Supplementary Material: Exploring Attractor
Bifurcations in Boolean Networks

1 Algorithms and Methods

In this section, we cover the symbolic algorithms which enable bifurcation anal-
ysis in AEON. The material is based on the previous work published in [I} 2] [4],
but also provides additional novel technical details. Furthermore, it serves
as additional clarification of several technical aspects presented in the main
manuscript.

1.1 Symbolic encoding

First, let us formally define Boolean networks and their dynamics, including
parametrisations and uninterpreted functions. Subsequently, we discuss how
this formalism is encoded symbolically in terms of binary decision diagrams.

1.1.1 Boolean networks

Definition 1. A Boolean network is a tuple (V,R,F), such that:

o V is the set of Boolean variables (denoted A,B,...);
e R CV XYV is the set of regulations;
o F ={F,| A€V} is a family of Boolean update functions.

The signature of each update function Fy is given by its requlatory context
C(A) ={B€ V| (B,A) € R}. Thatis, Fy:{0,1}® — {0,1}.

Here, the members of C(A) are the regulators of A, while A is the target of the
regulations. Subsequently, the set of all possible Boolean valuations of network
variables (i.e. {0,1}Y) is the state space of the Boolean network.

For conciseness, given a state s € {0,1}Y, we abuse the notation slightly
and write Fy(s) to denote the application of Fy to the state s restricted to the
variables within the regulatory context C(A). Additionally, we write s[A — b]
for b € {0,1} to denote a copy of s with the value of A fixed to b.

Asynchronous dynamics The dynamics of a Boolean network are described
through its asynchronous state-transition graph.

Definition 2. An asynchronous state-transition graph of a Boolean network
(V,R,F) is a pair (V,E). Here, V are the states of the Boolean network V =
{0,1}Y. The edge relation E C'V x V is then constructed as follows:

(u,v) e ESu#vATAEV. v=u[A— Fy(u)]

Intuitively, an edge is created between two states which differ in exactly one
variable, such that this variable is updated using its associated update function.
We write © — v when (u,v) € E, and v —* v when (u,v) € E* (the reflexive
and transitive closure of F).

Within the state transition graph, we recognise attractors as important be-
havioural features of the underlying Boolean network:

Definition 3. An attractor is the bottom SCC of the state-transition graph of
a Boolean network (V, R, F). That is, a mazimal set A C {0,1}Y such that for
every two u,v € A, we have u —* v and v —* u, but at the same time, there is
now€V\A st u—w.

We generally recognise three types of attractors:

e Set A is a stable attractor when it consists of a single state.

e Set A is an oscillating attractor when its state-transition graph is a cycle.
e Set A is a disordered attractor when it is neither stable nor oscillating.

Later, we discuss how attractors can be efficiently detected in the state-
transition graph of Boolean network.

1.1.2 Parametrised Boolean networks

To express possible uncertainty in the behaviour of a Boolean network, we define
the notion of parametrised Boolean networks:

Definition 4. A parametrised Boolean network is a tuple (V,R,'P,]-A"). Here,
V and R have the same purpose as_in Definition [0l Additionally, P is the set
of logical parameters, and F = {Fy | A € V} the set of parametrised update
functions.

The signature of each parametrised update function is determined by its reg-
ulatory context and the set of logical parameters: Fy : {0, 1}C(A)UP.

Intuitively, logical parameters represent unknown constant values which in-
fluence the behaviour of the network, but do not change during its evolution.
Consequently, the behaviour of many different Boolean network can be described
using a single parametrised network.

Similar to the network’s state space, we define the network’s parameter space
to be the set {0,1}” and we denote the members of this set as parametrisations.

For a state s € {0,1}Y and a parametrisation p € {0,1}”, we write Fy(s U p)
to denote the application of ﬁA to the joint valuation of network variables and
parametrisations.

Note that in practice, we may sometimes only operate within a subset of
biologically relevant parametrisations Valid C {0,1}7. Nevertheless, this is
easily captured within the algorithms in this document by substituting the set
of all parametrisations {0,1}” for the set Valid (complement operation A is
handled using Valid \ A).

Asynchronous dynamics To compactly describe the asynchronous dynam-
ics of such a network, we rely on a coloured state-transition graph. In such
a graph, a set of colours is used to distinguish multiple possible edge relations
over the same set of vertices:

Definition 5. An asynchronous state-transition graph of a fized parametrised
Boolean network (V,R,P,F) is a tuple (V,C,E). Here, V (vertices) are the
states of the Boolean network, V = {0,1}V, and C (colours) are the parametri-
sations, C = {0,1}". The edge relation of the graph, E C'V x C x V, is then
constructed as follows:

(u,c,v)eE(:)u;év/\HAev.v:u[AHﬁA(uUc)]

In other words, the coloured state-transition graph collectively describes
the state-transition graphs of every parametrisation of the associated network.
For the rest of the text, we thus consider colours and parametrisations to be
interchangeable.

