSEA plot

Ridge Plot				-
number of categories to show 10	extracellular region cell adhesion biological adhesion lipid metabolic process system process ion transport regulation of nervous system development cell junction positive regulation of cell differentiation regulation of cell development		p.adut 8 12	1072 1074 11078
GSEA Plot				-
1				
	goloid	jical adhesion		
	1001.0.1			

j) Next go to "Pathview Plots" tab and select gene "mmu05217" and click "Generate Pathview"

k) Last step is to check pubmed trends for enriched categories. Select a few GO terms and click "Plot Trends"

4) Example Use Case 2 (scRNA-seq analysis using Seurat):

In this example we will show how you can easily upload your single-cell RNA seq sample data (10X format, using the 10x genomics cellranger pipeline) and perform a guided single-cell data analysis and visualization using the popular Seurat library. You can follow along using the Seurat tutorial (<u>https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html</u>), which the SeuratV3Wizard mirrors closely.

- a) Download and extract data file from <u>https://s3-us-west-</u>
 <u>2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k filtered gene bc matrices.tar.gz</u>
- b) Launch SeuratV3Wizard (<u>http://nasqar.abudhabi.nyu.edu/SeuratV3Wizard/</u>)

SeuratV3 Wizard				
i User Guide	User Guide			
🏝 Input Data	Introduction			
	This is a web-based interactive (wizard style) application to perform a guided single-cell RNA-seq data analysis and clustering based on Seurat.			
	The wizard style makes it intuitive to go back between steps and adjust parameters based on different outputs/plots, giving the user the ability to use feedback in order to guide the analysis iteratively.			
	It is meant to provide an intuitive interface for researchers to easily upload, analyze, visualize, and explore single-cell RNA-seq data interactively with no prior programming knowledge in R.			
	It is based on Seurat, an R package designed for QC, analysis, and exploration of single cell RNA-seq data.			
	The application follows the Seurat - Guided Clustering Tutorial workflow closely. It also provides additional functionalities to further explore and visualize the data.			
	See Figure 1 below for a diagram that outlines all the workflow steps and their expected output			
	Figure 1: Workflow (Click figure to enlarge)			
	Step Datash Outputs I I I I I I I I I I I I I I I I I I I			

c) Go to "Input Data" tab and select "Upload Data (10X)"

SeuratV3 Wizard	=	
 User Guide 		
🍰 Input Data	Upload Data –	Data Contents Table:
	Use example file or upload your own data Upload Data (nonUMI) Upload Data (10X) Example Data (PBMC) 10X Data, 1 .mtx file, and 2 .tsv files Choose File(s) Containing Data Browse No file selected	Note: if there are more than 20 columns, only the first 2 Please select a file Please select a file

d) Browse for the extracted data files downloaded earlier. Select all 3 files to upload

Sourot\/2\//izo	Favorites	Name	Date Modified V	Size	Kind
	iCloud Drive	barcodes.tsv	Oct 24, 2018, 2:54 PM	46 KB	Tab sevalues
		genes.tsv	Oct 24, 2018, 2:54 PM	817 KB	Tab sevalues
User Guide	Applications	matrix.mtx	Oct 24, 2018, 2:54 PM	28.2 MB	Document
	Desktop				
Input Data	Documents				
	projects				
	O Downloads				
	Deleted Users				
	Devices				
	Remote Disc				
	UNC-Viewer ≜				
	🔲 pgAdmin 4 🔺 ≜				
	Shared				
	ADUAED0695				
	🔲 rlx-linux				
	All				
	Tags				
	Red				
	Orango				
	Orange				
	Yellow				
	Green				
	Options			Canc	el Open
				_	

e) Click "Next Step: QC & Filter Cells"

