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Abstract
This document contains the missing proofs in the main text of the paper “On
Sackin’s original proposal: The variance of the leaves’ depths as a phylogenetic
balance index.”

SN-1 Further background
In this section we gather several definitions and preliminary results that were omit-
ted in the main text’s Background section because they are only used in this Sup-
plementary Material.
Given k > 2 trees T1, . . . , Tk, with every Ti ∈ T∗ni

, their root join is the tree
T1 ? T2 ? · · · ? Tk ∈ T∗n1+···+nk

obtained by connecting the roots of (disjoint copies
of) T1, . . . , Tk to a new common root r; see Fig. 8. In a similar way, given k > 2

phylogenetic trees T1 ∈ T(X1), . . . , Tk ∈ T(Xk), with X1, . . . , Xk pairwise disjoint
sets of labels, their root join is the phylogenetic tree T1 ? · · · ? Tk ∈ T

(⋃k
j=1Xj

)
obtained by connecting the roots of T1, . . . , Tk to a new common root. Notice that
the shape of the root join of a family of phylogenetic trees is the root join of their
shapes, and that the root join of a pair of bifurcating trees is again bifurcating.

T1 T2 ... Tk

r

Figure 8 The tree T1 ? · · · ? Tk.

A probabilistic model of bifurcating phylogenetic trees Pn is shape invariant when,
for every n > 1 and for every T, T ′ ∈ BTn, if T and T ′ have the same shape, then
Pn(T ) = Pn(T ′). When Pn is shape invariant, it induces well-defined probability
mappings PX : BT(X) → [0, 1], for every set X of cardinality n, through any
shape-preserving bijection BT(X)↔ BTn induced by a bijection X ↔ [n].
A probabilistic model of bifurcating phylogenetic trees Pn is Markovian when

there exists a symmetric mapping q : N × N → R, called the conditional split
distribution of Pn, such that, for every Tk ∈ BT(Xk) and T ′l ∈ BT(Xl), with Xk

and Xl disjoint sets of cardinalities |Xk| = k and |Xl| = l, PXk∪Xl
(Tk ? T

′
l ) =

q(k, l)PXk
(Tk)PXl

(T ′l ).
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The formulas (1) and (2) in the main text clearly imply that both the Yule and the
uniform models are shape invariant. As to their Markovianity, it is easy to deduce
from those formulas that

PY,n(Tk ? T
′
n−k) =

2

(n− 1)
(
n
k

)PY,k(Tk)PY,n−k(T ′n−k) (11)

PU,n(Tk ? T
′
n−k) =

(2k − 3)!! · (2(n− k)− 3)!!

(2n− 3)!!
PU,k(Tk)PU,n−k(T ′n−k)

=
2Ck,n−k(

n
k

) PU,k(Tk)PU,n−k(T ′n−k) (12)

where

Ck,n−k :=
1

2

(
n

k

)
(2k − 3)!!(2(n− k)− 3)!!

(2n− 3)!!
.

Consider the random variables Sn and Φn that take a phylogenetic tree T ∈ BTn
and compute S(T ) and Φ(T ), respectively. Their expected values under the Yule
model (denoted by EY ) and the uniform model (denoted by EU ), as well as their
variance under the Yule model (denoted by σ2

Y ), are known:

EY (Sn) = 2n(Hn − 1) [3, Appendix] (13)

EU (Sn) = n
( (2n− 2)!!

(2n− 3)!!
− 1
)

[5, Thm. 22] (14)

σ2
Y (Sn) = 7n2 − n− 2nHn − 4n2H(2)

n [1, Cor. 1] (15)

EY (Φn) = n(n+ 1)− 2nHn [5, Thm. 17] (16)

EU (Φn) =
1

2

(
n

2

)(
(2n− 2)!!

(2n− 3)!!
− 2

)
[5, Thm. 23] (17)

σ2
Y (Φn) =

n4 − 10n3 + 131n2 − 2n

12
− 6nHn − 4n2H(2)

n [1, Cor. 3] (18)

where Hn =

n∑
i=1

1/i, the n-th harmonic number, and H(2)
n =

n∑
i=1

1/i2.

SN-2 Proof of Proposition 5
Proposition 5 For every T ∈ BT∗n, the following conditions are equivalent:
(a) T is of type Fn.
(b) There exists a d0 ∈ N such that δT (x) ∈ {d0, d0 + 1} for every x ∈ L(T ).
(c) |δT (x)− Ŝ(T )| < 1 for every x ∈ L(T ).
(d) T is depth-equivalent to Bn.

Proof The implications (a)⇒(b)⇔(c) are straightforward:
• By construction, if T is of type Fn with n = 2m + k, then ∆(T ) consists of 2k

leaves of depth m+ 1 and 2m − k leaves of depth m.
• If ∆(T ) consists of l leaves of depth d0 and n− l leaves of depth d0 + 1, then

Ŝ(T ) = d0 +
n− l
n
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and therefore each |δT (x)− Ŝ(T )| is either (n− l)/n or l/n. If 0 < l < n, these
two values are smaller than 1, and if l = 0 or l = n, then all leaves in T have
the same depth and therefore |δT (x)− Ŝ(T )| = 0 for every x ∈ L(T ).
• If |δT (x)− Ŝ(T )| < 1, then, since δT (x) ∈ N, δT (x) ∈ {bŜ(T )c, dŜ(T )e}.

As far as (b)⇒(a) goes, we prove it by induction on n. The base case when n = 1 is
obvious, because the only tree with one leaf is the fully symmetric tree B1. Assume
now that (b)⇒(a) is true for every tree in BT∗n and let T be a bifurcating tree with
n + 1 leaves for which there exists a d0 ∈ N such that δT (x) ∈ {d0, d0 + 1} for
every x ∈ L(T ); to simplify the discussion, we shall assume that δ(T ) = d0 + 1. Let
x0 be a leaf in T of depth d0 + 1 and let T ′ ∈ BT∗n be obtained by replacing the
cherry that contained x0 by a leaf of depth d0. Then, δT ′(x) ∈ {d0, d0 +1} for every
x ∈ L(T ′), too. Thus, by the induction hypothesis, T ′ is of type Fn. Finally, since
T is obtained from a tree of type Fn by replacing a leaf of minimum depth, d0, by
a cherry with leaves of depth one unit larger, T is of type Fn+1.
This completes the proof that conditions (a), (b) and (c) are equivalent.
Let us prove now that if a bifurcating tree T satisfies (d) then it satisfies (b) with

d0 = blog2(n)c, by induction on the depth of the tree. This implication is trivially
true when δ(T ) = 0, because the only tree of depth 0 is B1. Assume now that the
implication is true for every tree of depth at most δ and let T ∈ BT∗n be a bifurcating
tree of depth δ + 1 that is depth-equivalent to Bn. Since (b) is an assertion on the
depths of the leaves of T , and ∆(T ) = ∆(Bn), in order to prove that T satisfies (b)
we can assume without any loss of generality that T = Bn. Let m = blog2(n)c and
k = n− 2m.
Let T1 and T2 be the subtrees rooted at the children of the root of T and n1 and

n2 their respective numbers of leaves, with n1 6 n2 and n = n1 + n2. Since T is
maximally balanced, T1 and T2 are also maximally balanced and n1 = bn/2c and
n2 = dn/2e. Then, since δ(T1), δ(T2) 6 δ = δ(T )−1, by the induction hypothesis we
deduce that if, for every i = 1, 2, we set di = blog2(ni)c, then δTi

(x) ∈ {di, di + 1}
for every x ∈ L(Ti). Now:
• If k < 2m+1 − 1, then d1 = d2 = m− 1.
• If k = 2m+1 − 1, then n1 = 2m − 1, and thus d1 = m − 1, and n2 = 2m,

and thus d2 = m; but then, T2 is fully symmetric, because it is maximally
balanced with 2m leaves, which implies in particular that all its leaves have
depth m.

Then, in both cases, δTi
(x) ∈ {m − 1,m} for every x ∈ L(Ti) and i = 1, 2. Since

δT (x) = δTi
(x) + 1 if x ∈ L(Ti), we conclude that δT (x) ∈ {m,m + 1} for every

x ∈ L(T ), where m = blog2(n)c. This is what we wanted to prove, and hence the
implication (d)⇒(b) is established.
Finally, we prove the implication (a)⇒(d). Let T ∈ BT∗n be of type Fn. Since we

have already proved that (d)⇒(b)⇒(a), we know that Bn is also of type Fn. But
then, by Remark 3 in the main text, T and Bn are depth-equivalent.

SN-3 Proofs of Lemmas 1 and 2
Recall that we denote the numbers of leaves of depths δ(T ) and δ(T )− 1 of a tree
T ∈ BT∗n by p0(T ) and p1(T ), respectively.
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Lemma 1 Let n = 2m + k with m = blog2(n)c and k = n− 2m. For every tree T
of type Tn;l1,...,lj , with j > 0 and 2 6 l1 < · · · < lj 6 δ(T )− 2:
(a) If k +

∑j
i=1(2li − 1) = 0, then p1(T ) = 0 and the tree is fully symmetric.

(b) If 0 < k +
∑j
i=1(2li − 1) 6 2m, then p1(T ) = 2m − k −

∑j
i=1(2li − 1) and

δ(T ) = m+ 1.
(c) If k + 1

2

∑j
i=1(2li − 2) > 2m, then p1(T ) = 3 · 2m − k −

∑j
i=1(2li − 1) and

δ(T ) = m+ 2.
(d) If k+ 1

2

∑j
i=1(2li − 2) 6 2m < k+

∑j
i=1(2li − 1), then there does not exist any

tree T of type Tn;l1,...,lj .

Proof Let n = 2m + k with 0 6 k < 2m, let T ∈ BT∗n be a tree of type Tn;l1,...,lj ,
with 2 6 l1 < · · · < lj 6 δ(T )− 2, and set δ = δ(T ) and p1 = p1(T ).
If j = 0, T has only leaves of depths δ and δ − 1 and then it is of type Fn. In

particular, in this case, if k = 0, T is fully symmetric of depth m, and hence p1 = 0,
while if k > 0, then p1 = 2m−k and δ = m+ 1. This proves (a) as well as (b) when
j = 0. So, we shall assume henceforth that j > 1.
To begin with, notice that, in order to complete T to a fully symmetric tree with

2δ leaves, we must append a cherry to each leaf of depth δ − 1, which adds p1 new
leaves, and we must append a fully symmetric tree of depth li to each leaf of depth
δ − li, thus adding for each such leaf 2li − 1 new leaves. This implies that

2δ = n+ p1 +

j∑
i=1

(2li − 1). (19)

Since we are assuming that j > 0, this implies that n < 2δ and hence m 6 δ − 1.
On the other hand, since p1 < n < 2m+1, we have that

2δ = n+ p1 +

j∑
i=1

(2li − 1) < 2n+

δ−2∑
i=2

(2i − 1) < 2m+2 + 2δ−1,

which implies that 2δ−1 < 2m+2 and therefore δ − 1 6 m + 1. So, in summary,
m+ 1 6 δ 6 m+ 2.
Now, on the one hand, if δ = m+ 1, (19) implies that

p1 = 2m − k −
j∑
i=1

(2li − 1).

In particular, in this case, k +
∑j
i=1(2li − 1) 6 2m because p1 > 0.

On the other hand, if δ = m+ 2, (19) implies that

p1 = 3 · 2m − k −
j∑
i=1

(2li − 1).

And in this case, since T contains at least 2 leaves of depth δ and j leaves of depths
different from δ or δ − 1, it must happen that p1 6 n− j − 2, that is

3 · 2m − k −
j∑
i=1

(2li − 1) 6 2m + k − j − 2,
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which is equivalent to k + 1
2

∑j
i=1(2li − 2) > 2m.

Since δ = m+ 1 or δ = m+ 2, this completes the proof of the statement.

Lemma 2 If T is a tree of type Tn;l1,...,lj , then

V (T ) =
1

n2

(
n
(
p1(T ) +

j∑
i=1

l2i

)
−
(
p1(T ) +

j∑
i=1

li

)2
)
.

Proof Set δ = δ(T ), p0 = p0(T ), and p1 = p1(T ). Since n = p0 + p1 + j,

Ŝ(T ) =
p0δ + p1(δ − 1) +

∑j
i=1(δ − li)

n
= δ −

p1 +
∑j
i=1 li

n

and hence

n · V (T ) = p0(δ − Ŝ(T ))2 + p1(δ − 1− Ŝ(T ))2 +

j∑
i=1

(δ − li − Ŝ(T ))2

= p0

(p1 +
∑j
i=1 li

n

)2

+ p1

(p1 +
∑j
i=1 li

n
− 1
)2

+

j∑
i=1

(p1 +
∑j
i=1 li

n
− li

)2

= p0

(p1 +
∑j
i=1 li

n

)2

+ p1

(p1 +
∑j
i=1 li

n

)2

− 2p1

(p1 +
∑j
i=1 li

n

)
+ p1

+j
(p1 +

∑j
i=1 li

n

)2

− 2
( j∑
i=1

li

)(p1 +
∑j
i=1 li

n

)
+

j∑
i=1

l2i

= n
(p1 +

∑j
i=1 li

n

)2

− 2
(
p1 +

j∑
i=1

li

)(p1 +
∑j
i=1 li

n

)
+ p1 +

j∑
i=1

l2i

= p1 +

j∑
i=1

l2i −
(p1 +

∑j
i=1 li)

2

n
.

SN-4 Proof of Proposition 6
In this section, and henceforth, pFq denotes the (generalized) hypergeometric func-
tion defined by

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=
∑
k>0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

· z
k

k!
,

where (a)0 = 1 and (a)k := a · (a + 1) · · · (a + k − 1) for k > 1. Recall, moreover,
that for every n > 2 and for every 1 6 k 6 n− 1,

Ck,n−k :=
1

2

(
n

k

)
(2k − 3)!!(2(n− k)− 3)!!

(2n− 3)!!
.

We start by proving two auxiliary lemmas. These lemmas will be used not only
in the proof of Proposition 6, but also later in the proofs of the main results in
Sections SN-10 to SN-12.
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Lemma 3 For every n > 2:

(a)
n−1∑
k=1

Ck,n−k = 1

(b) For every m > 1,

n−1∑
k=1

Ck,n−k

(
k

m

)
=

1

2

(
n

m

)(
1− m− 1

n− 1
· (2m− 3)!!

(2m− 2)!!
· (2n− 2)!!

(2n− 3)!!

)
.

Proof We consider first the case when 1 6 m 6 n− 1. In this case

n−1∑
k=1

Ck,n−k

(
k

m

)
=

n−1∑
k=m

Ck,n−k

(
k

m

)
=

n−1∑
k=m

n!(2k − 3)!!(2n− 2k − 3)!!k!

2 · k!(n− k)!(2n− 3)!!m!(k −m)!

=
n!

2 ·m!(2n− 3)!!

n−1∑
k=m

(2k − 2)!(2n− 2k − 2)!

2k−1(k − 1)!2n−k−1(n− k − 1)!(n− k)!(k −m)!

=
n!

2n−1 ·m!(2n− 3)!!

n−1∑
k=m

(2k − 2)!(2n− 2k − 2)!

(k − 1)!(n− k − 1)!(n− k)!(k −m)!

=
n!

2n−1 ·m!(2n− 3)!!

n−m−1∑
k=0

(2k + 2m− 2)!(2n− 2k − 2m− 2)!

(k +m− 1)!(n− k −m− 1)!(n− k −m)!k!

(20)

We shall compute now this last sum using the lookup algorithm given in [6, p. 36].
Take

tj =
(2j + 2m− 2)!(2n− 2j − 2m− 2)!

(j +m− 1)!(n− j −m− 1)!(n− j −m)!j!

Then

t0 =
(2m− 2)!(2n− 2m− 2)!

(m− 1)!(n−m− 1)!(n−m)!
,

tj+1

tj
=

(j +m− 1/2)(j +m− n)

(j +m+ 3/2− n)(j + 1)
.

But now, it is wrong to deduce from the lookup algorithm that

n−m−1∑
k=0

(2k + 2m− 2)!(2n− 2k − 2m− 2)!

(k +m− 1)!(n− k −m− 1)!(n− k −m)!k!

=
(2m− 2)!(2n− 2m− 2)!

(m− 1)!(n−m− 1)!(n−m)!
· 2F1

[
m− 1

2 m− n
m+ 3

2 − n
; 1

]

because (m− n)k = 0 for every k > n−m, but

(m− n)n−m = (m− n)(m− n+ 1) · · · (−1) = (−1)n−m(n−m)! 6= 0,

and therefore

2F1

[
m− 1

2 m− n
m+ 3

2 − n
; 1

]
=

n−m∑
k=0

(
m− 1

2

)
k
(m− n)k(

m+ 3
2 − n

)
k
k!
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while the index k in our original sum stops a n−m−1. Therefore, what the lookup
algorithm actually implies is that

n−m−1∑
k=0

(2k + 2m− 2)!(2n− 2k − 2m− 2)!