Note that the notion of attractors does not transfer naturally to the domain
of coloured graphs, as each colour can induce a completely different set of at-
tractors. Nevertheless, we can write that the set A is an attractor in colour ¢
if it is an attractor in the state-transition graph which arises after fixing the
colour c.

1.1.3 Uninterpreted Boolean functions

Logical parameters allow us to richly capture uncertainty in the update functions
of a Boolean network, but are not always the most intuitive tool for this task.
In many cases, when a larger part of the network’s dynamics is unknown, such
uncertainty is better captured through uninterpreted Boolean functions.

To this end, AEON supports the usage of uninterpreted Boolean functions
within the definition of update functions in parametrised Boolean networks.
These uninterpreted functions are then automatically translated to logical pa-
rameters within the parametrised network. The dynamics of such a network
then still correspond to our description above.

Formally, we assume a finite collection of uninterpreted Boolean functions
K(@) 1) where the value ay is the arity of the function and can be omitted
when clear from context. Our goal is to allow the usage of such Boolean functions
within the declarations of update function within our parametrised network.

Now, notice that an uninterpreted Boolean function of arity zero is equivalent
to a logical parameter. Consequently, any Boolean expression which only uses
uninterpreted functions of arity zero can be used to define a parametrised update
function, assuming the network’s logical parameters include these zero-arity
uninterpreted function symbols.

Using the following expansion rule, we can recursively transform an expres-
sion with uninterpreted Boolean functions of arbitrary arity a into an expression
which only uses zero-arity uninterpreted functions.

K (a1, 00) = (a1 = K Dag, ..., 00) A (mar = K D (ag, .., o))

Here, «; are arbitrary Boolean expressions (possibly including other uninter-
preted Boolean functions). Furthermore, K; and Ko are two fresh uninterpreted
Boolean functions specific to K. That is, every occurrence of K is expanded using
these two functions, but they are not used anywhere else within the model.

By recursively applying this expansion, an uninterpreted function K(®) is
replaced with 2% zero-arity uninterpreted functions equivalent to logical param-
eters. These logical parameters then correspond exactly to the individual rows
in the truth table of function K. As such, the resulting network has exponen-
tially many logical parameters with respect to the arity of the uninterpreted
functions used to define the network.

In the following, we generally assume that the input of the method is a parametrised
Boolean network; however, this network can be given using expressions which
contain uninterpreted Boolean functions. These expressions are then automati-
cally translated using the aforementioned expansion rule into logical parameters.

1.1.4 Symbolic Representation of BNs

As a symbolic representation, a natural choice are Reduced Ordered Binary
Decision Diagrams (ROBDD, or simply BDD) [5], which can concisely encode
Boolean functions or relations of Boolean vectors. Specifically, in AEON [3], we
use a specialised internal implementation written in Rust.

Our goal is to symbolically represent and manipulated the coloured state-
transition graph of a parametrised Boolean network. Recall that this graph
consists of vertices V' = {0,1}V, colours C = {0,1}” and a coloured edge
relation E CV x C x V.

Since a Boolean network consists of |V| Boolean variables and |P| Boolean
inputs, any subset of V', C, or a relation X CV x C (a coloured set of vertices)
can be seen as a Boolean formula (also denoted X') over the network variables
and logical parameters. That is, each network variable and logical parameter
corresponds to one decision variable of the BDD. Here, a pair (s, c¢) belongs to
such a relation iff it represents a satisfying assignment of this formula X. For
relations of higher arity, fresh decision variables are created for each component
of the relation. Standard set operations then correspond to logical operations
on such formulae (A =N, V=U, etc.).

Relation operations are similarly implementable using BDD primitives. In
particular, existential quantification of a single decision variable (e.g. Js;. X

or Jc¢;.X) is a native operation on BDDs. Consequently, colour-projection on
relations (see below) can be simply implemented using quantification over all
network variables.

COLOURS(X CV x(C)={ceC|TweV. (v,c) € X}

To encode the network dynamics, notice that every update function F 1 can
be directly represented as a separate BDD. From such BDDs, we can build one
large BDD describing the whole coloured transition relation, which is tradition-
ally used for the computation of operations PRE (set of predecessor vertices:
PRE(X CV x () = {(u,¢) | v € V. (u,c,v) € EA (v,¢) € X}) and PostT
(set of successor vertices: PosT(X C V x C) = {(v,¢) | Ju € V. (u,c,v) €
E A (u,c) € X}). But the symbolic representation of such relation is often
prohibitively complex for asynchronous systems. Instead, we compute PRE and
PosT using partial results for individual variables, which uses more symbolic
operations but is less likely to cause a blow-up in the size of the BDD:

VARPOST(A € V, X CV x C) = (X A (Fy <5 4))[A — —A]
VARPRE(A € V, X CV x C) = X[A— —A] A (F) < A)

Post(X) = \/ VARPOST(A, X)
A€V

PrE(X) = \/ VARPRE(A, X)
A€y

Here, [A — —4] is the standard substitution operation, which we use to flip the
value of variable A in the resulting formula if it does not agree with the output of
F),. Note that this operation can be also implemented directly on the structure
of the BDD by exchanging the children of decision nodes conditioning on A. Also
note that sub-formulae that do not depend on X can be pre-computed once for
the whole run of the algorithm.