SeuratV3 Wizard	=						
i User Guide							
1 Input Data	Upload Data +	Data Co	Data Contents Table:				
	Initial Parameters – Project Name	Note: if i dense si Show	Note: if there are more than 20 columns, only the first 20 will show here dense size: 709548272 sparse size: 29861992 Show 10 + entries				
	Project1			AAACATTGAGCTAC 🔅	AAACATTGATCAGC 🔅	AAACCGTGC	
	Minimum number of cells per gene	MIR13 10	02- 0	0	0		
	Minimum number of genes per cell	FAM13	8A 0	0	0		
	200	OR4F5	0	0	0		
	Next Step: QC & Filter Cells	RP11- 34P13.	.7 0	0	0		
		RP11- 34P13.	8 0	0	0		
		AL6273	309.1 0	0	0		
		RP11- 34P13.	.14 0	0	0		
		RP11- 34P13.	9 0	0	0		

f) Add a regular expression for mitochondrial genes by adding the regex and label as seen below, and then click "Add Filter". You can use the "Test Regex" tab in order to verify that the regular expression the user supplies works as expected.

SeuratV3 Wizard	=
i User Guide	
北 Input Data 🛛 😔	QC & Filter (Preprocessing)
III QC & Filter Hext	Filter Cells Seurat allows you to easily explore QC metrics and filter cells based on any user-defined criteria. You can visualize gene and molecule counts, plicar outlier number of genes detected as potential multiplets. This is not a guaranteed method to exclude cell doublets, see tutorial for more in can filter cells based on the percentage of mitochondrial genes present. Filter Options: Filter Expression: MT- Imito MT- Imito Cenes that match Regex + Add Filter

g) Scroll down and click "Submit Data"

2) Select Specific Genes: Label (no spaces) Eg. mito.genes Select Genes Start typing gene name			
3) Copy/Paste Specific Genes: Paste List Of Genes			Added Genes
Label (no spaces) Eg. ribosomal	Delimeter (comma)	Add genes	

h) Select the low and high thresholds to filter out cells. Click "Filter Cells (within thresholds)". This is an interactive filter that will display the effects of applying different filtering thresholds on the data.

 i) There are now two options to proceed within the analysis. We will choose the default one so we can mirror the tutorial. The second option is the SCTransform method (<u>https://rawgit.com/ChristophH/sctransform/master/inst/doc/seurat.html</u>)

Normalize, Select Var. Features, Scale Data

 Normalize / Detect Var Features / Scale Da 	ta (Default)
SCTransform: using regularized negative b	inomial regr

j) Proceed by clicking "Normalize / Find Var. Feaatures / Scala Data"

ExpMean • X Low Cut-off value • 0.0125 • Y Cut-off value • 0.5 • Scaling the data and removing unwanted sources of variation • Your single cell dataset likely contains 'uninteresting' sources of variation. This could include not or as suggested in Buettner et al, NBT, 2015, regressing these signals out of the analysis can improve descurat constructs linear models to predict gene expression based on user-defined variables. The sc dimensionality reduction and clustering.	LogVMR A High Cut-off value 3 Iy technical noise, but batch effects, or even biological sources of variation (cell cp ownstream dimensionality reduction and clustering. To mitigate the effect of these
X Low Cut-off value : 0.0125	High Cut-off value 3 ly technical noise, but batch effects, or even biological sources of variation (cell c pownstream dimensionality reduction and clustering. To mitigate the effect of thes
0.0125 Y Cut-off value 0.5 Scaling the data and removing unwanted sources of variation our single cell dataset likely contains 'uninteresting' sources of variation. This could include not or as suggested in Buettner et al, NBT, 2015, regressing these signals out of the analysis can improve dieurat constructs linear models to predict gene expression based on user-defined variables. The science immensionality reduction and clustering.	3 ly technical noise, but batch effects, or even biological sources of variation (cell cj ownstream dimensionality reduction and clustering. To mitigate the effect of thes
Y Cut-off value 0.5 icaling the data and removing unwanted sources of variation four single cell dataset likely contains 'uninteresting' sources of variation. This could include not or is suggested in Buettner et al, NBT, 2015, regressing these signals out of the analysis can improve d ieurat constructs linear models to predict gene expression based on user-defined variables. The so limensionality reduction and clustering.	ly technical noise, but batch effects, or even biological sources of variation (cell c ownstream dimensionality reduction and clustering. To mitigate the effect of thes
0.5 Scaling the data and removing unwanted sources of variation four single cell dataset likely contains 'uninteresting' sources of variation. This could include not or as suggested in Buettner et al, NBT, 2015, regressing these signals out of the analysis can improve d Geurat constructs linear models to predict gene expression based on user-defined variables. The so limensionality reduction and clustering.	ly technical noise, but batch effects, or even biological sources of variation (cell cy ownstream dimensionality reduction and clustering. To mitigate the effect of thes
Scaling the data and removing unwanted sources of variation 'our single cell dataset likely contains 'uninteresting' sources of variation. This could include not or is suggested in Buettner et al, NBT, 2015, regressing these signals out of the analysis can improve d ieurat constructs linear models to predict gene expression based on user-defined variables. The so limensionality reduction and clustering.	ly technical noise, but batch effects, or even biological sources of variation (cell cy ownstream dimensionality reduction and clustering. To mitigate the effect of thes
We can regress out cell-cell variation in gene expression driven by batch (if applicable), cell alignme and mitochondrial gene expression. Refer to tutorial to see an example of regressing on the numbe post-mitotic blood cells.	iled z-scored residuals of these models are stored in the scale.data slot, and are u nt rate (as provided by Drop-seq tools for Drop-seq data), the number of detected of detected molecules per cell as well as the percentage mitochondrial gene cont
Court Dill second bit	
ncount_kwa percent.mito	