(k +m− 1)!(n− k −m− 1)!(n− k −m)!k!

=
(2m− 2)!(2n− 2m− 2)!

(m− 1)!(n−m− 1)!(n−m)!

(
2F1

[
m− 1

2 m− n
m+ 3

2 − n
; 1

]

−
(
m− 1

2

)
n−m(m− n)n−m(

m+ 3
2 − n

)
n−m(n−m)!

)
. (21)

The subtrahend in this expression can be computed using that (m − n)n−m =

(−1)n−m(n−m)! and

(
m− 1

2

)
n−m

=
(
m− 1

2

)(
m+

1

2

)
· · ·
(
n− 3

2

)
=

(2n− 3)!!

2n−m · (2m− 3)!!(
m+

3

2
− n

)
n−m

=
(
m+

3

2
− n

)(
m+

5

2
− n

)
· · ·
(
− 1

2

)
· 1

2

=
(−1)n−m−1(2n− 2m− 3)!!

2n−m

and its value is then(
m− 1

2

)
n−m(m− n)n−m(

m+ 3
2 − n

)
n−m(n−m)!

=
(2n− 3)!!(−1)n−m(n−m)!2n−m

2n−m(2m− 3)!!(−1)n−m−1(2n− 2m− 3)!!(n−m)!

= − (2n− 3)!!

(2m− 3)!!(2n− 2m− 3)!!
(22)

As to the 2F1 hypergeometric function in (21), since m 6 n, we can apply the
identity http://functions.wolfram.com/07.23.03.0003.01 and we obtain

2F1

[
m− 1

2 m− n
m+ 3

2 − n
; 1

]
=

(2− n)n−m(
m+ 3

2 − n
)
n−m

and since

(2− n)n−m = (2− n)(3− n) · · · (1−m) =

{
0 if m = 1

(−1)n−m (n−2)!
(m−2)! if m > 1

= (−1)n−m(m− 1)
(n− 2)!

(m− 1)!

and, as we have seen
(
m+ 3

2 − n
)
n−m = (−1)n−m−12m−n(2n− 2m− 3)!!, we have

2F1

[
m− 1

2 m− n
m+ 3

2 − n
; 1

]
= − 2n−m(m− 1)(n− 2)!

(m− 1)!(2n− 2m− 3)!!
(23)

http://functions.wolfram.com/07.23.03.0003.01
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Then, combining (20), (21), (22), and (23), we obtain

n−1∑
k=1

Ck,n−k

(
k

m

)
=

n!(2m− 2)!(2n− 2m− 2)!

2n−1 ·m!(2n− 3)!!(m− 1)!(n−m− 1)!(n−m)!

·
( (2n− 3)!!

(2m− 3)!!(2n− 2m− 3)!!
− 2n−m(m− 1)(n− 2)!

(m− 1)!(2n− 2m− 3)!!

)
=

1

2

(
n

m

)(
1− m− 1

n− 1
· (2m− 3)!!

(2m− 2)!!
· (2n− 2)!!

(2n− 3)!!

)
.

This proves (b) when 1 6 m 6 n− 1. Now notice that when m = n > 2,

n−1∑
k=1

Ck,n−k

(
k

n

)
= 0 =

1

2

(
n

n

)(
1− n− 1

n− 1
· (2n− 3)!!

(2n− 2)!!
· (2n− 2)!!

(2n− 3)!!

)
,

and when m > n,

n−1∑
k=1

Ck,n−k

(
k

m

)
= 0 =

(
n

m

)
.

Therefore the identity stated in (b) also holds when m > n.

Finally, as far as (a) goes, by the symmetry of Ck,n−k, we have that

n−1∑
k=1

Ck,n−kk =

n−1∑
k=1

Ck,n−k(n− k)

from which we deduce that

n−1∑
k=1

Ck,n−k =
2

n

n−1∑
k=1

Ck,n−kk =
2

n
· n

2
= 1,

where the second equality is simply (b) for m = 1.

Lemma 4 For every n > 2,

(a)
n−1∑
k=1

Ck,n−k ·
(2k − 2)!!

(2k − 3)!!
=

1

2
· (2n− 2)!!

(2n− 3)!!
+

1

4

(
2H2n−2 −Hn−1 − 2

)
.

(b) For every m > 1,

n−1∑
k=1

Ck,n−k

(
k

m

)
(2k − 2)!!

(2k − 3)!!
=

1

2

(
n

m

)( (2n− 2)!!

(2n− 3)!!
− (2m− 2)!!

(2m− 3)!!

)
.
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Proof We consider again first the case when 1 6 m 6 n−1. Let us develop our sum
of interest:

n−1∑
k=1

Ck,n−k

(
k

m

)
(2k − 2)!!

(2k − 3)!!
=

n−1∑
k=m

Ck,n−k

(
k

m

)
(2k − 2)!!

(2k − 3)!!

=

n−1∑
k=m

n!(2k − 3)!!(2n− 2k − 3)!!k!(2k − 2)!!

2 · k!(n− k)!(2n− 3)!!(k −m)!m!(2k − 3)!!

=
n!

2 ·m!(2n− 3)!!

n−1∑
k=m

(2n− 2k − 3)!!(2k − 2)!!

(n− k)!(k −m)!

=
n!

2 ·m!(2n− 3)!!

n−1∑
k=m

(2n− 2k − 2)!2k−1(k − 1)!

2n−k−1(n− k − 1)!(n− k)!(k −m)!

=
n!

2n+1 ·m!(2n− 3)!!

n−1∑
k=m

(2n− 2k − 2)!(k − 1)!22k

(n− k − 1)!(n− k)!(k −m)!

=
n!

2n−2m+1 ·m!(2n− 3)!!

n−m−1∑
k=0

(2n− 2k − 2m− 2)!(k +m− 1)!22k

(n− k −m− 1)!(n− k −m)!k!

(24)

We shall apply again the lookup algorithm to compute this sum. Taking

tj =
(2n− 2j − 2m− 2)!(j +m− 1)!22j

(n− j −m− 1)!(n− j −m)!j!

we have

t0 =
(2n− 2m− 2)!(m− 1)!

(n−m− 1)!(n−m)!
,

tj+1

tj
=

(j +m)(j +m− n)

(j +m− n+ 3/2)(j + 1)

Then, arguing as in the corresponding step in the proof of Lemma 3 we obtain
that, by the lookup algorithm and taking into account that (m− n)k = 0 for every
k > n−m,

n−m−1∑
k=0

(2n− 2k − 2m− 2)!(k +m− 1)!22k

(n− k −m− 1)!(n− k −m)!k!

=
(2n− 2m− 2)!(m− 1)!

(n−m− 1)!(n−m)!

(
2F1

[
m m− n

m+ 3
2 − n

; 1

]

− (m)n−m(m− n)n−m(
m+ 3

2 − n
)
n−m(n−m)!

)
(25)

Since m 6 n, the first summand inside the parenthesis is equal, by identity http:
//functions.wolfram.com/07.23.03.0003.01, to

2F1

[
m m− n

m+ 3
2 − n

; 1

]
=

(
3
2 − n

)
n−m(

3
2 +m− n

)
n−m

http://functions.wolfram.com/07.23.03.0003.01
http://functions.wolfram.com/07.23.03.0003.01


Coronado et al. Page 10 of 53

and since

(
3

2
− n

)
n−m

=

(
3

2
− n

)(
5

2
− n

)
· · ·
(

3

2
−m− 1

)
=

(−1)n−m(2n− 3)!!

2n−m · (2m− 3)!!

and, as we established in the proof of Lemma 3 (page 7),
(
m + 3

2 − n
)
n−m =

(−1)n−m−12m−n(2n− 2m− 3)!!, we have

2F1

[
m m− n

m+ 3
2 − n

; 1

]
= − (2n− 3)!!

(2m− 3)!!(2n− 2m− 3)!!

As for the subtrahend, we have

(m)n−m(m− n)n−m(
m+ 3

2 − n
)
n−m (n−m)!

=
(n− 1)!(−1)n−m(n−m)!2n−m

(m− 1)!(−1)n−m−1(2n− 2m− 3)!!(n−m)!

= − (n− 1)!2n−m

(m− 1)!(2n− 2m− 3)!!

So, by (24) and (25),

n−1∑
k=1

Ck,n−k

(
k

m

)
· (2k − 2)!!

(2k − 3)!!

=
n!(2n− 2m− 2)!(m− 1)!

2n−2m+1 ·m!(2n− 3)!!(n−m− 1)!(n−m)!

·
( (n− 1)!2n−m

(m− 1)!(2n− 2m− 3)!!
− (2n− 3)!!

(2m− 3)!!(2n− 2m− 3)!!

)
=

1

2

(
n

m

)( (2n− 2)!!

(2n− 3)!!
− (2m− 2)!!

(2m− 3)!!

)

This finishes the proof of (b) in the case when 1 6 m 6 n − 1. Now, it is clear

that when m > n

n−1∑
k=1

Ck,n−k

(
k

m

)
· (2k − 2)!!

(2k − 3)!!
= 0 =

(
n

m

)( (2n− 2)!!

(2n− 3)!!
− (2m− 2)!!

(2m− 3)!!

)

and therefore the equality in (b) holds actually for every m > 1.
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It remains to cover the case when m = 0, i.e., (a). We start again by developing
the sum of interest.

n−1∑
k=1

Ck,n−k
(2k − 2)!!

(2k − 3)!!
=

n−1∑
k=1

n!(2k − 3)!!(2n− 2k − 3)!!(2k − 2)!!

2 · k!(n− k)!(2n− 3)!!(2k − 3)!!

=
n!

2 · (2n− 3)!!

n−1∑
k=1

(2n− 2k − 3)!!(2k − 2)!!

k!(n− k)!

=
n!

2 · (2n− 3)!!

n−1∑
k=1

(2n− 2k − 2)!2k−1(k − 1)!

2n−k−1(n− k − 1)!(n− k)!k!

=
n!

2n+1 · (2n− 3)!!

n−1∑
k=1

(2n− 2k − 2)!22k

(n− k − 1)!(n− k)!k

=
n!

2n−1 · (2n− 3)!!

n−2∑
k=0

(2n− 2k − 4)!22k

(n− k − 2)!(n− k − 1)!(k + 1)
(26)

We apply again the lookup algorithm. Taking

tj =
(2n− 2j − 4)!22j

(n− j − 2)!(n− j − 1)!(j + 1)

we have

t0 =
(2n− 4)!

(n− 2)!(n− 1)!
,

tj+1

tj
=

(j + 1)2(j + 1− n)

(j + 2)(j − n+ 5/2)(j + 1)

and therefore, by the lookup algorithm and taking into account that (1 − n)k = 0

for every k > n but (1− n)n−1 = (−1)n−1(n− 1)!, we have that

n−2∑
k=0

(2n− 2k − 4)!22k

(n− k − 2)!(n− k − 1)!(k + 1)

=
(2n− 4)!

(n− 2)!(n− 1)!

(
3F2

[
1 1 1− n
2 5

2 − n
; 1

]

−
(1)2

n−1(1− n)n−1

(2)n−1

(
5
2 − n

)
n−1

(n− 1)!

)
(27)

Now, since (1)n−1 = (n − 1)!, (2)n−1 = n!, (1 − n)n−1 = (−1)n−1(n − 1)!, and
(5/2− n)n−1 = (−1)n−2(2n− 5)!!/2n−1, the subtrahend in this last expression is

(1)2
n−1(1− n)n−1

(2)n−1

(
5
2 − n

)
n−1

(n− 1)!
=

(−1)n−1(n− 1)!32n−1

n!(−1)n−2(2n− 5)!!(n− 1)!
= − (2n− 2)!!

n · (2n− 5)!!
. (28)
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As to the 3F2 hypergeometric series in (27), applying transformation (3.1.2) in [2]
we obtain

3F2

[
1 1 1− n
2 5

2 − n
; 1

]
=

Γ(2)Γ
(

5
2 − n

)
Γ
(

3
2

)
Γ(1)Γ

(
5
2

)
Γ
(

5
2 − n

) 3F2

[
1 3

2 − n
3
2

5
2

5
2 − n

; 1

]

=
2

3
· 3F2

[
3
2 1 3

2 − n
5
2

5
2 − n

; 1

]

and, by identity http://functions.wolfram.com/07.27.03.0017.01,

3F2

[
3
2 1 3

2 − n
5
2

5
2 − n

; 1

]

=

(
3
2 − n

)(
− 1

2

)
n
(n− 1)!Γ

(
5
2

)
Γ(1)

1
2

(
− 1

2

)
n
(1)nΓ(1)Γ

(
3
2

) n−1∑
k=0

(
− 1

2

)
k
(1)k(

1
2

)
k
k!

= −9− 6n

2n

n−1∑
k=0

1

2k − 1
= −9− 6n

2n

(
− 1 +

2n−2∑
j=1

1

j
− 1

2

n−1∑
j=1

1

j

)
= −9− 6n

2n

(
H2n−2 −

1

2
Hn−1 − 1

)
So,

3F2

[
1 1 1− n
2 5

2 − n
; 1

]
= −2

3
· 9− 6n

2n

(
H2n−2 −

1

2
Hn−1 − 1

)
= −3− 2n

2n

(
2H2n−2 −Hn−1 − 2

)
and finally, combining this identity with (26), (27) and (28), we obtain

n−1∑
k=1

Ck,n−k
(2k − 2)!!

(2k − 3)!!

=
n!(2n− 4)!

2n−1 · (2n− 3)!!(n− 2)!(n− 1)!

·
( (2n− 2)!!

n · (2n− 5)!!
− 3− 2n

2n

(
2H2n−2 −Hn−1 − 2

))
=

1

2
· (2n− 2)!!

(2n− 3)!!
+

1

4

(
2H2n−2 −Hn−1 − 2

)
as we claimed.

Now we can proceed with the proof of Proposition 6.

Proposition 6 The solution Xn of the equation

Xn = 2

n−1∑
k=1

Ck,n−kXk +

r∑
l=1

al

(
n

l

)
+

(2n− 2)!!

(2n− 3)!!

s∑
l=1

bl

(
n

l

)

http://functions.wolfram.com/07.27.03.0017.01 
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(where r, s > 1 and a1, . . . , ar, b1, . . . , bs ∈ R) with given initial condition X1 is

Xn =

s+1∑
l=1

âl

(
n

l

)
+

(2n− 2)!!

(2n− 3)!!

r∑
l=1

b̂l

(
n

l

)

with

â1 = X1 − a1

âl =
l · (2l − 2)!!

(2l − 3)!!

(bl
l

+
bl−1

l − 1

)
, l = 2, . . . , s

âs+1 =
(s+ 1) · (2s)!!
s · (2s− 1)!!

· bs

b̂l =
(2l − 3)!!

(2l − 2)!!
· al, l = 1, . . . , r

Proof Consider a sequence of the form

Xn =

s+1∑
l=1

âl

(
n

l

)
+

(2n− 2)!!

(2n− 3)!!

r∑
l=1

b̂l

(
n

l

)

with â1, . . . , âs+1, b̂1, . . . , b̂r ∈ R. Then

Xn − 2

n−1∑
k=1

Ck,n−kXk

=

s+1∑
l=1

âl

(
n

l

)
+

r∑
r=1

b̂l

(
n

l

)
(2n− 2)!!

(2n− 3)!!

− 2

n−1∑
k=1

Ck,n−k

(
s+1∑
l=1

âl

(
k

l

)
+

r∑
l=1

b̂l

(
k

l

)
(2k − 2)!!

(2k − 3)!!

)

=

s+1∑
l=1

âl

((
n

l

)
− 2

n−1∑
k=1

Ck,n−k

(
k

l

))

+

r∑
l=1

b̂l

((
n

l

)
(2n− 2)!!

(2n− 3)!!
− 2

n−1∑
k=1

Ck,n−k

(
k

l

)
(2k − 2)!!

(2k − 3)!!

)

=

s+1∑
l=1

âl ·
l − 1

n− 1
· (2l − 3)!!

(2l − 2)!!

(
n

l

)
(2n− 2)!!

(2n− 3)!!
+

r∑
l=1

b̂l

(
n

l

)
(2l − 2)!!

(2l − 3)!!

by Lemmas 3.(b) and 4.(b). The fact that Xn satisfies the recurrence equation in
the statement is then equivalent to

r∑
l=1

b̂l ·
(2l − 2)!!

(2l − 3)!!
·
(
n

l

)
+

(2n− 2)!!

(2n− 3)!!

s+1∑
l=1

(l − 1) · (2l − 3)!!

