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1. Using embedding features for alternative implementations 

Instead of the original model (“Adjacency only”), we investigated two alternative models: one which 

utilizes embedding features only (“Embedding only”), and one which concatenates the adjacency matrices 

with these corresponding embedding vectors (“Combined”). In both cases, the embedding is executed in 

the preprocessing module (Supplementary Fig. 1). We chose the popular node2vec algorithm, which is a 

natural language processing inspired embedding method, that reduces the representation space of nodes 

by learning low-dimensional features based on their neighborhoods in the graph [1]. We used the out-of-

the-box, high performance C++ implementation of the node2vec algorithm, that is included in the libraries 

of the Stanford Network Analysis Platform (SNAP) [2]. Parametrization of the learning followed the values 

presented in Supplementary Table 1, with a carefully selected number of embedding dimensions in the 

output representation, which was set to match the number of nodes in the induced subgraphs in order to 

construct matching square matrices that can be concatenated later on in the main machine learning part. 

Statistical analysis of results for the different model types are summarized via boxplot representation in 

Supplementary Fig. 2. Kruskal-Wallis test was used to compare performance of the investigated two 

alternative models and the original model. Post hoc comparisons were performed using the Mann-

Whitney-Wilcoxon test. For both tests significance level was set to 0.05 and false discovery rate (FDR) 

correction was used to adjust p-values for multiple testing.  
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Supplementary Figure 1: Preprocessing of the input network for the combined model. Schematic summary of the preprocessing 
module in the combined model, that takes in the provided protein-protein interaction (PPI) network, and produces the 
downscaled networks with 90% (N90) and its 90% (thus 81%, N81) of edges from the original one (N100) in the form of adjacency 
lists, and generates the induced subgraphs as well as the node embeddings for each. These representation files are created for 
the original network as well but are not required in the machine learning part, resulting in the listed 7 files to be fed into the 
conditional generative adversarial network (cGAN) model down the line. 

Supplementary Table 1: The parametrization of the node2vec algorithm. 

Number of dimensions (𝑑) 32 

Length of the walk per source (𝑙) 80 

Number of walks per source (𝑟) 10 

Context size for optimization (𝑘) 10 

Number of epochs in SGD (𝑒) 5 

Return hyperparameter (𝑝) 0.25 

In-out hyperparameter (𝑞) 0.25 

Parameter abbreviations used in the code are in brackets, SGD: stochastic gradient descent  
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Supplementary Figure 2: Comparison of alternative implementations of our prediction tool with the original cGAN-based 
model. AUROC: area under the receiver operating characteristic curve, AUPRC: area under the precision-recall curve, NDCG: 
normalized discounted cumulative gain, Combined: adjacency matrices concatenated with embedding vector-based matrices as 
input, *: q-value based significance  
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2. Comparison of cGAN with embedding-based pairwise classifiers 

Supplementary Table 2: Comparison of our results with node embedding based pairwise classifiers, via the implementation of 
Yue et al. [3]. We chose to use the same metrics which were presented in their work. 

Species 
cGAN 90/10% 
downscaling 

cGAN 80/20% 
downscaling 

Yue et al., node2vec Yue et al., struc2vec 

AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy 
H. sapiens 0.913 0.931 0.906 0.872 0.827 0.755 0.869 0.805 

S. cerevisiae 0.931 0.928 0.925 0.874 0.847 0.778 0.888 0.820 
M. musculus 0.909 0.925 0.900 0.863 0.811 0.739 0.859 0.794 
R. norvegicus 0.925 0.925 0.916 0.865 0.822 0.751 0.877 0.813 

S. scrofa 0.898 0.927 0.889 0.875 0.788 0.719 0.829 0.768 

Mean 0.915 0.927 0.907 0.870 0.819 0.748 0.864 0.800 

cGAN: conditional generative adversarial network AUROC: area under the receiver operating characteristic curve 

In order to provide the closest comparison setup possible, we prepared our results with a different 

downscaling ratio to match the 80/20% training-test set ratio used by Yue et al. in their methods. Although 

the 80/20% downscaling ratio in our work does not correspond to the concept of train/test ratio in the 

cross validation of pairwise classifiers, we applied it anyway to better resemble the conditions of the 

referred methods. Consequently, the preprocessing steps in our prediction tool produced N80 and N64 

networks, of which the prediction from N64 to N80 was trained to the conditional generative adversarial 

network (cGAN) model, and the prediction from N80 to N100 was tested across the species. We used our 