k) Now you can follow the default settings in the wizard to go through the steps until "Elbow/Jackstraw". Click "Show Elbow Plot" and click "Next Step: Cluster Cells"

I) Next run "Cluster Cells" and go to "Non-linear Reduction" tab and "Run TSNE Reduction"

SeuratV3 Wizard	=					
🚯 User Guide						
🌲 Input Data 🛛 📀	Run Non-linear dimensional reduction (TSNE)					
🇱 QC & Filter 📀						
🔟 VInPlot (Filter Cells) 🛛 😔	Parameters Seurat continues to use tSNE as a powerful tool to visualize and explore these datasets. While we no longer advise clusterir					
🇱 Norm/Detect/Scale 🛛 😔	components, cells within the graph-based clusters determined above should co-localize on the tSNE plot. This is because t with similar local neighborhoods in high-dimensional space together in low-dimensional space. As input to the tSNE, we su					
III PCA Reduction	input to the clustering analysis, although computing the tSNE based on scaled gene expression is also supported using the					
년 Viz PCA Plot 🛛 💷	Dimensions(PC) To Use (1): Dimensions(PC) To Use (2): Perplexity: 1 10 30					
년 PCA Plot 😐	Once running the reduction is complete, you can also view/download cells in each cluster					
🔟 PC Heatmap 🛛 📟						
🇱 Elbow/JackStraw 😔	Run TSNE Reduction					
🗰 Cluster Cells 🛛 😔						
III Non-linear Reduction Meet						

m) Once tSNE step is done, we can now go to the next step "Next Step: Find Cluster Markers" and click "Find Cluster Markers"