(2l − 2)!!
· âl
(
n

l

)
1

n− 1

=

r∑
l=1

al

(
n

l

)
+

(2n− 2)!!

(2n− 3)!!

s∑
l=1

bl

(
n

l

)
.
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This equality will be satisfied if the coefficients â1, . . . , âs+1, b̂1, . . . , b̂r satisfy that

r∑
l=1

b̂l ·
(2l − 2)!!

(2l − 3)!!

(
n

l

)
=

r∑
l=1

al

(
n

l

)
(29)

s+1∑
l=1

(l − 1) · (2l − 3)!!

(2l − 2)!!
· âl
(
n

l

)
1

n− 1
=

s∑
l=1

bl

(
n

l

)
(30)

Now, (29) is clearly satisfied if

b̂l =
(2l − 3)!!

(2l − 2)!!
· al, l = 1, . . . , r.

As to (30), it is easy to check that, if l > 1,

(
n

l

)
1

n− 1
=

1

l

(
n

l − 1

)
− l − 2

l

(
n

l − 1

)
1

n− 1
(31)

which implies, by induction on l, that, for every l > 2,

(
n

l

)
1

n− 1
=

l−1∑
j=1

(−1)j+1 (l − j)
l(l − 1)

·
(

n

l − j

)
. (32)

Indeed, the base case l = 2 is a direct consequence of (31), and, as to the inductive
step, if for a given l > 3 we assume that

(
n

l − 1

)
1

n− 1
=

l−2∑
j=1

(−1)j+1 (l − 1− j)
(l − 1)(l − 2)

·
(

n

l − 1− j

)
,

then

(
n

l

)
1

n− 1
=

1

l

(
n

l − 1

)
− l − 2

l

(
n

l − 1

)
1

n− 1
(by (31))

=
1

l

(
n

l − 1

)
− l − 2

l

l−2∑
j=1

(−1)j+1 (l − 1− j)
(l − 1)(l − 2)

·
(

n

l − 1− j

)

=
l − 1

l(l − 1)

(
n

l − 1

)
−

l−2∑
j=1

(−1)j+1 (l − 1− j)
l(l − 1)

·
(

n

l − 1− j

)

=
l − 1

l(l − 1)

(
n

l − 1

)
+

l−1∑
j=2

(−1)j+1 (l − j)
l(l − 1)

·
(

n

l − j

)

=

l−1∑
j=1

(−1)j+1 (l − j)
l(l − 1)

·
(

n

l − j

)
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Therefore, returning back to (30), using (32) we have that

s+1∑
l=1

(l − 1) · (2l − 3)!!

(2l − 2)!!
· âl
(
n

l

)
1

n− 1
=

s+1∑
l=2

(l − 1) · (2l − 3)!!

(2l − 2)!!
· âl
(
n

l

)
1

n− 1

=

s+1∑
l=2

(
(l − 1) · (2l − 3)!!

(2l − 2)!!
· âl

l−1∑
j=1

(−1)j+1 (l − j)
l(l − 1)

·
(

n

l − j

))

=

s+1∑
l=2

(
(2l − 3)!!

l · (2l − 2)!!
· âl

l−1∑
h=1

(−1)l−h+1h

(
n

h

))

=

s∑
h=1

(
s+1∑
l=h+1

(−1)l−h+1h · (2l − 3)!!

l · (2l − 2)!!
· âl

)(
n

h

)

and thus, (30) is satisfied if

s+1∑
l=h+1

(−1)l−h+1h · (2l − 3)!!

l · (2l − 2)!!
· âl = bh, h = 1, . . . , s.

This system of linear equations in â2, . . . , âs+1 is non singular, and its only solution
satisfies

âs+1 =
(s+ 1) · (2s)!!
s · (2s− 1)!!

· bs

âh =
h · (2h− 2)!!

(h− 1) · (2h− 3)!!
· bh−1

−
s+1∑
l=h+1

(−1)l−h
h · (2h− 2)!!(2l − 3)!!

l · (2l − 2)!!(2h− 3)!!
· âl

=
h · (2h− 2)!!

(2h− 3)!!

( bh−1

h− 1
−

s+1∑
l=h+1

(−1)l−h(2l − 3)!!

l · (2l − 2)!!
· âl
)
, h = 2, . . . , s

Now, let

ãl =
(2l − 3)!!

l · (2l − 2)!!
âl.

Then, the previous formulas can be rewritten as

ãs+1 =
bs
s

ãl =
bl−1

l − 1
+

s+1∑
h=l+1

(−1)h−l−1ãh, l = 2, . . . , s

and the solution of the last recurrence is

ãl =
bl−1

l − 1
+
bl
l
. (33)

Indeed:

ãs =
bs−1

s− 1
+ ãs+1 =

bs−1

s− 1
+
bs
s
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and if (33) holds for every h = l + 1, . . . , s+ 1, then

ãl =
bl−1

l − 1
+

s∑
h=l+1

(−1)h−l−1
( bh−1

h− 1
+
bh
h

)
+ (−1)s−l · bs

s
=

bl−1

l − 1
+
bl
l
.

Then, finally, for every l = 2, . . . , s,

âl =
l · (2l − 2)!!

(2l − 3)!!
ãl =

l · (2l − 2)!!

(2l − 3)!!

( bl−1

l − 1
+
bl
l

)
as we claimed.
Finally, â1 is obtained by imposing the initial condition

X1 =

s+1∑
l=1

âl

(
1

l

)
+

(2− 2)!!

(2− 3)!!

r∑
l=1

b̂l

(
1

l

)
= â1 + b̂1

⇒ â1 = X1 − b̂1 = X1 −
(2− 3)!!

(2− 2)!!
· a1 = X1 − a1.

SN-5 Proof of Theorem 1
We start by proving a series of lemmas describing the behaviour of V when we
remove a deepest leaf from a rooted tree. To simplify the notations, we shall set
henceforth

W (T ) := |L(T )| · V (T ) =
∑

x∈L(T )

(δT (x)− Ŝ(T ))2.

Moreover, given a tree T ∈ Tn, we shall denote by x1, . . . , xn its leaves ordered in
non-decreasing order of depth and we shall set di := δT (xi), for i = 1, . . . , n, so that
the elements of ∆(T ) are

d1 6 d2 6 · · · 6 dn−2 6 dn−1 6 dn = δ(T ).

Since the maximum depth of a tree is reached at least at two sibling leaves, we have
that dn−1 = dn and we shall assume without any loss of generality that xn−1 and
xn are sibling.

Lemma 5 Let T ∈ T∗n be a tree with two leaves of maximum depth forming a
cherry. Let T ′ ∈ T∗n−1 be the tree obtained by removing both leaves in this cherry,
so that the root of the cherry becomes a leaf. Then,

W (T ′) = W (T )− n

n− 1
(δ(T )− Ŝ(T ) + 1)2 + 2.

Proof For simplicity, we shall denote δ(T ) by δ. With the notations on the leaves
xi of T and their depths di introduced above, we shall assume without any loss of
generality that xn−1 and xn are not only sibling, but they form the cherry in the
hypothesis. Let T ′ ∈ T∗n−1 be the tree obtained by removing from T these two leaves,
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so that their common parent becomes a new leaf of depth dn−1−1 = dn−1 = δ−1,
which we shall still denote by xn−1; cf. Fig. 9. Thus,

∆(T ′) = {d1, . . . , dn−2, dn−1 − 1}

and then

Ŝ(T ′) =

∑n−1
i=1 di − 1

n− 1
=
nŜ(T )− δ − 1

n− 1
= Ŝ(T )− δ − Ŝ(T ) + 1

n− 1
. (34)

Finally,

W (T ′) =

n−2∑
j=1

(dj − Ŝ(T ′))2 + (dn−1 − 1− Ŝ(T ′))2

=

n∑
j=1

(dj − Ŝ(T ′))2 − 2(dn−1 − Ŝ(T ′)) + 1− (dn − Ŝ(T ′))2

=

n∑
j=1

(dj − Ŝ(T ′))2 − 2(δ − Ŝ(T ′)) + 1− (δ − Ŝ(T ′))2

(using that dn−1 = dn = δ)

=

n∑
j=1

(dj − Ŝ(T ′))2 − (δ − Ŝ(T ′) + 1)2 + 2

=

n∑
j=1

(
dj − Ŝ(T ) +

δ − Ŝ(T ) + 1

n− 1

)2

−
(
δ − Ŝ(T ) +

δ − Ŝ(T ) + 1

n− 1
+ 1
)2

+ 2

(using (34))

=

n∑
j=1

(dj − Ŝ(T ))2 + 2
(δ − Ŝ(T ) + 1

n− 1

) n∑
j=1

(dj − Ŝ(T ))

+n
(δ − Ŝ(T ) + 1

n− 1

)2

−
(n(δ − Ŝ(T ) + 1)

n− 1

)2

+ 2

= W (T )− n

n− 1
(δ − Ŝ(T ) + 1)2 + 2

(because
∑n
j=1(dj − Ŝ(T )) = 0) as we claimed.

...
xn−1 xn

T

... xn−1

T ′

Figure 9 A tree T with a cherry at the bottom and the tree T ′ obtained by removing this cherry.

Lemma 6 Let T ∈ T∗n be a tree with k leaves of maximum depth forming a k-fan
with k > 3. Let T ′ ∈ T∗n−1 be the tree obtained by removing one leaf from this k-fan.
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Then,

W (T ′) = W (T )− n

n− 1
(δ(T )− Ŝ(T ))2.

Proof We shall denote again δ(T ) by δ and we shall use again the notations on
the leaves xi of T and their depths di introduced at the beginning of this section.
We shall assume without any loss of generality that xn belongs to the k-fan in the
hypothesis, and that this is the leaf we remove to obtain T ′. In this way, since the
remaining leaves have the same depths in T and in T ′,

∆(T ′) = {d1, . . . , dn−2, dn−1}.

Then

Ŝ(T ′) =

∑n
i=1 di − dn
n− 1

=
nŜ(T )− δ
n− 1

= Ŝ(T )− δ − Ŝ(T )

n− 1

and hence, computing W (T ′) in terms of W (T ) as in the proof of the previous
lemma, we obtain

W (T ′) =

n−1∑
j=1

(dj − Ŝ(T ′))2 =

n∑
j=1

(dj − Ŝ(T ′))2 − (dn − Ŝ(T ′))2

=

n∑
j=1

(
dj − Ŝ(T ) +

δ − Ŝ(T )

n− 1

)2

−
(
δ − Ŝ(T ) +

δ − Ŝ(T )

n− 1

)2

=

n∑
j=1

(dj − Ŝ(T ))2 + 2
(δ − Ŝ(T )

n− 1

) n∑
j=1

(dj − Ŝ(T )) + n
(δ − Ŝ(T )

n− 1

)2

−
(n(δ − Ŝ(T ))

n− 1

)2

= W (T )− n

n− 1
(δ − Ŝ(T ))2

as we claimed.

Lemma 7 Let T ∈ T∗n be a tree with two leaves of maximum depth forming a
cherry. Then,

δ(T )− Ŝ(T ) 6
(n− 1)(n− 2)

2n

and the equality holds only when T = Kn.

Proof First of all, since (cf. Example 1 in the main text)

δ(Kn) = n− 1 and Ŝ(Kn) =
(n− 1)(n+ 2)

2n
,

we have that δ(Kn)− Ŝ(Kn) = (n− 1)(n− 2)/(2n), for every n, and therefore the
inequality in the statement is an equality for combs.
Now, we shall prove the statement by induction on n. The cases when n = 1 or

n = 2 are obvious, because then T∗n = {Kn}, and the case when n = 3 is also
obvious, because the only tree in T∗3 with two leaves of maximum depth forming
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a cherry is K3. Let us prove now the inductive step when n > 4. To simplify the
notations, for every tree T we shall set

Ψ(T ) := δ(T )− Ŝ(T ) + 1.

Let T ∈ T∗n, with n > 4, be a tree with two leaves of maximum depth forming
a cherry. We use again the notations on the leaves xi of T and their depths di
introduced at the beginning of this section, and we assume that the cherry at
maximum depth is formed by the leaves xn−1 and xn. Let T ′ ∈ T∗n−1 be the tree
obtained from T by removing this cherry and replacing it by its root, that becomes
a leaf which we shall still denote by xn−1; cf. again Fig. 9. On the one hand, we
have that δ(T ′) = δ(T ) − 1 if T contains only the leaves xn−1, xn at depth δ(T ),
and δ(T ′) = δ(T ) if T contains leaves of depth δ(T ) other than xn−1 and xn. On
the other hand, by the expression (34) for Ŝ(T ′) obtained in the proof of Lemma 5,
we have that

δ(T )− Ŝ(T ′) + 1 = δ(T )− Ŝ(T ) +
δ(T )− Ŝ(T ) + 1

n− 1
+ 1 =

n

n− 1
Ψ(T ).

Combining these two facts we obtain that

Ψ(T ) =
n− 1

n
(δ(T )− Ŝ(T ′) + 1)

6
n− 1

n
(δ(T ′) + 1− Ŝ(T ′) + 1) =

n− 1

n
(Ψ(T ′) + 1)

and the equality holds only when T contains no other leaf of depth δ(T ) than xn−1

and xn.
Now we must distinguish two cases:

(a) If T ′ contains again a cherry at maximum depth, we can apply the induction
hypothesis and we obtain that

Ψ(T ′) = δ(T ′)− Ŝ(T ′) + 1 6
(n− 2)(n− 3)

2(n− 1)
+ 1,

with the equality holding only if T ′ = Kn−1. Then,

δ(T )− Ŝ(T ) = Ψ(T )− 1 6
n− 1

n
(Ψ(T ′) + 1)− 1

6
n− 1

n

( (n− 2)(n− 3)

2(n− 1)
+ 2
)
− 1 =

(n− 1)(n− 2)

2n

and the equality holds only if T ′ = Kn−1 and T is obtained by replacing a leaf
of largest depth by a cherry, that is, when T = Kn.

(b) Assume now that T ′ has no cherry at maximum depth, and in particular that
xn−1 belongs to a k-fan with k > 3. Without any loss of generality, assume that
this fan is xn−k, . . . , xn−1 and let y be their common parent. In this case, let
T ′′ ∈ T∗n−1 be the tree obtained from T ′ by adding a new node z and replacing
the arcs (y, xn−2), (y, xn−1) by new arcs (y, z), (z, xn−2), (z, xn−1); see Fig. 10.
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. . .
xn−k xn−3 xn−2 xn−1

y
T ′

. . . z
xn−k xn−3

xn−2 xn−1

y
T ′′

Figure 10 The trees T ′ and T ′′ in the proof of case (b) of Lemma 7.

The tree T ′′ obtained in this way has the cherry (xn−2, xn−1) at maximum
depth δ(T ′′) = δ(T ′)+1, and, since these two leaves increase their depths in T ′′

in one unit with respect to T ′ and the other leaves in T ′ maintain their depths
in T ′′, we have that Ŝ(T ′′) = Ŝ(T ′) + 2/(n− 1). Thus,

Ψ(T ′′) = δ(T ′′)− Ŝ(T ′′) + 1 = δ(T ′) + 1− Ŝ(T ′)− 2

n− 1
+ 1

= Ψ(T ′) +
n− 3

n− 1
> Ψ(T ′)

(because we are assuming n > 4) and hence

Ψ(T ) 6
n− 1

n
(Ψ(T ′) + 1) <

n− 1

n
(Ψ(T ′′) + 1)

where now T ′′ ∈ T∗n−1 has a cherry at maximum depth and therefore we can
apply to it the induction hypothesis:

δ(T ′′)− Ŝ(T ′′) 6
(n− 2)(n− 3)

2(n− 1)
.

We can now proceed as in the last step in (a):

δ(T )− Ŝ(T ) = Ψ(T )− 1 <
n− 1

n
(Ψ(T ′′) + 1)− 1

6
n− 1

n

( (n− 2)(n− 3)

2(n− 1)
+ 2
)
− 1 =

(n− 1)(n− 2)

2n

Let us emphasize that in this case T can never be a comb, and the inequality
in the statement is strict.

This completes the proof of the statement by induction on n.

We are now in position to prove Theorem 1.

Theorem 1 The maximum value of V on T∗n is always reached exactly at the
combs Kn.

Proof Since, for any fixed n, the maximum values on T∗n of V and W are reached at
the same trees, it will be enough to prove, by induction on n, the following property
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for every T ∈ T∗n:

W (T ) 6W (Kn), and the equality holds if, and only if, T = Kn. (35)

The cases when n = 1 or n = 2 are obvious, because T∗1 = {K1} and T∗2 = {K2}.
So, we assume henceforth that n > 3 and that assertion (35) is true for n− 1.
Let T ∈ T∗n. With the notations on the leaves xi of T and their depths di intro-

duced at the beginning of this section, we must distinguish two cases, depending on
whether the leaf xn has only one sibling, forming a cherry, or more than one sibling.
We start with this last case.