In the following, we thus assume a parametrised Boolean network (possi-
bly defined using uninterpreted Boolean functions) using the aforementioned
symbolic representation and the corresponding operations.

1.2 Attractor detection

In this section, we describe the attractor detection techniques used by AEON.
This part is primarily adapted from [4]. Note that in [4], the technique is
presented on standard state-transition graphs. Here, we present it with modifi-
cations that apply it to coloured graphs arising from parametrised BNs.

1.2.1 Basic Symbolic BSCC Detection

First, we discuss a BSCC detection algorithm from [7], which is a well known
core of our method. The method is summarised in Algorithm [I} which shows
the main procedure (BSCC) as well as the reachability procedures BwD and

Function BSCC(universe C V x C)
while universe # () do
pivot < PICKVERTEX(universe);
basin « BwD"({pivot},universe);
forward + {pivot};
repeat
| (fixpoint, forward) < FWD(forward, universe);
until fixpoint or forward ¢ basin;
if forward C basin then
‘ report forward as attractor;
end
universe ¢ universe \ basin;
end
Function BwD"(reachable C V x C,universe C V x C)
repeat
| (fixpoint,reachable) <— BwD(reachable, universe);
until fixpoint;
return reachable;
Function BwD(reachable C V x C,universe C V x ()
for AcV do
pre < universe N VARPRE(A, reachable);
if pre Z reachable then
| return (false,reachable U pre);
end

end
return (true,reachable);
Algorithm 1: Basic BSCC detection algorithm with saturation.

BwD*, which we also use in the later sections. We omit the pseudocode for
FwD and FWD", as they are identical to the BWD case, only swapping VARPRE
for VARPOST.

Reachability and Saturation The forward and backward reachability pro-
cedures are divided into two methods each, Fwb, BwD, FwD* and BwD*. Since
they are functionally symmetrical, we only explicitly discuss backward reacha-
bility, with everything directly translating to forward reachability as well.

BwbD performs a single backward reachability step and returns the new set
of states together with an indication of whether a fixed point has been reached
(i.e. whether no new states have been discovered). Note that in classical satu-
ration, once BWD selects transition under A, it is typically applied repeatedly.
However, in Boolean networks, multiple subsequent applications of a single tran-
sition would not yield any benefit.

BwD" then simply wraps BWD into a cycle that actually computes the full
fixed point of the reachable set. This separation into two sub-procedures allows
us to perform reachability step-by-step or even interleave multiple reachability

procedures. Remember that for saturation to work well, the ordering of labels
needs to follow the ordering of variables in the symbolic representation.

Xie-Beerel Algorithm The main algorithm relies on the well-known obser-
vation that for a fixed pivot vertex, the SCC of this vertex can be computed as
the intersection of vertices forward and backward reachable from pivot. When
searching for BSCCs, we can easily extend this with two extra observations:
First, pivot is in a BSCC when only the SCC itself is forward-reachable from
pivot. Second, a vertex backward-reachable from pivot is either in the same
SCC as pivot (in which case it is in a BSCC iff pivot is in a BSCC), or it is
not in a BSCC.

Based on these two extra observations, the original algorithm is modified in
two ways: First, not just the SCC around pivot, but all backward-reachable
vertices are eliminated at the end of each iteration. Second, the backward
reachability from pivot is computed in full, as these are the vertices we can
eliminate. However, the forward reachability is terminated early if it leaves
the backward-reachable set, since this implies that pivot does not belong to
a BSCC.

Now, for a coloured graph, this reasoning has to be slightly modified, since
the attractors of such a graph can be different for different colours. As the
algorithm progresses, there may be no single vertex that can be chosen as pivot
which would cover ever colour still present in universe. Consequently, we define
a symbolic operation PICKVERTEX which produces a coloured set of vertices X
(i.e. X CV x () such that for every colour in universe, X contains exactly
one pivot vertex. This operation can be relatively easily implemented using
standard logical operations on BDDs.

In [7], the authors show very impressive performance numbers for this simple
algorithm. However, there are two drawbacks, which we believe can be improved
significantly. And as we demonstrate in the evaluation, while powerful, this
algorithm certainly has limits on some real-world models.