SeuratV3 Wizard	=					
User Guide						
🌲 Input Data 🛛 🥝	Run Non-linear dimensional reduction (tSNE)					
🏭 QC & Filter 🥏						
네. VInPlot (Filter Cells) 🛛 😔	Parameters Seurat continues to use tSNE as a powerful tool to visualize and explore these datasets. While we no longer advise clustering directly on tSNE					
🇱 Norm/Detect/Scale 🛛 🥹	components, cells within the graph-based clusters determined above should co-localize on the tSNE with similar local neighborhoods in high-dimensional space together in low-dimensional space. As ir	plot. This is because the tSNE aims to place cells nput to the tSNE, we suggest using the same PCs as				
III PCA Reduction	input to the clustering analysis, although computing the tSNE based on scaled gene expression is als Dimensions(PC) To Use (1): Dimensions(PC) To Use (2):	so supported using the genes.use argument. Perplexity:				
내 Viz PCA Plot 😐	1 10	30				
🔟 PCA Plot 📃	Once running the reduction is complete, you can also view/download cells in each cluster					
🔟 PC Heatmap 🛛 🔟	TSNE Plot Find Cells in Clusters					
🇱 Elbow/JackStraw 😔	TSNE Plot	Color by:				
🇱 Cluster Cells 🛛 🥪	40-	 Clusters Samples 				
🇱 Non-linear Reduction 🛛 🥏		Next Step: Find Cluster Markers				
III Cluster Markers Next	20					
내 Viz Markers	2 S S S S S S S S S S S S S S S S S S S	Lownload Seurat Object				
🛓 Download Seurat Obj 🛛 🔒	²² 0- 5 7					
	-20-					
	-50 -25 0 25					
	tSNE_1					

n) Now you can see the markers table (which is downloadable). There is also an option to explore the clusters and markers visually using UCSC Cellbrowser
 (<u>https://github.com/maximilianh/cellBrowser</u>). Click "Generate Cell browser data". Once done you can launch the cellbrowser by clicking on "Launch Cellbrowser".

Finding differentially expressed genes (cluster biomarkers)

Input Data							
QC & Filter	 Image: Construction 						
VInPlot (Filter Cells)	e	Seurat can help you compared to all othe	find markers that define o er cells. FindAllMarkers au	clusters via differential express tomates this process for all cl	sion. By default, it usters, but you ca	identifes positive n also test groups	e and negative markers of a single cluster (specified in ide s of clusters vs. each other, or against all cells.
Norm/Detect/Scale	0	The min.pct argume differentially express	nt requires a gene to be d sed (on average) by some	etected at a minimum percen amount between the two gro	tage in either of th ups. You can set b	e two groups of o oth of these to 0,	cells, and the thresh.test argument requires a gene to be but with a dramatic increase in time - since this will test ε
PCA Reduction	0	number of genes that identity class to have	at are unlikely to be highly e no more cells than what	discriminatory. As another of ever this is set to. While there	otion to speed up is generally going	these computation to be a loss in po	ons, max.cells.per.ident can be set. This will downsample ower, the speed increases can be significiant and the most
/iz PCA Plot		highly differentially	expressed genes will likely	y still rise to the top.			
PCA Plot		Find all markers	Find markers by cluste	er Find markers by cluster	vs other clusters	Heatmap	
C Heatmap		Find All Markers: UCSC Cell Browser (Optional)					
how/lackStraw		Min % (mi	n.pct) Te	est to use	Logfc Thresh		Use this cell browser to explore data
		0.25		wilcox 👻	0.25		1) Generate the cell browser data
uster Cells	~	# top gene	es to show per cluster (0	to show all)	Show Only P	ositive	2) Launch the browser in a new tab once
on-linear Reduction	ı 🥪	0			Markers		data is generated
luster Markers	S		I	-ind Cluster Markers			Generate Cell Browser data
iz Markers							
ownload Seurat Obj	j 🖪						
		🛓 Save Results as	CSV File				
		Show 10 🗘 ent	ries				Search
			p_va	l ≑ avg_logFC	♦ pct.1 ♦	pct.2	p_val_adj ≑ cluster ≑ gene
		RPS12	4.31139393095762e-1	53 0.53958725719384	5 1	0.992	5.91264563691528e-149 0 RPS12
		RPS6	1.00902742096281e-13	38 0.47220762636303	5 1	0.995	1.38378020510839e-134 0 RPS6
		RPL32	8.12078124239672e-13	0.43458805887190	5 0.998	0.995	1.11368393958229e-125 0 RPL32
		RPS14	8.06844021232411e-12	0.43138798483315	5 1	0.995	1.10650589071813e-115 0 RPS14

o) A tab is opened with UCSC cellbrowser

p) Last step would be to download the Seurat object for reproducibility and further analysis in R.
 Go to the last tab "Download Seurat Obj". Click "Generate Seurat Obj", once done click
 "Download Seurat Obj" when it appears.