(A) Let us assume that xn belongs to a k-fan, with k > 3; without any loss of
generality we consider that the leaves in this fan are xn−k+1, . . . , xn−1, xn. Let
y be the common parent of this fan. Let T ′ ∈ T∗n be the tree obtained from T

by adding a new node z and replacing the arcs (y, xn−1), (y, xn) by new arcs
(y, z), (z, xn−1), (z, xn). In this way, the leaves x1, . . . , xn−2 in T ′ have the same
depths as in T and the depths of xn−1 and xn in T ′ are their depths in T plus
1, and therefore δ(T ′) = δ(T ) + 1 and Ŝ(T ′) = Ŝ(T ) + 2/n.

. . .
xn−k xn−3 xn−2 xn−1

y
T

. . . z
xn−k xn−3

xn−2 xn−1

y
T ′

. . .
xn−k xn−3 xn−2

y
T ′′

Figure 11 The trees T , T ′, and T ′′ in the proof of case (a) of Theorem 1.

Now, let T ′′ ∈ T∗n−1 be the tree obtained from T by removing from it the leaf
xn. It is obvious that T ′′ can also be understood as the tree obtained from T ′

by removing the cherry (xn−1, xn) and replacing it by a leaf xn−1. Therefore,
by Lemmas 5 and 6

W (T ′′) = W (T ′)− n

n− 1
(δ(T ′)− Ŝ(T ′) + 1)2 + 2

W (T ′′) = W (T )− n

n− 1
(δ(T )− Ŝ(T ))2

from where we obtain that

W (T ) = W (T ′)− n

n− 1
(δ(T ′)− Ŝ(T ′) + 1)2 + 2 +

n

n− 1
(δ(T )− Ŝ(T ))2

= W (T ′) + 2− n

n− 1

(
δ(T )− Ŝ(T )− 2

n
+ 2
)2

+
n

n− 1
(δ(T )− Ŝ(T ))2

= W (T ′) + 2− 4
(
δ(T )− Ŝ(T ) +

n− 1

n

)
< W (T ′)

where this last inequality holds because δ(T ) > Ŝ(T ) and, by assumption,
n > 3.
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Therefore, if xn belongs to a k-fan, for some k > 3, there exists a tree T ′ ∈ T∗n
with larger W value that contains a leaf of maximum depth belonging to a
cherry. This is the case we consider next.

(B) Assume now that xn−1 and xn form a cherry. Let T ′ ∈ T∗n−1 be the tree
obtained by removing from T this cherry, leaving its root as a leaf. Then:

W (T ) = W (T ′) +
n

n− 1
(δ(T )− Ŝ(T ) + 1)2 − 2

(by Lemma 5)

6W (T ′) +
n

n− 1

( (n− 1)(n− 2)

2n
+ 1
)2

− 2

(by Lemma 7)

6W (Kn−1) +
n

n− 1

( (n− 1)(n− 2)

2n
+ 1
)2

− 2

(by the induction hypothesis)

= W (Kn−1) +
n

n− 1

(
δ(Kn)− Ŝ(Kn) + 1

)2

− 2 = W (Kn)

(again by Lemma 5).

This proves that, when T has a cherry at the bottom, W (T ) 6W (Kn). More-
over, the equality holds only when both intermediate inequalities are equalities,
that is (by Lemma 7 and the induction hypothesis) exactly when T = Kn.

In summary, we have proved that if T ∈ T∗n has some cherry at maximum depth,
then W (T ) 6 W (Kn), with the equality holding only when T = Kn, and that
if T ∈ T∗n does not have any cherry at maximum depth, then there exists a tree
T0 ∈ T∗n with a cherry at maximum depth such that W (T ) < W (T0) 6 W (Kn).
This completes the proof by induction of property (35).

SN-6 Proof of Theorem 2
The goal of this section is to prove the necessary condition on the bifurcating trees
with minimum V value stated in the following result.

Theorem 2 If T ∈ BT∗n has the minimum value of V , then it is of some type
Tn;l1,...,lj with 5 6 l1 < · · · < lj 6 δ(T )− 2.

Now, since each one of BT∗1, BT∗2, and BT∗3 contains only one tree, it is enough to
consider the case n > 4. Moreover, the tree in BT∗4 with minimum V value is clearly
B4, because when n is a power of 2, Bn is fully symmetric and hence V (Bn) = 0 is
minimum in BT∗n. Therefore, we can restrict ourselves to the case n > 5.

Lemma 8 Let n > 5. If T ∈ BT∗n has a leaf of depth 1, then V (T ) is not minimum
in BT∗n.

Proof Let T ∈ BT∗n be a tree with a leaf of depth 1, so that it has the form
T = B1 ?T0 with B1 a tree with a single leaf and T0 ∈ BT∗n−1. Let T ′ ∈ BT∗n be the
tree obtained from T0 by replacing a leaf of smallest depth in it by a cherry (of depth
one unit larger). So, if the depths of the leaves in T are 1 < d2 6 d3 6 · · · 6 dn,
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the depths of the leaves in T0 are d2 − 1 6 d3 − 1 6 · · · 6 dn − 1, and the depths of
the leaves in T ′ are then d2, d2, d3 − 1, . . . , dn − 1. Then,

Ŝ(T ′) =

∑n
i=2 di + d2 − (n− 2)

n
=

(
1 +

∑n
i=2 di

)
+ d2 − n+ 1

n

=
nŜ(T ) + d2 − n+ 1

n
= Ŝ(T )− 1 +

d2 + 1

n

and

W (T ′) = 2(d2 − Ŝ(T ′))2 +

n∑
j=3

(dj − 1− Ŝ(T ′))2

= 2
(
d2 − Ŝ(T ) + 1− d2 + 1

n

)2

+

n∑
j=3

(
dj − Ŝ(T )− d2 + 1

n

)2

= 2(d2 − Ŝ(T ))2 + 4(d2 − Ŝ(T ))
(

1− d2 + 1

n

)
+ 2
(

1− d2 + 1

n

)2

+

n∑
j=3

(dj − Ŝ(T ))2 − 2
(d2 + 1

n

) n∑
j=3

(dj − Ŝ(T )) + (n− 2)
(d2 + 1

n

)2

= W (T ) + (d2 − Ŝ(T ))2 − (1− Ŝ(T ))2 + 4(d2 − Ŝ(T ))

−2(d2 − Ŝ(T ))
(d2 + 1

n

)
− 2
(d2 + 1

n

) n∑
j=2

(dj − Ŝ(T ))

+2
(

1− d2 + 1

n

)2

+ (n− 2)
(d2 + 1

n

)2

(because W (T ) = (1− Ŝ(T ))2 +
∑n
j=2(dj − Ŝ(T ))2)

= W (T ) + (d2 − Ŝ(T ) + 2)2 − 4− (1− Ŝ(T ))2

−2(d2 − Ŝ(T ))
(d2 + 1

n

)
+ 2
(d2 + 1

n

)
(1− Ŝ(T ))

+2− 4
(d2 + 1

n

)
+ n

(d2 + 1

n

)2

(using that 1 +
∑n
i=2 di = nŜ(T ))

= W (T ) + (d2 − Ŝ(T ) + 2)2 − (1− Ŝ(T ))2 − 2− (d2 + 1)2

n

= W (T ) + (d2 + 1)
(
d2 + 3− 2Ŝ(T )− d2 + 1

n

)
− 2

Then, if

(d2 + 1)
(
d2 + 3− 2Ŝ(T )− d2 + 1

n

)
− 2 < 0 (36)

we have that W (T ′) < W (T ) and therefore V (T ) cannot be minimum in BT∗n. Let
us check now that this inequality always holds if n > 5. To do that, we rephrase it
in terms of T0.

To begin with,

Ŝ(T ) =
1 +

∑n
i=2 di
n

=
n+

∑n
i=2(di − 1)

n
= 1 +

(n− 1)Ŝ(T0)

n
.
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Then

(d2 + 1)
(
d2 + 3− 2Ŝ(T )− d2 + 1

n

)
− 2

= (d2 + 1)
(
d2 + 1− 2(n− 1)Ŝ(T0)

n
− d2 + 1

n

)
− 2

=
n− 1

n
(d2 + 1)(d2 + 1− 2Ŝ(T0))− 2

Now, since Ŝ(T0) > d2 − 1, because d2 − 1 is the smallest depth of a leaf in T0, if

Ŝ(T0) > 2 then we guarantee that inequality (36) holds. But, since T0 has at least

n− 1 > 4 leaves, all its leaves but at most two of them have depth at least 3, and if

it contains two leaves of depth smaller than 3, they have depths 1 and 2 or depth

2 both of them. Therefore,

Ŝ(T0) >
1 + 2 + 3(n− 3)

n− 1
=

3n− 6

n− 1
> 2 if n > 5.

Therefore, inequality (36) holds and hence V (T ) is not minimum in BT∗n, as we

claimed.

Lemma 9 Let T ∈ BT∗n be a bifurcating tree containing a leaf of depth d < δ(T ).

Let T ′d ∈ BT∗n be the tree obtained by removing a cherry of depth δ(T ) and replacing

a leaf of depth d by a cherry of depth d+ 1. Then,

W (T ′d) = W (T )−
(δ(T )− d− 1

n

)(
n(δ(T ) + d+ 3− 2Ŝ(T )) + δ(T )− d− 1

)

Proof Let T ∈ BT∗n. With the notations on the leaves xi of T and their depths di
introduced at the beginning of the previous section, we shall assume without any

loss of generality that d = di and that the pair of leaves of depth δ := δ(T ) that are

removed from T are xn−1, xn. Therefore

∆(T ′d) = {d1, . . . , di−1, di + 1, di + 1, di+1, . . . , dn−2, dn−1 − 1}.

Then

Ŝ(T ′d) =

∑n−2
j=1 dj + di + 2 + dn−1 − 1

n
=

∑n
j=1 dj + di + 1− dn

n

= Ŝ(T )− dn − di − 1

n
= Ŝ(T )− δ − d− 1

n

(37)
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and

W (T ′d) =
∑

j=1,...,n−2
j 6=i

(dj − Ŝ(T ′d))
2 + 2(di + 1− Ŝ(T ′d))

2 + (dn−1 − 1− Ŝ(T ′d))
2

=

n∑
j=1

(dj − Ŝ(T ′d))
2 + (di + 1− Ŝ(T ′d))

2 − (dn − Ŝ(T ′d))
2

+2(di − Ŝ(T ′d)) + 1− 2(dn−1 − Ŝ(T ′d)) + 1

=

n∑
j=1

(dj − Ŝ(T ′d))
2 + (d+ 2− Ŝ(T ′d))

2 − (δ + 1− Ŝ(T ′d))
2

(using that dn−1 = dn = δ and di = d)

=

n∑
j=1

(dj − Ŝ(T ′d))
2 − (δ + d+ 3− 2Ŝ(T ′d))(δ − d− 1)

=

n∑
j=1

(
dj − Ŝ(T ) +

δ − d− 1

n

)2

−
(
δ + d+ 3− 2Ŝ(T ) + 2 · δ − d− 1

n

)
(δ − d− 1)

=

n∑
j=1

(dj − Ŝ(T ))2 + 2
(δ − d− 1

n

) n∑
j=1

(dj − Ŝ(T )) + n
(δ − d− 1

n

)2

−(δ + d+ 3− 2Ŝ(T ))(δ − d− 1)− 2
( (δ − d− 1)2

n

)
= W (T )− (δ − d− 1)2

n
− (δ − d− 1)(δ + d+ 3− 2Ŝ(T ))

= W (T )−
(δ − d− 1

n

)(
n(δ + d+ 3− 2Ŝ(T )) + δ − d− 1

)
as we claimed.

Corollary 1 If T ∈ BT∗n has the minimum value of V and it contains some leaf
of depth δ(T )− l, with l > 1, then

l > 3 +
2(n(δ(T )− Ŝ(T )) + 1)

n− 1

and in particular T does not contain leaves of depth δ(T )− 2 or δ(T )− 3.

Proof If V (T ), or, equivalently, W (T ) is minimum on BT∗n and T contains a leaf of
depth d = δ(T )− l < δ(T )− 1, then, with the notations of the last lemma, it must
happen that

(δ(T )− d− 1)
(
n(δ(T ) + d+ 3− 2Ŝ(T )) + δ(T )− d− 1) = n(W (T )−W (T ′d)) 6 0.

Since δ(T )− d− 1 = l − 1 > 0, this is equivalent to

n(δ(T ) + d+ 3− 2Ŝ(T )) + δ(T )− d− 1 6 0.

Replacing in this inequality d by δ(T )− l and solving for l we finally obtain

l >
2n(δ(T )− Ŝ(T )) + 3n− 1

n− 1
= 3 +

2(n(δ(T )− Ŝ(T )) + 1)

n− 1
> 3.
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Corollary 2 Let T ∈ BT∗n be a bifurcating tree that has a cherry of depth d < δ(T ).
Let T ∗d ∈ BT∗n be the tree obtained by removing this cherry, leaving in its place a
leaf of depth d− 1, and replacing a leaf of depth δ(T ) by a cherry of depth δ(T ) + 1.
Then,

W (T ∗d ) = W (T ) +
(δ(T )− d+ 1

n

)(
n(δ(T ) + d+ 3− 2Ŝ(T ))− (δ(T )− d+ 1)

)
.

Proof T is obtained from T ∗d by removing a cherry of maximum depth δ(T ∗d ) =

δ(T ) + 1 and replacing a leaf of depth d− 1 by a cherry of depth d. In other words,
with the notations of Lemma 9, T = (T ∗d )′d−1. Then, by (37),

Ŝ(T ) = Ŝ((T ∗d )′d−1) = Ŝ(T ∗d )− δ(T ∗d )− (d− 1)− 1

n
= Ŝ(T ∗d )− δ(T ) + 1− d

n

and, by Lemma 9,

W (T ) = W ((T ∗d )′d−1)

= W (T ∗d )−
(δ(T ∗d )− (d− 1)− 1

n

)(
n(δ(T ∗d ) + (d− 1) + 3− 2Ŝ(T ∗d ))

+δ(T ∗d )− (d− 1)− 1
)

= W (T ∗d )−
(δ(T ) + 1− d

n

)(
n
[
δ(T ) + 1 + d+ 2

−2
(
Ŝ(T ) +

δ(T ) + 1− d
n

)]
+ δ(T ) + 1− d

)
= W (T ∗d )−

(δ(T )− d+ 1

n

)(
n(δ(T ) + d+ 3− 2Ŝ(T ))− (δ(T )− d+ 1)

)
from where the expression in the statement follows.

Corollary 3 If T ∈ BT∗n contains two leaves of the same depth d < δ(T )−1, then
V (T ) is not minimum in BT∗n.

Proof Let T ∈ BT∗n and assume that it has two leaves, y0 and y1, of the same depth
d < δ(T )− 1. If δ(T ) + d+ 3− 2Ŝ(T ) > 0 then, with the notations of Lemma 9,

W (T ′d) = W (T )− (δ(T )− d− 1)
(
δ(T ) + d+ 3− 2Ŝ(T ) +

δ(T )− d− 1

n

)
< W (T )

and therefore V (T ) cannot be minimum in BT∗n.
So, assume that δ(T ) + d+ 3− 2Ŝ(T ) < 0. In this case, if one of the leaves y0 or

y1 belongs to a cherry, then, with the notations of Corollary 2,

W (T ∗d ) = W (T ) + (δ(T )− d+ 1)
(
δ(T ) + d+ 3− 2Ŝ(T )− δ(T )− d+ 1

n

)
< W (T )
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and therefore in this case V (T ) cannot be minimum in BT∗n, either.
Finally, if y0 and y1 do not belong to any cherry, let v0 and v1 their respective

parents and z0 and z1 their respective siblings, which are not leaves. Let T ′ be
obtained from T by interchanging y1 with z0: that is, by removing the arcs (v0, z0)

and (v1, y1) and replacing them by arcs (v0, y1) and (v1, z0) (see Fig. 12). Since
δT (y1) = δT (y0) = δT (z0), the resulting tree T ′ is depth-equivalent to T , and in
particular V (T ) = V (T ′). But T ′ contains the cherry (y0, y1) of depth d < δ(T )− 1

and therefore, as we have just seen, V (T ) = V (T ′) cannot minimum in BT∗n.

T
r

v0 v1

y0 z0 y1z1

T0 T1

depth d

T ′
r

v0 v1

y0 y1 z0z1

T0T1

depth d

Figure 12 The depth-equivalent trees T and T ′ appearing in the last paragraph of the proof of
Corollary 3.

We can summarize the results obtained so far in the following corollary:

Corollary 4 If T ∈ BT∗n has the minimum value of V , then it is of some type
Tn;l1,...,lj with 4 6 l1 < · · · < lj 6 δ(T )− 2.