PPI networks (STRING cutoff 0.95 [4]) for both the cGAN and the methods of Yue et al., instead of the ones 

they used (STRING cutoff 0.7) in order to create the most accurate comparison possible. We applied a 5-

fold cross validation setup for our cGAN (due to the 80/20% downscaling ratio), however, the 

implementation of Yue et al. did not allow us to evaluate the performance of their node2vec and struc2vec 

based classifiers in a k-fold manner, and thus the results of only a single prediction were used. Results, 

summarized in Supplementary Table 2, show a consistent improvement in performance for our model as 

compared to the node embedding based classifiers.  
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3. Gene ontology analysis of the predicted protein-protein interactions 

Using the results summarized in Supplementary Table 2, we also performed an analysis of biological 

functionalities among the proteins of the predicted interactions from cGAN, node2vec and struc2vec. For 

each species node2vec and struc2vec predictions were filtered based on the confidence score with a 

cutoff value >0.5, while from our cGAN results, we selected the top 20% highest confidence scores 

produced by one prediction from N80 to N100, as that resembles the intended use of the model in 

practice. We generated the analysis inputs from filtered positive edges represented by its associated 

proteins (nodes) as the edges cannot be interpreted as a unit in this approach. We used protein 

information files obtained from the STRING database to map preferred gene names to STRING protein 

identifiers. Overrepresentation analysis-based Gene Ontology (GO) enrichment analysis [5, 6] with 

biological process ontologies was performed on filtered predicted results of node2vec, struc2vec and 

cGAN, using clusterProfiler R library [7] version 4.3.1, and N100 network as background for the analysis. 

In overrepresentation analysis FDR correction was used to adjust p-values for multiple testing and the 

significance level was set to 0.05.  We separately compared GO term sets enriched in node2vec and 

struc2vec with the GO enrichment results of our method by calculating the semantic similarities between 

the GO term sets using GOSemSim R library [8] version 2.20.0. For the semantic similarity measurements 

GO term sets were simplified and were compared by the corresponding functions with their default 

settings. To store input file paths and parameters for the analysis we used JSON (JavaScript Object 

Notation) file which was converted into an R object using rjson R library (https://CRAN.R-

project.org/package=rjson, version 0.2.20). With VennDiagram R library (https://CRAN.R-

project.org/package=VennDiagram, version 1.7.1) we generated Venn diagrams to summarize the 

comparison results (Supplementary Fig. 3) and to make interpretable the content of these figures we used 

R libraries RcolorBrewer (https://CRAN.R-project.org/package=RColorBrewer, version 1.1-2) and 

gridExtra (https://CRAN.R-project.org/package=gridExtra, version 2.3) to color the Venn diagrams and to 

https://cran.r-project.org/package=rjson
https://cran.r-project.org/package=rjson
https://cran.r-project.org/package=RColorBrewer
https://cran.r-project.org/package=gridExtra
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add a legend to them. ClusterProfiler and GOSemSim relies on genome-wide annotation packages (OrgDb) 

maintained by Bioconductor project [9]. In case of the species Saccharomyces cerevisiae the inclusion of 

org.Sc.sgd.db BioConductor annotation data package [10] was necessary due to difficulties with its OrgDb 

object. In case of Sus scrofa, proportionally fewer genes were included into the enrichment sets compared 

to other species, which could be caused by poorer mapping between GO terms and gene identifiers.  
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Supplementary Figure 3: Comparison of different prediction methods by enrichment analysis on predicted results from the 
aspect of biological process ontologies. Venn diagrams of enriched biological process Gene Ontology (GO) terms in our results 
(cGAN, denoted by pale orange color) in comparison with the results of two prediction methods (node2vec, struc2vec, indicated 
by pale green and pale blue colors, respectively). With semantic comparisons of GO annotations, we measured the similarities 
between GO term sets (semantic similarity). 
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In a similar fashion, we also performed GO enrichment analysis with biological process, molecular function 

and cellular component ontologies on our results to map certain features of the newly predicted edges. 