You can also download the R script used for generating this analysis but clicking **"Generate Seurat Script"**.

SeuratV3 Wizard	
🚯 User Guide	
🏝 Input Data	
🇱 QC & Filter	Vau can save the object at this point so that it can easily be leaded back in P for further analysis & exploration without having to regul the computationally intensive
네 VInPlot (Filter Cells)	 steps performed above, or easily shared with collaborators.
III Norm/Detect/Scale	It is also recommended that you keep it as a reference.
III PCA Reduction	Generate Seurat Robj
岫 Viz PCA Plot	Generate and Download the R script to reproduce these steps in R/RStudio
迪 PCA Plot	Please note that you need to edit the data file(s)/directory path in the script before you run it in R/RStudio
岫 PC Heatmap	Generate Seurat Script
Elbow/JackStraw	
🗱 Cluster Cells	
🗰 Non-linear Reduction	
🗱 Cluster Markers	
🔟 Viz Markers	
🛓 Download Seurat Obj	

References

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and deployment. *Linux J.*, 2014(239).

Soppelsa, F. and Kaewkasi, C. (2017). Native Docker Clustering with Swarm. Packt Publishing.

R Core Team (2017). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, https://www.R-project.org/.

Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2018). *shiny: Web Application Framework for R*. R package version 1.1.0.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for rna-seq data with deseq2. *Genome Biology*, 15, 550.

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nature Biotechnology*, 36, 411.

Pyl, P. T., Anders, S., and Huber, W. (2014). HTSeq—a Python framework to work with high-throughput sequencing data. *Bioinformatics*, 31(2), 166–169.

Smyth, G. K., Shi, W., and Liao, Y. (2013). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*, 30(7), 923–930.

Sklenar, J., Nelson, J. W., Minnier, J., and Barnes, A. P. (2016). The START App: a web-based RNAseq analysis and visualization resource. *Bioinformatics*, 33(3), 447–449.

Stuart, T. and Satija, R. (2019). Integrative single-cell analysis. *Nature Reviews Genetics*, 20(5), 257–272.

Patel, M. V. (2018). iS-CellR: a user-friendly tool for analyzing and visualizing single-cell RNA sequencing data. *Bioinformatics*, 34(24), 4305–4306.

Hafemeister, C. and Satija, R. (2019). Normalization and variance stabilization of single-cell rna-seq data using regularized negative binomial regression. *bioRxiv*.

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterprofiler: an r package for comparing biological themes among gene clusters. *OMICS: A Journal of Integrative Biology*, 16(5), 284–287.

Luo, W. and Brouwer, C. (2013). Pathview: an R/Bioconductor package for pathway- Li, Y. and

Andrade, J. (2017). Deapp: an interactive web interface for differential expression analysis of next generation sequence data. *Source Code for Biology and Medicine*, 12(1), 2._based data integration and visualization. *Bioinformatics*, 29(14), 1830–1831.

Quereda, J. J., Dussurget, O., Nahori, M.-A., Ghozlane, A., Volant, S., Dillies, M.-A., Regnault, B., Kennedy, S., Mondot, S., Villoing, B., Cossart, P., and Pizarro-Cerda, J. (2016). Bacteriocin from epidemic listeria strains alters the host intestinal microbiota to favor infection. *Proceedings of the National Academy of Sciences*, 113(20), 5706–5711.

Choi, E., Kraus, M. R., Lemaire, L. A., Yoshimoto, M., Vemula, S., Potter, L. A., Manduchi, E., Stoeckert, C. J., Grapin_Botton, A. and Magnuson, M. A. (2012), Dual Lineage_Specific Expression of Sox17 During Mouse Embryogenesis. STEM CELLS, 30: 2297-2308.

[dataset] (2016). Transcription profiling by high throughput sequencing of Sox17.Epi and Endo cells from mouse embryos, atlas-experiments, V1. http://www.ebi.ac.uk/gxa/experiments/E-MTAB-970.