Next lemma finally completes the proof of Theorem 2.

Lemma 10 Let T be a tree of type Tn;l1,...,lj with j > 1. If V (T ) is minimum in
BT∗n, then l1 > 5.

Proof Let T be a tree of type Tn;l1,...,lj , with j > 1, such that V (T ) is minimum
in BT∗n. By the last corollary, we already know that 4 6 l1 < · · · < lj 6 δ − 2. Set
δ := δ(T ) and m := blog2(n)c, so that n = 2m + k with 0 6 k < 2m.
In the proof of Lemma 2 we saw that

Ŝ(T ) = δ −
p1 +

∑j
i=1 li

n
.

Then, if p0 6 n/2, we have by Corollary 1 that

l1 > 3 +
2(n(δ − Ŝ(T )) + 1)

n− 1
= 3 +

2(p1 +
∑j
i=1 li + 1)

n− 1

> 3 +
2(p1 + j)

n− 1
= 3 +

2(n− p0)

n− 1
> 3 +

n

n− 1
> 4

which implies that l1 > 5.
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Assume now that p0 > n/2. In this case, we can also assume that n > 32. Indeed,
if n < 32, thenm 6 4 and hence, by Lemma 1, δ 6 6. Thus, since 4 6 l1 6 δ−2 6 4,
it must happen that δ = 6, m = 4, j = 1, and l1 = 4. So, n = 24 +k with k 6 15 and
since δ = 4 + 2 we are in case (c) in the statement of the aforementioned lemma,
and therefore p1 = 3 · 24 − k − (24 − 1) = 33− k. Thus,

p0 = n− p1 − 1 = 24 + k − 33 + k − 1 = −18 + 2k 6 8 +
k

2
=
n

2

because k 6 15, which contradicts the assumption that p0 > n/2.
So, in particular, we can assume that T contains at least 16 leaves of depth δ.

Assume that T contains a leaf x of depth δ− 4, so that T is of type Tn;4,l2,...,lj , and
let y its sibling, also of depth δ − 4, and z their common parent. Since T does not
contain either any other leaf of depth δ − 4 or leaves of depths δ − 3 or δ − 2, the
leaves that descend from y have depths δ−1 or δ. Since T contains at least 16 leaves
of depth δ, by pruning and regrafting cherries at maximum depth if necessary, we
can assume without any loss of generality that all the leaves that descend from y

have depth δ and hence that the subtree of T rooted at y is the fully symmetric
tree B16.
Let T ′ be now the tree obtained from T by, on the one hand, removing the leaf

x, its parent z and the three arcs incident to z, and replacing them by an arc from
the parent of z to y (which now becomes of depth δ − 5), and, on the other hand,
replacing the subtree B16 rooted at y by a maximally balanced tree B17; see Fig. 13.
From the 17 leaves in T ′ that are descendant of y, 2 have depth δ in T ′, and the
remaining 15 have depths δ− 1, and the rest of leaves in T ′ have the same depth as
in T . In particular, δ(T ′) = δ and then T ′ = Tn;l2,...,lj . Moreover, p1(T ′) = p1 + 15.
Therefore, using the expression for the variance of a tree of type Tn;l′1,...,l

′
j′

given in
Lemma 2, we have that

n2 · V (T ) = n
(
p1 + 16 +

j∑
i=2

l2i

)
−
(
p1 + 4 +

j∑
i=2

li

)2

n2 · V (T ′) = n
(
p1 + 15 +

j∑
i=2

l2i

)
−
(
p1 + 15 +

j∑
i=2

li

)2

Then, V (T ′) < V (T ), against the assumption that T had the minimum value of V
of BT∗n. So, when p0 > n/2 we also conclude that if T has the minimum value of V
of BT∗n, l1 > 4.

SN-7 Proof of Theorem 3
To simplify the language, in this section and in Section SN-13, for every sequence
l = (l1, . . . , lj) ∈ Nj we shall set

A(l) :=

j∑
i=1

(2li − l2i − 1), B(l) :=

j∑
i=1

(2li − li − 1).

Our goal is to prove the following result:
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T

y

z

xdepth δ−4

depth δ

T ′

y

depth δ−1

depth δ

Figure 13 The trees T and T ′ appearing in the last part of the proof of Lemma 10.

Theorem 3 As m grows to ∞, the fraction of values n ∈ [2, 2m] such that V (Bn)

is minimal on BT∗n tends to 0.

Proof Let n = 2m + k with m = blog2(n)c and 0 6 k < 2m, and take a non-empty
sequence of indices 5 6 l1 < · · · < lj 6 m− 1 such that k 6 2m −

∑j
i=1(2li − 1), so

that

V (Tn;l1,...,lj ) =
1

n2

(
(2m + k)

(
2m − k −A(l)

)
−
(
2m − k −B(l)

)2)
.

Then

n2(V (Bn)− V (Tn;l1,...,lj ))

= 2k(2m − k)− (2m + k)
(
2m − k −A(l)

)
+
(
2m − k −B(l)

)2
= k(A(l) + 2B(l)) + 2m(A(l)− 2B(l)) +B(l)2.

Since A(l) + 2B(l) > 0 because each li > 5 (a fact that we shall use henceforth
without any further notice), this implies that

V (Bn) > V (Tn;l1,...,lj )⇐⇒ k >
2m(2B(l)−A(l))−B(l)2

A(l) + 2B(l)
.

So, we have the following fact:

Claim 1. If there exist 5 6 l1 < · · · < lj 6 m− 1, with j > 1, such that

2m(2B(l)−A(l))−B(l)2

A(l) + 2B(l)
< k 6 2m −

j∑
i=1

(2li − 1),

then V (B2m+k) is not minimal on BT∗2m+k.
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Consider now the particular case of tree types Tn;l1 , i.e., with j = 1. Set l1 = x ∈
{5, . . . ,m − 1}, so that A(l) = 2x − x2 − 1 and B(l) = 2x − x − 1. Then, Claim 1
implies that if n = 2m + k and if k belongs to

m−1⋃
x=5

(
2m(2x + x2 − 2x− 1)− (2x − x− 1)2

3 · 2x − x2 − 2x− 3
, 2m − 2x + 1

]

then V (Bn) is not minimal on BT∗n. To simplify the notations, let

F1(x) :=
2m(2x + x2 − 2x− 1)− (2x − x− 1)2

3 · 2x − x2 − 2x− 3
, G1(x) := 2m − 2x + 1,

so that this union of intervals can be rewritten as

m−1⋃
x=5

(
F1(x), G1(x)

]
. (38)

We shall prove that there exists an m1 ∈ N such that, for every m > m1, this union
of intervals is the interval (F1(m − 1), G1(5)]. To do that, we use of the next two
Claims.

Claim 2. For every m > 7 and for every x ∈ {5, . . . ,m− 2}, F1(x+ 1) < F1(x) and
G1(x+ 1) < G1(x).

The decreasing monotonicity of G1 is clear. As far as that of F1 goes, we have
that

F1(x) > F1(x+ 1)

⇐⇒
(
2m(2x + x2 − 2x− 1)− (2x − x− 1)2

)
·
(
3 · 2x+1 − (x+ 1)2 − 2(x+ 1)− 3

)
>
(
2m(2x+1 + (x+ 1)2 − 2(x+ 1)− 1)− (2x+1 − (x+ 1)− 1)2

)
·
(
3 · 2x − x2 − 2x− 3

)
⇐⇒ 2x

(
6 · 22x + 2m+2x2 − 3 · 2xx2 − 3 · 2m+2x− 4 · 2xx− 18 · 2x

+ 2x3 + 3x2 + 8x+ 18
)

+ 2m+2(x2 + 3x)− 4x− 6 > 0

Now, if 5 6 x 6 m− 2,

2x
(
6 · 22x + 2m+2x2 − 3 · 2xx2 − 3 · 2m+2x− 4 · 2xx− 18 · 2x

+ 2x3 + 3x2 + 8x+ 18
)

+ 2m+2(x2 + 3x)− 4x− 6

> 2m+2x2 − 3 · 2xx2 − 3 · 2m+2x− 4 · 2xx− 18 · 2x

(because x > 5)

> 2m+2x2 − 3 · 2m−2x2 − 3 · 2m+2x− 4 · 2m−2x− 18 · 2m−2

(because x 6 m− 2)

= 2m−2(13x2 − 52x− 18) > 0
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again because x > 5. This finishes the proof of Claim 2.

Claim 3. For every m > 9 and for every x ∈ {5, . . . ,m− 2}, G1(x+ 1) > F1(x).
Indeed, we have that

G1(x+ 1) > F1(x)

⇐⇒ (2m − 2x+1 + 1)(3 · 2x − x2 − 2x− 3)

− (2m(2x + x2 − 2x− 1)− (2x − x− 1)2) > 0

⇐⇒ 2m+1(2x − x2 − 1)− 2x(5 · 2x − 2x2 − 2x− 7)− 2 > 0

⇐⇒ 2m−2(3 · 2x − 8x2 − 8) + 2x(5 · 2m−2 − 5 · 2x + 2x2 + 2x+ 7)− 2 > 0

Now, it turns out that if m > 9 and if 5 6 x 6 m − 2, then this last inequality
holds:
• If 8 6 x 6 m− 2, because for this range of values of x and for every m > 10,

3 · 2x − 8x2 − 8 > 0

and

2x(5 · 2m−2 − 5 · 2x + 2x2 + 2x+ 7) > 2x(2x2 + 2x+ 7) > 38656.

• If x ∈ {5, 6, 7}, because

2m−2(3 · 25 − 8 · 52 − 8) + 25(5 · 2m−2 − 5 · 25 + 2 · 52 + 2 · 5 + 7)− 2

= 12 · 2m − 2978

2m−2(3 · 26 − 8 · 62 − 8) + 26(5 · 2m−2 − 5 · 26 + 2 · 62 + 2 · 6 + 7)− 2

= 6(9 · 2m − 2443)

2m−2(3 · 27 − 8 · 72 − 8) + 27(5 · 2m−2 − 5 · 27 + 2 · 72 + ·7 + 7)− 2

= 78(2 · 2m − 855)

and hence they are all > 0 if m > 9.
This finishes the proof of Claim 3.
Claims 2 and 3 imply that there exists an m1 ∈ N (in fact, they even imply that

we can take m1 = 9) such that if m > m1, the intervals (F1(x), G1(x)] satisfy
that both their left-hand side and right-hand side ends decrease with x, and each
interval (F1(x), G1(x)], for x = 6, . . . ,m−1, has non-empty overlap with the interval
(F1(x− 1), G1(x− 1)] on its right-hand side. Therefore, when m > m1,

m−1⋃
x=5

(F1(x), G1(x)] = (F1(m− 1), G1(5)].

The next claim summarizes what we have proved so far:

Claim 4. There exists an m1 ∈ N such that, for every m > m1, if k ∈
(
F1(m −

1), G1(5)
]
, then V (B2m+k) is not minimal on BT∗2m+k.
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Let us consider now another particular case of tree types Tn;l1,...,lj , namely those
with j = m − 5 and {l1, . . . , lm−5} = {5, . . . , x − 1, x + 1, . . . ,m − 1}, for some
x = 6, . . . ,m− 2. In this case,

A(l) = 2m − 2x + x2 − 2m3 − 3m2 + 7m− 24

6

B(l) = 2m − 2x + x− m2 +m+ 32

2

2m −
(m−1∑
j=5

(2j − 1)− (2x − 1)
)

= 2x +m+ 26

and hence

2m(2B(l)−A(l))−B(l)2 =
1

12

(
2m+1(6 · 2x + 2m3 − 3m2 + 7m− 6x2 − 24)

− 3(2x+1 − 2x+m2 +m+ 32)2
)

A(l) + 2B(l) =
1

6

(
9 · 2m+1 − 9 · 2x+1 − 2m3 − 3m2 − 13m+ 6x2 + 12x− 168

)
Thus, writing

F
(num)
2 (x) = 2m+1(6 · 2x + 2m3 − 3m2 + 7m− 6x2 − 24)

− 3(2x+1 − 2x+m2 +m+ 32)2

F
(den)
2 (x) = 2

(
9 · 2m+1 − 9 · 2x+1 − 2m3 − 3m2 − 13m+ 6x2 + 12x− 168

)
F2(x) = F

(num)
2 (x)/F

(den)
2 (x)

G2(x) = 2x +m+ 26

Claim 1 implies that if n = 2m + k and k belongs to

m−2⋃
x=6

(
F2(x), G2(x)

]
(39)

then V (Bn) is not minimal on BT∗n. We shall prove now that there exists an m2 ∈ N
such that, for every m > m2,

m−2⋃
x=5dlog2(m)e

(
F2(x), G2(x)

]
=
(
F2(5dlog2(m)e), G2(m− 2)

]
.

This proof is based on the obvious fact that G2 is increasing on x and the following
two Claims.

Claim 5. There exists an m′2 ∈ N such that, for every m > m′2 and for every
x ∈ {6, . . . ,m− 3}, F2(x+ 1) > F2(x).

Indeed, on the one hand notice that F (den)
2 (x) can be written as

2
(
9 · 2m+1 − 2m3 − 3m2 − 13m− 168− 6(3 · 2x − x2 − 2x)

)
,
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and this expression is decreasing for x ∈ [6,m − 2] because the function x 7→
3 · 2x − x2 − 2x is increasing on [6,∞). As far as F (num)

2 (x) goes, its derivative is,
up to a factor of 12 that does not affect its sign,

2x ln(2)(2m−2x+1−m2−m+2x−32)+2x+1−2m+1x+m2 +m−2x+32. (40)

Now, when x 6 m− 2

2x ln(2)(2m − 2x+1 −m2 −m+ 2x− 32)

+ 2x+1 − 2m+1x+m2 +m− 2x+ 32

> 2x ln(2)(2m − 2m−1 −m2 −m+ 2x− 32)

+ 2x+1 − 2m+1x+m2 +m− 2x+ 32

= 2x ln(2)(2m−1 −m2 −m+ 2x− 32)

+ 2x+1 − 2m+1x+m2 +m− 2x+ 32

= 2x ln(2)(2m−3 −m2 −m+ 2x− 32)

+ 2m−3(3 · 2x ln(2)− 16x) +m2 +m+ 2x+1 − 2x+ 32

In this last expression, if x > 6 then 3 · 2x ln(2)− 16x > 0 and 2x+1 − 2x > 0, and
if m is large enough, 2m−3 − m2 − m − 32 > 0. Therefore, if m is large enough,
the derivative (40) is positive on the interval [6,m − 2] and therefore F (num)

2 (x) is
increasing on this interval.

So, on [6,m − 2], F (num)
2 (x) is increasing and F

(den)
2 (x) is decreasing and thus

F2(x) is increasing. This finishes the proof of Claim 5.