Following the intended use of the proposed cGAN model, for each species we pooled together the top 

10% highest confidence interactions from all 10-folds of predictions that were generated during the link 

prediction from N90 to N100. We separated the true positive and false positive edges to generate the 

analysis inputs, containing only the nodes connected by the filtered edges as the edges cannot be 

interpreted as a unit in this approach. Using the corresponding N100 networks as the background for the 

analysis, we separately compared GO term sets enriched in true positive and false positive sets for each 

species and each ontology type (Supplementary Table 3, 4) by calculating the semantic similarities 

between the GO term sets using GOSemSim R library [8].  With VennDiagram R library (https://CRAN.R-

project.org/package=rjson, version 1.7.1) we summarized the results of the GO enrichment analysis in 

Venn diagrams generated separately for true positive and false positive sets and for each ontology type 

allowing comprehensive overview of the comparison results, presented in Supplementary Fig. 4. R 

libraries rjson, RColorBrewer, gridExtra, and org.Sc.sgd.db were used as described previously. 
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Supplementary Figure 4: Enriched Gene Ontology term set comparisons between true positive and false positive edges derived 
protein coding gene sets. Venn diagrams visualizing cross-species similarities and differences between Gene Ontology (GO) term 
sets by ontologies and separately for true positive and false positive sets so the characteristics of true positive and false positive 
sets are comparable. 

Supplementary Table 3: Semantic similarity values of the Gene Ontology terms enriched in true positive and false positive edges 
derived protein coding gene sets. 

Species Biological process Molecular function Cellular component 

Homo sapiens 0.759 0.807 0.822 

Saccharomyces cerevisiae 0.667 0.745 0.771 

Mus musculus 0.666 0.772 0.774 

Rattus norvegicus 0.709 0.791 0.826 

Sus scrofa 0.653 0.821 0.893 
  



12 
 

Supplementary Table 4: Gene Ontology terms that enriched in all examined species. 

 True positive False positive 

B
io
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gi

ca
l p

ro
ce

ss
 GO:0022613 ribonucleoprotein complex 

biogenesis 
GO:0140053 mitochondrial gene expression 
GO:0071826 ribonucleoprotein complex 
subunit organization 
GO:1901566 organonitrogen compound 
biosynthetic process 

GO:0022613 ribonucleoprotein complex 
biogenesis 
GO:0006974 cellular response to DNA damage 
stimulus 

M
o

le
cu

la
r 

fu
n

ct
io

n
 

GO:0003735 structural constituent of 
ribosome 
GO:0003899 DNA-directed 5'-3' RNA 
polymerase activity 
GO:0140296 general transcription initiation 
factor binding 

GO:0003735 structural constituent of ribosome 
GO:0140640 catalytic activity, acting on a 
nucleic acid 

C
e

llu
la

r 
co

m
p

o
n

e
n

t 

GO:0000502 proteasome complex 
GO:0000428 DNA-directed RNA polymerase 
complex 
GO:1990904 ribonucleoprotein complex 
GO:0120114 Sm-like protein family complex 

GO:0005761 mitochondrial ribosome 
GO:0000502 proteasome complex 
GO:0120114 Sm-like protein family complex 
GO:1990904 ribonucleoprotein complex 
GO:0048475 coated membrane 

 

4. Gene and transcript length analysis 

For gene and transcript length analysis the protein-coding transcript (coding sequence with untranslated 

regions) and gene lengths (base pair count from gene start to gene end position) were downloaded from 

Ensembl via the BioMart data mining web-based tool (Homo sapiens: GRCh38.p13, Saccharomyces 

cerevisiae: R64-1-1, Mus musculus: GRCm39, Rattus norvegicus: mRatBN7.2, Sus scrofa: Sscrofa11.1, 

Ensembl release: 105, access date: December 2021) for all species [11, 12]. We used the same filtering as 

for the GO analysis of true positive and false positive sets to generate the analysis inputs. The true positive 

and false positive lengths were statistically compared with Mann-Whitney-Wilcoxon test [13, 14] and 

based on mean values we determined which set has longer gene or transcript lengths on average 

(Supplementary Table 5). R library rjson was used as described previously. 
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Supplementary Table 5: Length analysis results of the true positive and false positive protein coding genes and transcripts. 

Species Length (bp) True positive True positive p-value 

Homo sapiens 
Gene 42528 65466 < 0.001 

Transcript 2991 3718 < 0.001 

Saccharomyces cerevisiae 
Gene 1362 1629 < 0.001 

Transcript 1298 1598 < 0.001 

Mus musculus 
Gene 31088 48241 < 0.001 

Transcript 2742 3369 < 0.001 

Rattus norvegicus 
Gene 27785 48435 < 0.001 

Transcript 2203 2692 < 0.001 

Sus scrofa 
Gene 58806 70645 0.005 

Transcript 3200 3465 0.003 
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