Claim 6. There exists an m′′2 ∈ N such that for every m > m′′2 and for every
3 log2(m) 6 x 6 m− 3, F2(x+ 1) < G2(x)

Indeed, the inequality

F2(x+ 1) =
F

(num)
2 (x+ 1)

F
(den)
2 (x+ 1)

< G2(x)

is equivalent to

F
(den)
2 (x+ 1) ·G2(x) > F

(num)
2 (x+ 1),

that is, to

2
(
9(2m+1 − 2x+2)− 2m3 − 3m2 − 13m+ 6(x+ 1)2 + 12(x+ 1)− 168

)
(2x +m+ 26)

− 2m+1(6 · 2x+1 + 2m3 − 3m2 + 7m− 6(x+ 1)2 − 24)

+ 3(2x+2 − 2(x+ 1) +m2 +m+ 32)2 > 0
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Let us develop the expression in left-hand side of this inequality

2
(
9(2m+1 − 2x+2)− 2m3 − 3m2 − 13m+ 6(x+ 1)2 + 12(x+ 1)− 168

)
(2x +m+ 26)

− 2m+1(6 · 2x+1 + 2m3 − 3m2 + 7m− 6(x+ 1)2 − 24)

+ 3(2x+2 − 2(x+ 1) +m2 +m+ 32)2

= 2x+1(3 · 2m+1 − 3 · 2x+2 − 2m3 + 9m2 − 37m+ 6x2 − 726)

+ 2m+1(−2m3 + 3m2 + 11m+ 6x2 + 12x+ 498)

−m4 − 104m3 −m2 (12x− 1) +m(36x− 796)

+ 12mx2 + 324x2 + 888x− 5100

> 2x+1(3 · 2m+1 − 3 · 2m−1 − 2m3 + 9m2 − 37m+ 6x2 − 726)

+ 2m+1(−2m3 + 3m2 + 11m+ 6x2 + 12x+ 498)

−m4 − 104m3 −m2 (12x− 1) +m(36x− 796)

+ 12mx2 + 324x2 + 888x− 5100

(because x 6 m− 3)

= 2x+1(9 · 2m−1 − 2m3 + 9m2 − 37m+ 6x2 − 726)

+ 2m+1(−2m3 + 3m2 + 11m+ 6x2 + 12x+ 498)

−m4 − 104m3 −m2(12x− 1) +m(36x− 796)

+ 12mx2 + 324x2 + 888x− 5100

= 2x+1(5 · 2m−1 − 2m3 + 9m2 − 37m+ 6x2 − 726)

+ 2m+1(2x+1 − 2m3 + 3m2 + 11m+ 6x2 + 12x+ 498)

−m4 − 104m3 −m2(12x− 1) +m(36x− 796)

+ 12mx2 + 324x2 + 888x− 5100 (41)

Now, on the one hand,

5 · 2m−1 − 2m3 + 9m2 − 37m+ 6x2 − 726 > 5 · 2m−1 − 2m3 + 9m2 − 37m− 726

and if m is large enough the expression on the right-hand side of this inequality is
positive. On the other hand, if 3 log2(m) 6 x 6 m− 3, then

2m+1(2x+1 − 2m3 + 3m2 + 11m+ 6x2 + 12x+ 498)

−m4 − 104m3 −m2(12x− 1) +m(36x− 796)

+ 12mx2 + 324x2 + 888x− 5100

> 2m+1(2m3 − 2m3 + 3m2 + 11m+ 54 log2(m)2 + 36 log2(m) + 498)

−m4 − 104m3 −m2(12(m− 3)− 1) +m(108 log2(m)− 796)

+ 108m log2(m)2 + 2664 log2(m)− 5100

and if m is large enough, this expression (which is dominated by 3 ·2m+1m2) is also
positive. Therefore, expression (41) is positive for large enough m, which proves
Claim 6.
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Claims 5 and 6 jointly imply that there exists an m2 ∈ N such that if m > m2 and
3 log2(m) 6 x 6 m−2, the intervals (F2(x), G2(x)] satisfy that both their left-hand
side and right-hand side ends increase with x, and each interval (F2(x), G2(x)],
for x = d3 log2(m)e, . . . ,m − 3, has non-empty overlap with the “next” interval
(F2(x+ 1), G2(x+ 1)]. Therefore, when m > m2,

m−2⋃
x=dlog2(m3)e

(F2(x), G2(x)] = (F2(dlog2(m3)e), G2(m− 2)].

So, using Claim 1, we deduce the following claim:

Claim 7. There exists an m2 ∈ N such that, for every m > m2, if

k ∈
(
F2(dlog2(m3)e), G2(m− 2)

]
,

then V (B2m+k) is not minimal on BT∗2m+k.

Now, it turns out that if m is large enough, the intervals

(
F2(dlog2(m3)e), G2(m− 2)

]
,
(
F1(m− 1), G1(5)

]
overlap: more specifically, for large enough m we have that

F2(dlog2(m3)e) < F1(m− 1) < G2(m− 2) < G1(5).

Indeed, on the one hand, the inequality G2(m−2) < G1(5), that is, 2m−2+m+26 <

2m − 31, holds if m > 7. On the other hand, the inequality

F1(m− 1) < G2(m− 2)

⇐⇒ 4m−1 + 2m(m− 1)(m− 2)−m2 < (2m−2 +m+ 26)(3 · 2m−1 −m2 − 2)

⇐⇒ 22m − 10 · 2mm2 + 36 · 2mm+ 292 · 2m − 8m3 − 200m2 − 16m− 416 > 0

holds if m > 6. Finally, the inequality F2(dlog2(m3)e) < F1(m − 1) holds for large
enough m because F2(dlog2(m3)e) is in O(m3) and F1(m− 1) is in O(2m).
Therefore, there exists an m3 ∈ N such that if m > m3,

(
F2(dlog2(m3)e), G2(m− 2)

]
∪
(
F1(m− 1), G1(5)

]
=
(
F2(dlog2(m3)e), G1(5)

]
and setting M = max{m1,m2,m3} we deduce from Claims 4 and 7 that, for every
m >M , if

n ∈
(
2m + F2(dlog2(m3)e), 2m +G1(5)

]
then V (Bn) is not minimal on BT∗n. Let us mention incidentally that 2m +G1(5) =

2m+1 − 31 and in Section SN-13 we shall prove that this end can be replaced
optimally by 2m+1 − 30. This does not change what remains of our argument.
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Since F2(dlog2(m3)e) ∼ 4
9m

3, we deduce that, for every m >M , the cardinality of
the set of numbers n ∈ [2m, 2m+1) such that V (Bn) is minimal on BT∗n is in O(m3).
Then, for every m > M , the fraction of values n ∈ [2, 2m+1) such that V (Bn) is
minimal on BT∗n is bounded from above by

O
(2M+1 +

∑m
p=M+1 p

3

2m+1

)
= O

( m4

2m+1

)
which tends to 0 as m→∞.

SN-8 Proof of Proposition 1
To begin with, notice that the index S(2) satisfies the following recurrence.

Lemma 11 For every T ∈ T∗n, if T = T1 ? · · · ? Tk with k > 2, then

S(2)(T ) =

k∑
i=1

S(2)(Ti) + 2

k∑
i=1

S(Ti) + n.

Proof Under the hypothesis in the statement,

S(2)(T ) =

k∑
i=1

∑
x∈L(Ti)

δT (x)2 =

k∑
i=1

∑
x∈L(Ti)

(δTi(x) + 1)2

=

k∑
i=1

∑
x∈L(Ti)

δTi
(x)2 + 2

k∑
i=1

∑
x∈L(Ti)

δTi
(x) +

k∑
i=1

|L(Ti)|

=

k∑
i=1

S(2)(Ti) + 2

k∑
i=1

S(Ti) + n

as we claimed.

Now, our goal is to prove the following proposition.

Proposition 1 For every n > 1, EY (S
(2)
n ) = 2n(2H2

n − 3Hn − 2H
(2)
n + 3).

Proof When n = 1, both sides of the identity in the statement are equal to 0, and
therefore we shall consider henceforth only the case n > 2. Recall from equation
(11) that, if Tk ∈ BT(Xk), where Xk ( [n] with |Xk| = k, and T ′n−k ∈ BT(Xc

k),
where Xc

k = [n] \Xk, then

PY,n(Tk ? T
′
n−k) =

2

(n− 1)
(
n
k

)PY,k(Tk)PY,n−k(T ′n−k).

Since every T ∈ BTn, with n > 2, is produced twice by choosing an integer k =

1, . . . , n − 1, a subset Xk ⊆ [n] with |Xk| = k, a tree Tk ∈ BT(Xk), and a tree
T ′n−k ∈ BT(Xc

k), and taking T = Tk ? T
′
n−k, equation (11) and Lemma 11 allow us
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to compute EY (S
(2)
n ) from its very definition as follows:

EY (S
(2)
n ) =

∑
T∈BT∗n

S(2)(T ) · PY,n(T )

=
1

2

n−1∑
k=1

∑
Xk⊆[n]

|Xk|=k

∑
Tk∈BT(Xk)

∑
T ′n−k∈BT(Xc

k)

S(2)(Tk ? T
′
n−k) · PY,n(Tk ? T

′
n−k)

=
1

2

n−1∑
k=1

(
n

k

) ∑
Tk∈BT∗k

∑
T ′n−k∈BT

∗
n−k

(S(2)(Tk) + S(2)(T ′n−k)

+2S(Tk) + 2S(T ′n−k) + n) · 2

(n− 1)
(
n
k

)PY,k(Tk)PY,n−k(T ′n−k)

(by the shape invariance of PY , Lemma 11, and identity (11))

=
1

n− 1

n−1∑
k=1

(∑
Tk

∑
T ′n−k

S(2)(Tk)PY,k(Tk)PY,n−k(T ′n−k)

+
∑
Tk

∑
T ′n−k

S(2)(T ′n−k)PY,k(Tk)PY,n−k(T ′n−k)

+2
∑
Tk

∑
T ′n−k

S(Tk)PY,k(Tk)PY,n−k(T ′n−k)

+2
∑
Tk

∑
T ′n−k

S(T ′n−k)PY,k(Tk)PY,n−k(T ′n−k)

+n
∑
Tk

∑
T ′n−k

PY,k(Tk)PY,n−k(T ′n−k)
)

=
1

n− 1

n−1∑
k=1

(∑
Tk

S(2)(Tk)PY,k(Tk) +
∑
T ′n−k

S(2)(T ′n−k)PY,n−k(T ′n−k)

+2
∑
Tk

S(Tk)PY,k(Tk) + 2
∑
T ′n−k

S(T ′n−k)PY,n−k(T ′n−k) + n
)

=
1

n− 1

n−1∑
k=1

(EY (S
(2)
k ) + EY (S

(2)
n−k) + 2EY (Sk) + 2EY (Sn−k) + n)

=
2

n− 1

n−1∑
k=1

EY (S
(2)
k ) +

4

n− 1

n−1∑
k=1

EY (Sk) + n

In particular,

EY (S
(2)
n−1) =

2

n− 2

n−2∑
k=1

EY (S
(2)
k ) +

4

n− 2

n−2∑
k=1

EY (Sk) + n− 1

and therefore

EY (S(2)
n ) =

2

n− 1
EY (S

(2)
n−1) +

2

n− 1

n−2∑
k=1

EY (S
(2)
k ) +

4

n− 1
EY (Sn−1)

+
4

n− 1

n−2∑
k=1

EY (Sk) + n
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=
2

n− 1
EY (S

(2)
n−1) +

n− 2

n− 1
· 2

n− 2

n−2∑
k=1

EY (S
(2)
k ) +

4

n− 1
EY (Sn−1)

+
n− 2

n− 1
· 4

n− 2

n−2∑
k=1

EY (Sk) +
n− 2

n− 1
· (n− 1) + 2

=
2

n− 1
EY (S

(2)
n−1) +

4

n− 1
EY (Sn−1) +

n− 2

n− 1
EY (S

(2)
n−1) + 2

=
n

n− 1
EY (S

(2)
n−1) +

4

n− 1
EY (Sn−1) + 2

If we let xn = 1
nEY (S

(2)
n ), dividing this last equality by n we obtain

xn = xn−1 +
4

n(n− 1)
EY (Sn−1) +

2

n

and using the formula for EY (Sn) given in (13), this recurrence becomes

xn = xn−1 +
4

n(n− 1)
2(n− 1)(Hn−1 − 1) +

2

n
= xn−1 +

8

n
Hn−1 −

6

n
.

Then, since x1 = 0 and

n−1∑
k=1

Hk

k + 1
=

1

2
(H2

n −H(2)
n ),

(for a proof, see Lemma 1.(4) in the Supplementary Material of [1]), we have that

xn =

n∑
k=2

8Hk−1

k
−

n∑
k=2

6

k
= 8

n−1∑
k=1

Hk

k + 1
− 6(Hn − 1)

= 4(H2
n −H(2)

n )− 6Hn + 6

from where we finally deduce

EY (S(2)
n ) = nxn = 2n(2H2

n − 2H(2)
n − 3Hn + 3)

as we claimed.

SN-9 Proof of Proposition 2
Proposition 2 For every n > 2,

EU (S(2)
n ) = 2

n−1∑
k=1

Ck,n−kEU (S
(2)
k ) + 2n · (2n− 2)!!

(2n− 3)!!
− 3n.
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Proof Arguing as in the beginning of the proof of Proposition 1, but using identity
(12) instead of (11), we have:

EU (S
(2)
n ) =

∑
T∈BTn

S(2)(T ) · PU,n(T )

=
1

2

n−1∑
k=1

∑
Xk⊆[n]

|Xk|=k

∑
Tk∈BT(Xk)

∑
T ′n−k∈BT(Xc

k)

S(2)(Tk ? T
′
n−k) · PU,n(Tk ? T

′
n−k)

=
1

2

n−1∑
k=1

(
n

k

) ∑
Tk∈BTk

∑
T ′n−k∈BTn−k

(S(2)(Tk) + S(2)(T ′n−k)

+2S(Tk) + 2S(T ′n−k) + n) · 2Ck,n−k(
n
k

) PU,k(Tk) · PU,n−k(T ′n−k)

=

n−1∑
k=1

∑
Tk

∑
T ′n−k

Ck,n−k
(
S(2)(Tk) + S(2)(T ′n−k) + 2S(Tk) + 2S(T ′n−k) + n

)
·PU,k(Tk) · PU,n−k(T ′n−k)

=

n−1∑
k=1

Ck,n−k

(∑
Tk

∑
T ′n−k

S(2)(Tk)PU,k(Tk)PU,n−k(T ′n−k)

+
∑
Tk

∑
T ′n−k

S(2)(T ′n−k)PU,k(Tk)PU,n−k(T ′n−k)

+2
∑
Tk

∑
T ′n−k

S(Tk)PU,k(Tk)PU,n−k(T ′n−k)

+2
∑
Tk

∑
T ′n−k

S(T ′n−k)PU,k(Tk)PU,n−k(T ′n−k)

+
∑
Tk

∑
T ′n−k

nPU,k(Tk)PU,n−k(T ′n−k)
)

=

n−1∑
k=1

Ck,n−k

(∑
Tk

S(2)(Tk)PU,k(Tk) +
∑
T ′n−k

S(2)(T ′n−k)PU,n−k(T ′n−k)

+2
∑
Tk

S(Tk)PU,k(Tk) + 2
∑
T ′n−k

S(T ′n−k)PU,n−k(T ′n−k) + n
)

=

n−1∑
k=1

Ck,n−k

(
EU (S

(2)
k ) + EU (S

(2)
n−k) + 2EU (Sk) + 2EU (Sn−k) + n

)
= 2

n−1∑
k=1

Ck,n−kEU (S
(2)
k ) + 4

n−1∑
k=1

Ck,n−kEU (Sk) + n

n−1∑
k=1

Ck,n−k

(by the symmetry of Ck,n−k)

= 2

n−1∑
k=1

Ck,n−kEU (S
(2)
k ) + 4

n−1∑
k=1

Ck,n−kk ·
(2k − 2)!!

(2k − 3)!!

−4

n−1∑
k=1

Ck,n−kk + n

n−1∑
k=1

Ck,n−k

(by identity (14))

= 2

n−1∑
k=1

Ck,n−kEU (S
(2)
k ) + 2n

( (2n− 2)!!

(2n− 3)!!
− 1
)
− 2n+ n

(by Lemmas 3 and 4)

= 2

n−1∑
k=1

Ck,n−kEU (S
(2)
k ) + 2n · (2n− 2)!!

(2n− 3)!!
− 3n
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as we claimed.

SN-10 Proof of Proposition 3
We establish first a general result on expected values of bifurcating recursive shape
indices in the sense of [4] under the uniform model.

Definition A bifurcating recursive shape index is a mapping I that associates
to each bifurcating phylogenetic tree a real number R satisfying the following two
conditions:

(a) It is invariant under tree isomorphisms and relabelings of leaves.
(b) There exists a symmetric mapping fI : N×N→ R such that, for every pair of

bifurcating phylogenetic trees T, T ′ on disjoint sets of taxa X,X ′, respectively,

I(T ? T ′) = I(T ) + I(T ′) + f(|X|, |X ′|).

Lemma 12 Let I and J be two bifurcating recursive shape indices, and let In and
Jn be the random variables that choose a tree T ∈ BTn and compute I(T ) and J(T ),
respectively. Then, for every n > 2, the expected values of InJn and I2

n under the
uniform model are

EU (InJn) =

n−1∑
k=1

Ck,n−k

(
2EU (IkJk) + 2EU (Ik)EU (Jn−k)

+ 2fI(k, n− k)EU (Jk) + 2fJ(k, n− k)EU (Ik)

+ fI(k, n− k)fJ(k, n− k)
)

(42)

EU (I2
n) =

n−1∑
k=1

Ck,n−k

(
2EU (I2

k) + 2EU (Ik)EU (In−k)

+ 4fI(k, n− k)EU (Ik) + fI(k, n− k)2
)

(43)

Proof To prove (42), we develop EU (InJn) as we did with E(S
(2)
n ) in the proof of

Proposition 2:

EU (InJn) =
∑

T∈BTn

I(T )J(T ) · PU,n(T )

=
1

2

n−1∑
k=1

∑
Xk([n]

|Xk|=k

∑
Tk∈BT(Xk)

∑
T ′n−k∈BT(Xc

k)

I(Tk ? T
′
n−k)J(Tk ? T

′
n−k)PU,n(Tk ? T

′
n−k)

=
1

2

n−1∑
k=1

(
n

k

) ∑
Tk∈BTk

∑
T ′n−k∈BTn−k

(
I(Tk) + I(T ′n−k) + fI(k, n− k)

)
·
(
J(Tk) + J(T ′n−k) + fJ(k, n− k)

)2Ck,n−k(
n
k

) PU,k(Tk)PU,n−k(T ′n−k)
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=

n−1∑
k=1

Ck,n−k
∑

Tk∈BTk

∑
T ′n−k∈BTn−k

(
I(Tk) + I(T ′n−k) + fI(k, n− k)

)
·
(
J(Tk) + J(T ′n−k) + fJ(k, n− k)

)
PU,k(Tk)PU,n−k(T ′n−k)

=

n−1∑
k=1

Ck,n−k
∑
Tk

∑
T ′n−k

(
I(Tk)J(Tk) + I(T ′n−k)J(T ′n−k)

+ I(Tk)J(T ′n−k) + I(T ′n−k)J(Tk) + fJ(k, n− k)I(Tk)

+ fJ(k, n− k)I(T ′n−k) + fI(k, n− k)J(Tk) + fI(k, n− k)J(T ′n−k)

+ fI(k, n− k)fJ(k, n− k)
)
PU,k(Tk)PU,n−k(T ′n−k)

=

n−1∑
k=1

Ck,n−k

(∑
Tk

∑
T ′n−k

(
I(Tk)J(Tk)PU,k(Tk)PU,n−k(T ′n−k)

+ I(T ′n−k)J(T ′n−k)PU,k(Tk)PU,n−k(T ′n−k)

+ I(Tk)J(T ′n−k)PU,k(Tk)PU,n−k(T ′n−k)

+ I(T ′n−k)J(Tk)PU,k(Tk)PU,n−k(T ′n−k)

+ fJ(k, n− k)I(Tk)PU,k(Tk)PU,n−k(T ′n−k)

+ fJ(k, n− k)I(T ′n−k)PU,k(Tk)PU,n−k(T ′n−k)

+ fI(k, n− k)J(Tk)PU,k(Tk)PU,n−k(T ′n−k)

+ fI(k, n− k)J(T ′n−k)PU,k(Tk)PU,n−k(T ′n−k)

+ fI(k, n− k)fJ(k, n− k)PU,k(Tk)PU,n−k(T ′n−k)
))

=

n−1∑
k=1

Ck,n−k

(∑
Tk

I(Tk)J(Tk)PU,k(Tk)

+
∑
T ′n−k

I(T ′n−k)J(T ′n−k)PU,n−k(T ′n−k)

+
(∑
Tk

I(Tk)PU,k(Tk)
)( ∑

T ′n−k

J(T ′n−k)PU,n−k(T ′n−k)
)

+
( ∑
T ′n−k

I(T ′n−k)PU,n−k(T ′n−k)
)(∑

Tk

J(Tk)PU,k(Tk)
)

+ fJ(k, n− k)
∑
Tk

I(Tk)PU,k(Tk) + fJ(k, n− k)
∑
T ′n−k

I(T ′n−k)PU,n−k(T ′n−k)

+ fI(k, n− k)
∑
Tk

J(Tk)PU,k(Tk) + fI(k, n− k)
∑
T ′n−k

J(T ′n−k)PU,n−k(T ′n−k)

+ fI(k, n− k)fJ(k, n− k)

)
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=

n−1∑
k=1

Ck,n−k

(
EU (IkJk) + EU (In−kJn−k) + EU (Ik)EU (Jn−k)

+ EU (In−k)EU (Jk) + fJ(k, n− k)EU (Ik) + fJ(k, n− k)EU (In−k)

+ fI(k, n− k)EU (Jk) + fI(k, n− k)EU (Jn−k)

+ fI(k, n− k)fJ(k, n− k)
)

=

n−1∑
k=1

Ck,n−k

(
2EU (IkJk) + 2EU (Ik)EU (Jn−k)

+ 2fJ(k, n− k)EU (Ik) + 2fI(k, n− k)EU (Jk) + fI(k, n− k)fJ(k, n− k)
)

using the symmetry of Ck,n−k, fI(k, n− k), and fJ(k, n− k).
As for (43), it is obtained from (42) by taking I = J in it.

Now we can use equation (43) in the last lemma to derive the recurrence in
Proposition 3.

Proposition 3 For every n > 2,

EU (S2
n) = 2

n−1∑
k=1

Ck,n−kEU (S2
k) +

5n2

2
· (2n− 2)!!!

(2n− 3)!!
− n(5n− 2)

Proof Applying equation (43) taking as I the Sackin index S, for which

fS(k, n− k) = n [7]

EU (Sk) = k
( (2k − 2)!!

(2k − 3)!!
− 1
)

[5, Thm. 22]

we obtain

EU (S2
n) =

n−1∑
k=1

Ck,n−k

(
2EU (S2

k) + fS(k, n− k)2 + 4fS(k, n− k)EU (Sk)

+2EU (Sk)EU (Sn−k)
)

=

n−1∑
k=1

Ck,n−k

(
2EU (S2

k) + n2 + 4nk
( (2k − 2)!!

(2k − 3)!!
− 1
)

+2k(n− k)
( (2k − 2)!!

(2k − 3)!!
− 1
)( (2(n− k)− 2)!!

(2(n− k)− 3)!!
− 1
))

=

n−1∑
k=1

Ck,n−k

(
2EU (S2

k) + n2 + 4nk
(2k − 2)!!

(2k − 3)!!
− 4nk

+2k(n− k)
(2k − 2)!!

(2k − 3)!!
· (2(n− k)− 2)!!

(2(n− k)− 3)!!
+ 2k(n− k)

−2k(n− k)
(2k − 2)!!

(2k − 3)!!
− 2k(n− k) · (2(n− k)− 2)!!

(2(n− k)− 3)!!

)
=

n−1∑
k=1

Ck,n−k

(
2EU (S2

k) + 4nk
(2k − 2)!!

(2k − 3)!!
− 2k2

+2k(n− k)
(2k − 2)!!

(2k − 3)!!
· (2(n− k)− 2)!!

(2(n− k)− 3)!!
− 4k(n− k)

(2k − 2)!!

(2k − 3)!!

)
= (∗)
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because, by the symmetry of Ck,n−k,

n−1∑
k=1

Ck,n−kk(n− k)
(2k − 2)!!

(2k − 3)!!
=

n−1∑
k=1

Ck,n−kk(n− k) · (2(n− k)− 2)!!

(2(n− k)− 3)!!

and

n−1∑
k=1

Ck,n−k
(
n2 − 4nk + 2k(n− k)

)
=

n−1∑
k=1

Ck,n−k
(
(n− k)2 − 3k2

)
= −2

n−1∑
k=1

Ck,n−kk
2.

Simplifying one step further the sum (∗), we finally obtain

EU (S2
n) = 2

n−1∑
k=1

Ck,n−kEU (S2
k)− 2

n−1∑
k=1

Ck,n−kk
2 + 4

n−1∑
k=1

Ck,n−kk
2 (2k − 2)!!

(2k − 3)!!

+ 2

n−1∑
k=1

Ck,n−kk(n− k)
(2k − 2)!!

(2k − 3)!!
· (2(n− k)− 2)!!

(2(n− k)− 3)!!
(44)

The values of the first two sums appearing in the independent term in this recurrence
can be computed using Lemmas 3 and 4:

n−1∑
k=1

Ck,n−kk
2 = 2

n−1∑
k=1

Ck,n−k

(
k

2

)
+

n−1∑
k=1

Ck,n−k

(
k

1

)
=

(
n

2

)(
1− 1

2(n− 1)
· (2n− 2)!!

(2n− 3)!!

)
+
n

2
=
n2

2
− n

4
· (2n− 2)!!

(2n− 3)!!

n−1∑
k=1

Ck,n−kk
2 (2k − 2)!!

(2k − 3)!!

= 2

n−1∑
k=1

Ck,n−k

(
k

2

)
(2k − 2)!!

(2k − 3)!!
+

n−1∑
k=1

Ck,n−k

(
k

1

)
(2k − 2)!!

(2k − 3)!!

=

(
n

2

)( (2n− 2)!!

(2n− 3)!!
− 2
)

+
n

2

( (2n− 2)!!

(2n− 3)!!
− 1
)

=
n2

2
· (2n− 2)!!

(2n− 3)!!
− n(2n− 1)

2

As for the third sum, its value is

n−1∑
k=1

Ck,n−kk(n− k)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

=

n−1∑
k=1

n!(2k − 3)!!(2(n− k)− 3)!!k(n− k)(2k − 2)!!(2(n− k)− 2)!!

2 · (2n− 3)!!k!(n− k)!(2k − 3)!!(2(n− k)− 3)!!

=
n!

2 · (2n− 3)!!

n−1∑
k=1

k(n− k)2k−1(k − 1)!2n−k−1(n− k − 1)!

k!(n− k)!

=
n!

2 · (2n− 3)!!

n−1∑
k=1

2n−2 =
n!(n− 1)2n−3

(2n− 3)!!
=
n(n− 1)

4
· (2n− 2)!!

(2n− 3)!!
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So, the independent term of the expression for EU (S2
n) given by equation (44) is

4

n−1∑
k=1

Ck,n−kk
2 (2k − 2)!!

(2k − 3)!!
− 2

n−1∑
k=1

Ck,n−kk
2+

+2

n−1∑
k=1

Ck,n−kk(n− k)
(2k − 2)!!

(2k − 3)!!
· (2(n− k)− 2)!!

(2(n− k)− 3)!!

= 4
(n2

2
· (2n− 2)!!

(2n− 3)!!
− n(2n− 1)

2

)
− 2
(n2

2
− n

4
· (2n− 2)!!

(2n− 3)!!

)
+
n(n− 1)

2
· (2n− 2)!!

(2n− 3)!!

=
5n2

2
· (2n− 2)!!

(2n− 3)!!
− n(5n− 2).

This completes the proof of the identity in the statement.

SN-11 Proof of Theorem 6.(b)
In this section we prove the following result.

Theorem Let Φn be the random variable that takes a tree T ∈ BTn and computes
its total cophenetic index Φ(T ). Then, for every n > 2, the variance of Φn under
the uniform model is

σ2
U (Φn) =

(
n

2

)
(2n− 1)(7n2 − 3n− 2)

30
−
(
n

2

)
5n2 − n− 2

32
· (2n− 2)!!

(2n− 3)!!

− 1

4

(
n

2

)2( (2n− 2)!!

(2n− 3)!!

)2

Proof If we apply identity (43) in Lemma 12 taking as I the total cophenetic index
Φ, for which

fΦ(k, n− k) =

(
k

2

)
+

(
n− k

2

)
[5, Lem. 2]

EU (Φk) =
1

2

(
k

2

)(
(2k − 2)!!

(2k − 3)!!
− 2

)
[5, Thm. 23]

we obtain the following recurrence for EU (Φ2
n):

EU (Φ2
n) =

n−1∑
k=1

Ck,n−k

(
2EU (Φ2

k) +
((k

2

)
+

(
n− k

2

))2

+ 2
((k

2

)
+

(
n− k

2

))(k
2

)( (2k − 2)!!

(2k − 3)!!
− 2
)

+
1

2

(
k

2

)(
n− k

2

)( (2k − 2)!!

(2k − 3)!!
− 2
)( (2(n− k)− 2)!!

(2(n− k)− 3)!!
− 2
))

(45)
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Let us simplify this recurrence. To begin with, we have that

((k
2

)
+

(
n− k

2

))2

+ 2
((k

2

)
+

(
n− k

2

))(k
2

)( (2k − 2)!!

(2k − 3)!!
− 2
)

+
1

2

(
k

2

)(
n− k

2

)( (2k − 2)!!

(2k − 3)!!
− 2
)( (2(n− k)− 2)!!

(2(n− k)− 3)!!
− 2
)

=

(
k

2

)2

+

(
n− k

2

)2

+ 2

(
k

2

)(
n− k

2

)
+ 2

(
k

2

)2
(2k − 2)!!

(2k − 3)!!

+ 2

(
k

2

)(
n− k

2

)
(2k − 2)!!

(2k − 3)!!
− 4

(
k

2

)2

− 4

(
k

2

)(
n− k

2

)
+

1

2

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!
+ 2

(
k

2

)(
n− k

2

)
−
(
k

2

)(
n− k

2

)
(2k − 2)!!

(2k − 3)!!
−
(
k

2

)(
n− k

2

)
(2(n− k)− 2)!!

(2(n− k)− 3)!!

=

(
n− k

2

)2

− 3

(
k

2

)2

+ 2

(
k

2

)2
(2k − 2)!!

(2k − 3)!!

+

(
k

2

)(
n− k

2

)
(2k − 2)!!

(2k − 3)!!
−
(
k

2

)(
n− k

2

)
(2(n− k)− 2)!!

(2(n− k)− 3)!!

+
1

2

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

and then, using that Ck,n−k = Cn−k,k,

n−1∑
k=1

Ck,n−k

(((k
2

)
+

(
n− k

2

))2

+ 2
((k

2

)
+

(
n− k

2

))(k
2

)( (2k − 2)!!

(2k − 3)!!
− 2
)

+
1

2

(
k

2

)(
n− k

2

)( (2k − 2)!!

(2k − 3)!!
− 2
)( (2(n− k)− 2)!!

(2(n− k)− 3)!!
− 2
))

=

n−1∑
k=1

Ck,n−k

((
n− k

2

)2

− 3

(
k

2

)2

+ 2

(
k

2

)2
(2k − 2)!!

(2k − 3)!!

+

(
k

2

)(
n− k

2

)
(2k − 2)!!

(2k − 3)!!
−
(
k

2

)(
n− k

2

)
(2(n− k)− 2)!!

(2(n− k)− 3)!!

+
1

2

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

)

=

n−1∑
k=1

Ck,n−k

(
− 2

(
k

2

)2

+ 2

(
k

2

)2
(2k − 2)!!

(2k − 3)!!

+
1

2

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

)

so that (45) becomes

EU (Φ2
n) = 2

n−1∑
k=1

Ck,n−kEU (Φ2
k) + 2

n−1∑
k=1

Ck,n−k

(
k

2

)2
(2k − 2)!!

(2k − 3)!!

− 2

n−1∑
k=1

Ck,n−k

(
k

2

)2

+
1

2

n−1∑
k=1

Ck,n−k

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!
.

(46)
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Now, using Lemmas 3 and 4 we have that

n−1∑
k=1

Ck,n−k

(
k

2

)2

=

n−1∑
k=1

Ck,n−k

(
6

(
k

4

)
+ 6

(
k

3

)
+

(
k

2

))
= 3

(
n

4

)(
1− 15

16(n− 1)
· (2n− 2)!!

(2n− 3)!!

)
+ 3

(
n

3

)(
1− 3

4(n− 1)
· (2n− 2)!!

(2n− 3)!!

)
+

1

2

(
n

2

)(
1− 1

2(n− 1)
· (2n− 2)!!

(2n− 3)!!

)
=

1

2

(
n

2

)2

− n(15n2 − 27n+ 10)

27
· (2n− 2)!!

(2n− 3)!!

n−1∑
k=1

Ck,n−k

(
k

2

)2
(2k − 2)!!

(2k − 3)!!
=

n−1∑
k=1

Ck,n−k

(
6

(
k

4

)
+ 6

(
k

3

)
+

(
k

2

)) (2k − 2)!!

(2k − 3)!!

= 3

(
n

4

)( (2n− 2)!!

(2n− 3)!!
− 16

5

)
+ 3

(
n

3

)( (2n− 2)!!

(2n− 3)!!
− 8

3

)
+

1

2

(
n

2

)( (2n− 2)!!

(2n− 3)!!
− 2
)

=
1

2

(
n

2

)2
(2n− 2)!!

(2n− 3)!!
−
(
n

2

)
12n2 − 20n+ 7

15

As for the remaining sum in the right hand side sum of (46),

n−1∑
k=1

Ck,n−k

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

=

n−2∑
k=2

Ck,n−k

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

=

n−2∑
k=2

n!(2k−3)!!(2(n−k)−3)!!k!(n−k)!2k−1(k−1)!2n−k−1(n−k−1)!

2(2n−3)!!k!(n−k)!22(k−2)!(n−k−2)!(2k−3)!!(2(n−k)−3)!!

=
n!2n−5

(2n− 3)!!

n−2∑
k=2

(k − 1)(n− k − 1)

=
n!2n−5

(2n− 3)!!

(
(n− 1)

n−2∑
k=2

(k − 1)−
n−2∑
k=2

(k − 1)k
)

=
n!2n−5

(2n− 3)!!

(
(n− 1)

n−3∑
k=1

k − 2

n−2∑
k=2

(
k

2

))
=

n!2n−5

(2n− 3)!!

(
(n− 1)

(
n− 2

2

)
− 2

(
n− 1

3

))
=

1

4

(
n

4

)
(2n− 2)!!

(2n− 3)!!

Therefore, returning back to (46), its independent term turns out to be

2

n−1∑
k=1

Ck,n−k

(
k

2

)2
(2k − 2)!!

(2k − 3)!!
− 2

n−1∑
k=1

Ck,n−k

(
k

2

)2

+
1

2

n−1∑
k=1

Ck,n−k

(
k

2

)(
n− k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!
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= 2

(
1

2

(
n

2

)2
(2n− 2)!!

(2n− 3)!!
−
(
n

2

)
12n2 − 20n+ 7

15

)

− 2

(
1

2

(
n

2

)2

− n(15n2 − 27n+ 10)

27
· (2n− 2)!!

(2n− 3)!!

)
+

1

8

(
n

4

)
(2n− 2)!!

(2n− 3)!!

=
n(49n3 − 57n2 − 22n+ 24)

192
· (2n− 2)!!

(2n− 3)!!
− n(n− 1)(63n2 − 95n+ 28)

60

So, the sequence EU (Φ2
n) is the solution of the recurrence

Xn = 2

n−1∑
k=1

Ck,n−kXk −
63n4 − 158n3 + 123n2 − 28n

60

+
49n4 − 57n3 − 22n2 + 24n

192
· (2n− 2)!!

(2n− 3)!!

= 2

n−1∑
k=1

Ck,n−kXk −
126

5

(
n

4

)
− 22

(
n

3

)
− 3

(
n

2

)
+
(49

8

(
n

4

)
+

237

32

(
n

3

)
+

25

16

(
n

2

)
− 1

32
n
) (2n− 2)!!

(2n− 3)!!

with initial condition X1 = EU (Φ2
1) = 0. By Proposition 6, this solution is

EU (Φ2
n) = 28

(
n

5

)
+

256

5

(
n

4

)
+ 26

(
n

3

)
+ 3

(
n

2

)
−
(63

8

(
n

4

)
+

33

4

(
n

3

)
+

3

2

(
n

2

))
· (2n− 2)!!

(2n− 3)!!

=

(
n

2

)(7n3 + n2 − 8n+ 1

15
− 21n2 − 17n− 2

32
· (2n− 2)!!

(2n− 3)!!

)
Finally,

σU (Φn)2 = EU (Φ2
n)− EU (Φn)2

=

(
n

2

)(7n3 + n2 − 8n+ 1

15
− 21n2 − 17n− 2

32
· (2n− 2)!!

(2n− 3)!!

)
− 1

4

(
n

2

)2( (2n− 2)!!

(2n− 3)!!
− 2
)2

=

(
n

2

)
(2n− 1)(7n2 − 3n− 2)

30
−
(
n

2

)
5n2 − n− 2

32
· (2n− 2)!!

(2n− 3)!!

− 1

4

(
n

2

)2( (2n− 2)!!

(2n− 3)!!

)2

.

This completes the proof of Theorem 6.(b).

SN-12 Proof of Theorem 6.(c)
In this section we prove the following result.

Theorem Let Sn and Φn be, respectively, the random variable that take a tree
T ∈ BTn and compute its Sackin index S(T ) and its total cophenetic index Φ(T ).
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Then, for every n > 2, the covariance of Sn and Φn under the uniform model is

CovU (Φn, Sn) =

(
n

2

)
26n2 − 5n− 4

15
− 3n+ 2

8

(
n

2

)
(2n− 2)!!

(2n− 3)!!

− n

2

(
n

2

)( (2n− 2)!!

(2n− 3)!!

)2

Proof If we apply identity (42) in Lemma 12 taking as I and J the total cophenetic
index Φ and the Sackin index S, for which we have that

fΦ(k, n− k) =

(
k

2

)
+

(
n− k

2

)
, EU (Φk) =

1

2

(
k

2

)( (2k − 2)!!

(2k − 3)!!
− 2
)

fS(k, n− k) = n, EU (Sk) = k
( (2k − 2)!!

(2k − 3)!!
− 1
)
,

we obtain

EU (ΦnSn) =

n−1∑
k=1

Ck,n−k

(
2EU (ΦkSk) + n

(
k

2

)( (2k − 2)!!

(2k − 3)!!
− 2
)

+

(
k

2

)( (2k − 2)!!

(2k − 3)!!
− 2
)

(n− k)
( (2(n− k)− 2)!!

(2(n− k)− 3)!!
− 1
)

+ 2
((k

2

)
+

(
n− k

2

))
k
( (2k − 2)!!

(2k − 3)!!
− 1
)

+ n
((k

2

)
+

(
n− k

2

)))

=

n−1∑
k=1

Ck,n−k

(
2EU (ΦkSk) + n

(
k

2

)
+ n

(
n− k

2

)
− 4k

(
k

2

)
− 2k

(
n− k

2

)
+ (n− k)

(
k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

− 2(n− k)

(
k

2

)
(2(n− k)− 2)!!

(2(n− k)− 3)!!
+ 3k

(
k

2

)
(2k − 2)!!

(2k − 3)!!

+ 2k

(
n− k

2

)
(2k − 2)!!

(2k − 3)!!

)
= (∗∗)

Now, using the symmetry of Ck,n−k we have that

n−1∑
k=1

Ck,n−k

(
n

(
k

2

)
+ n

(
n− k

2

)
− 4k

(
k

2

)
− 2k

(
n− k

2

))
=

n−1∑
k=1

Ck,n−k

(
n

(
k

2

)
+ n

(
k

2

)
− 4k

(
k

2

)
− 2(n− k)

(
k

2

))
= −2

n−1∑
k=1

Ck,n−k

(
k

2

)
k

and

n−1∑
k=1

Ck,n−k(n− k)

(
k

2

)
(2(n− k)− 2)!!

(2(n− k)− 3)!!
=

n−1∑
k=1

Ck,n−kk

(
n− k

2

)
(2k − 2)!!

(2k − 3)!!
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and therefore we can simplify (∗∗) one step further, and we obtain:

EU (ΦnSn) = (∗∗)

= 2

n−1∑
k=1

Ck,n−kEU (ΦkSk) +

n−1∑
k=1

Ck,n−k

(
3k

(
k

2

)
(2k − 2)!!

(2k − 3)!!

− 2k

(
k

2

)
+ (n− k)

(
k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

)
(47)

We can compute now the three sums that form the independent term in this

recurrence. To begin with, by Lemmas 3 and 4,

n−1∑
k=1

Ck,n−kk

(
k

2

)
= 3

n−1∑
k=1

Ck,n−k

(
k

3

)
+ 2

n−1∑
k=1

Ck,n−k

(
k

2

)
=

3

2

(
n

3

)(
1− 3

4(n− 1)
· (2n− 2)!!

(2n− 3)!!

)
+

(
n

2

)(
1− 1

2(n− 1)
· (2n− 2)!!

(2n− 3)!!

)
=
n

2

(
n

2

)
− n(3n− 2)

16
· (2n− 2)!!

(2n− 3)!!

n−1∑
k=1

Ck,n−kk

(
k

2

)
(2k − 2)!!

(2k − 3)!!

= 3

n−1∑
k=1

Ck,n−k

(
k

3

)
(2k − 2)!!

(2k − 3)!!
+ 2

n−1∑
k=1

Ck,n−k

(
k

2

)
(2k − 2)!!

(2k − 3)!!

=
3

2

(
n

3

)( (2n− 2)!!

(2n− 3)!!
− 8

3

)
+

(
n

2

)( (2n− 2)!!

(2n− 3)!!
− 2
)

=
n

2

(
n

2

)
(2n− 2)!!

(2n− 3)!!
− 2(2n− 1)

3

(
n

2

)

As for the remaining sum,

n−1∑
k=1

Ck,n−k(n− k)

(
k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

=

n−1∑
k=1

n!(2k − 3)!!(2n− 2k − 3)!!(n− k)k(k − 1)(2k − 2)!!(2n− 2k − 2)!!

4 · (2n− 3)!!k!(n− k)!(2k − 3)!!(2(n− k)− 3)!!

=
n!

4 · (2n− 3)!!

n−1∑
k=1

2k−1(k − 1)!2n−k−1(n− k − 1)!

(k − 2)!(n− k − 1)!

=
n!2n−4

(2n− 3)!!

n−1∑
k=1

(k − 1) =
n− 2

8

(
n

2

)
(2n− 2)!!

(2n− 3)!!
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So, the independent term of equation (47) is

3

n−1∑
k=1

Ck,n−kk

(
k

2

)
(2k − 2)!!

(2k − 3)!!
− 2

n−1∑
k=1

Ck,n−k

(
k

2

)
k

+

n−1∑
k=1

Ck,n−k(n− k)

(
k

2

)
(2k − 2)!!(2(n− k)− 2)!!

(2k − 3)!!(2(n− k)− 3)!!

= 3
(n

2

(
n

2

)
(2n− 2)!!

(2n− 3)!!
− 2(2n− 1)

3

(
n

2

))
− 2
(n

2

(
n

2

)
− n(3n− 2)

16
· (2n− 2)!!

(2n− 3)!!

)
+
n− 2

8

(
n

2

)
(2n− 2)!!

(2n− 3)!!

=
n(13n2 − 9n− 2)

16
· (2n− 2)!!

(2n− 3)!!
−
(
n

2

)
(5n− 2).

In summary, we have proved so far that the sequence EU (ΦnSn) is the solution
of the recurrence

Xn = 2

n−1∑
k=1

Ck,n−kXk − (5n− 2)

(
n

2

)
+
n(13n2 − 9n− 2)

16
· (2n− 2)!!

(2n− 3)!!

= 2

n−1∑
k=1

Ck,n−kXk − 15

(
n

3

)
− 8

(
n

2

)
+
(39

8

(
n

3

)
+

15

4

(
n

2

)
+

1

8
· n
) (2n− 2)!!

(2n− 3)!!

with initial condition X1 = EU (Φ1S1) = 0. By Proposition 6, this solution is

EU (ΦnSn) =
104

5

(
n

4

)
+ 28

(
n

3

)
+ 8

(
n

2

)
−
(45

8

(
n

3

)
+ 4

(
n

2

)) (2n− 2)!!

(2n− 3)!!

=

(
n

2

)(26n2 + 10n− 4

15
− 15n+ 2

8
· (2n− 2)!!

(2n− 3)!!

)
Finally,

CovU (Φn, Sn) = EU (ΦnSn)− EU (Φn)EU (Sn)

=

(
n

2

)(26n2 + 10n− 4

15
− 15n+ 2

8
· (2n− 2)!!

(2n− 3)!!

)
− 1

2

(
n

2

)( (2n− 2)!!

(2n− 3)!!
− 2
)
n
( (2n− 2)!!

(2n− 3)!!
− 1
)

=

(
n

2

)(
26n2 − 5n− 4

15
− 3n+ 2

8
· (2n− 2)!!

(2n− 3)!!
− n

2

( (2n− 2)!!

(2n− 3)!!

)2
)

This completes the proof of Theorem 6.(c).

SN-13 Proof of a result stated in the Conclusions
In this section we prove the following result.

Proposition 5 Let n = 2m + k with m = blog2(n)c > 5 and k < 2m.
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(a) If k > 2m − 29, the minimum value of V on BT∗n is reached exactly at the trees
of type Fn.

(b) If k = 2m − 30. the minimum value of V on BT∗n is reached exactly at the trees
of type Fn when m 6 7 and at the trees of type Tn;6 if m > 8.

Proof Let n = 2m+1 − x with m = blog2(n)c > 5 and x 6 30, so that, with our
usual notations, k = 2m − x. For every j > 1 and 5 6 l1 < · · · < lj 6 m,

k +

j∑
i=1

(2li − 1) > 2m − x+ 25 − 1 > 2m

and therefore, by Lemma 1, every tree Tn;l1,...,lj with j > 1 has depth m+ 2 and

p1 = 3 · 2m − k −
j∑
i=1

(2li − 1) = 2m+1 + x−
j∑
i=1

(2li − 1).

However, recall from that lemma that not every such tree exists: it must also happen
that

k +
1

2

j∑
i=1

(2li − 2) > 2m, i.e., x <
j∑
i=1

(2li−1 − 1).

We shall use this restriction later in this proof.
Now, by Lemma 2, and using the notations

A(l) :=

j∑
i=1

(2li − l2i − 1), B(l) :=

j∑
i=1

(2li − li − 1)

introduced in at the beginning of Section SN-7, we have that

W (Tn;l1,...,lj ) =
1

n

(
n(p1 +

j∑
i=1

l2i )− (p1 +

j∑
i=1

li)
)

=
1

2m+1 − x

(
(2m+1 − x)

(
2m+1 + x−A(l)

)
−
(
2m+1 + x−B(l)

)2)
=

1

2m+1 − x
(
2m+1(2B(l)−A(l))−B(l)2 − 2x(2m+1 + x) + x(2B(l) +A(l))

)
.

Thus,

W (Tn;l1,...,lj ) 6W (Bn) =
2k(2m − k)

2m + k
=

2x(2m − x)

2m+1 − x
if, and only if,

2m+1(2B(l)−A(l))−B(l)2 − 2x(2m+1 + x) + x(2B(l) +A(l)) 6 2x(2m − x),

which is equivalent to

(2m+1 −B(l))(B(l)− 3x) + (2m+1 − x)(B(l)−A(l)) 6 0. (48)
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Since B(l) > A(l) (because j > 1 by assumption) and B(l) 6
∑m
i=5 2i < 2m+1, and

we are assuming that x 6 30, inequality (48) implies that

(2m+1 −B(l))(B(l)− 90) + (2m+1 − 30)(B(l)−A(l)) 6 0. (49)

In this inequality’s left-hand side expression, we know that B(l) < 2m+1 and, since
m > 5 and j > 1, (2m+1 − 30)(B(l) − A(l)) > 0. Moreover, since 25 − 5 − 1 = 26,
26 − 6 − 1 = 57, and 27 − 7 − 1 = 120, it turns out that if some li is larger than
6, then B(l) − 90 > 0. Therefore, inequality (49) can only hold when j = 1 and
l1 = 5, 6 and when j = 2 and l1 = 5, l2 = 6.
In summary, if V (Tn;l1,...,lj ) 6 V (Bn), then {l1, . . . , lj} is either {5}, {6}, or {5, 6}:

in all other cases, V (Bn) < V (Tn;l1,...,lj ). Let us check now these three remaining
cases:
• If {l1, . . . , lj} = {5}, then the necessary condition x <

∑j
i=1(2li−1−1) for the

existence of Tn;5 is satisfied only when x < 15. But sinceB(5) = 25−5−1 = 26,
A(5) = 25−52−1 = 6, andm > 5, the left-hand side expression in (48) satisfies
that

(2m+1 − 26)(26− 3x) + 20(2m+1 − x)

> (26 − 26)(26− 3x) + 20(26 − x) = 2268− 134x > 0

when x < 15. Therefore, for the range of values of n considered in the state-
ment, when Tn;5 exists, V (Bn) < V (Tn;5).
• If {l1, . . . , lj} = {6}, the necessary condition x <

∑j
i=1(2li−1 − 1) for the

existence of Tn;6 is satisfied for every x 6 30. In this case, B(6) = 26−6−1 =

57 and A(6) = 26 − 62 − 1 = 27, and inequality (48) becomes

(2m+1 − 57)(57− 3x) + 30(2m+1 − x) 6 0.

Now, a simple computation shows that if 5 6 m 6 7 and x 6 30, this inequal-
ity is not satisfied. As far as when m > 8 goes, if x 6 29, then

(2m+1 − 57)(57− 3x) + 30(2m+1 − x) > (29 − 57)(57− 87) + 30(29 − 29) > 0

but when x = 30,

(2m+1 − 57)(57− 90) + 30(2m+1 − 30) = 981− 3 · 2m+1 < 0.

This implies that if m > 8 and x = 30, V (Tn;6) < V (Bn), while if m > 8 and
x 6 29 or if 5 6 m 6 7 and x 6 30, V (Bn) < V (Tn;6).
• If {l1, . . . , lj} = {5, 6}, the necessary condition x <

∑j
i=1(2li−1 − 1) for the

existence of Tn;5,6 is satisfied for every x 6 30. But in this case B(5, 6) = 83

and A(5, 6) = 33, and then, when m > 5, the left-hand side expression in (49)
satisfies that

(2m+1 − 83)(83− 3x) + 50(2m+1 − x)

> (26 − 83)(83− 3x) + 50(26 − x) = 7x+ 1623 > 0
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So, in this case inequality (49) does never hold, and therefore V (Bn) <

V (Tn;5,6).
In summary, for every m > 5 and for every n = 2m+1 − x with x 6 30, V (Bn) <

V (Tn;l1,...,lj ) for every j > 1 and 5 6 l1 < · · · < ll 6 m except when m > 8 and
x = 30, in which case V (Tn;6) < V (Bn) < V (Tn;l1,...,lj ) for every other type of trees
Tn;l1,...,lj with j > 1.
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