First, the performance of this method is directly tied to the selection of the
pivot vertex. If the BSCCs of the graph are relatively small, the probability
of picking a right pivot is also tiny (remember, even an SCC with 21%° vertices
is only a minuscule fraction of a graph with 2190 vertices). As a consequence,
the algorithm may require a lot of pivots to explore the entire graph. Second,
the overall complexity is limited by the diameter of the whole graph instead of
the diameter of the BSCCs. Even if the pivot is picked perfectly, the algorithm
still has to explore each BSCC’s whole basin sequentially. To some extent, this
is inevitable; however, as we hope to demonstrate in the next section, it is not
always necessary.

To sum up, Algorithm [l| is a powerful tool for the detection of BSCCs.
However, it performs best in graphs where the BSCCs either form a large portion
of the state space or have basins of small diameter, allowing the algorithm to
converge quickly.

Function REDUCE(pivots C V x C,universe CV x ()
forward < FwD"(pivots,universe);
extendedComponent < BWD*(pivots, forward);
bottom < forward \ extendedComponent;
if universe # forward then
basin + BWD"(forward, universe);
universe + universe \ (basin \ forward);
end
f bottom # () then
basin « BwD"(bottom, universe);
universe + universe \ (basin \ bottom);
end
return universe;

Algorithm 2: Core reduction principle

e

1.2.2 Transition guided reduction

In this section, we introduce a technique that we call transition guided reduction
(TGR) to eliminate a large portion of non-BSCC states. Algorithm [If can then
perform much better on this reduced state space.

We present the technique in two steps: First, in Algorithm [2] we present
the core principle of the reduction procedure and prove its correctness. This
approach is generally applicable to any directed graph. Then in Algorithm [3]
we show how to apply Algorithm [2] in the context of a labelled transition sys-
tem. Here, we can exploit the knowledge of the transition labels to guide the
reduction.

The reduction principle is described in Algorithm Given a coloured set
of pivot states and the current universe of all considered states, the method
starts by computing forward — the set of all states reachable from the pivot
states. Using this forward set, we then compute the extendedComponent of
the given pivot states. Formally, an extended component of set X is a subset
X’ C S that contains all states from X, as well as all paths between the states
in X.

We can observe the following properties:

e The forward set is SCC-closed (every SCC is either fully contained in the
set or in its complement), as it is the result of a reachability procedure.
Thus any state that can reach but is not contained in forward is not a part

of any BSCC.

e The set bottom (i.e. forward \ extendedComponent) is also SCC-closed
(as it is the difference of two SCC-closed sets). Notice that if this set is
not empty, it must contain at least one BSCC, and also that any state
that can reach bottom but is not contained in it is necessarily not a part
of any BSCC.

The algorithm then computes the two sets of states that definitely do not
contain a BSCC according to these observations and discards these sets from
the state space. This is done on lines 2}H2] and 2H2} respectively.

Now we can formulate the following observation (formal proof available
in [4]):

Claim 1. If pair (s,c) € universe is discarded by Algorithm @ then vertex s
it is not part of any BSCC in colour c.

Function TGR(universe CV x C)
for AcV do
| universe < REDUCE(CANPOST(A, universe), universe);
end

return universe;
Algorithm 3: Transition Guided Reduction

However, this does not provide any guidance as to which pivots should we
select for the reduction or why. This is addressed in Algorithm [3| Here, we go
through all the available variables A € V and select as the pivots the set of all
the states that can fire a transition under A. Here, CANPOST is the subset of
universe for which a successor exists using the VARPOST method.

To intuitively understand why this method is effective, we present the fol-
lowing claims (again, proven within [4]):

Claim 2. Given a trivial BSCC (stable attractor), the whole basin of this SCC
is discarded by Algorithm[3

Claim 3. If a pair (s,c) is not discarded by Algorithm@ then all paths (under
colours ¢) starting in s in the reduced state space only modify the same variables
as the ones contained in the BSCCs reachable from s.

The first claim highlights an important property of the reduction: if variable
is constant in an attractor, all states in its basin where this variable is modi-
fied will be eliminated. Real-world network rarely modify all variables within
attractors. Thus by using this pre-processing step, we can greatly simplify the
work of Algorithm [I| by pruning “easily identifiable” non-BSCC states.

The effectiveness of this reduction can be further improved by employing
interleaving (see [H]) instead of the for cycle within Algorithm

1.3 Behaviour classification

Our ultimate goal is to produce and study the attractor bifurcation function
A — € where € are the behaviour classes induced by some attractor clas-
sification. So far, we have presented an algorithm for attractor detection in
parametrised Boolean networks. This algorithm produces coloured sets of ver-
tices, such that every attractor for every colour is eventually guaranteed to
appear in one of these sets.

Note that classification of attractors based on stability, oscillation and disor-
der is trivial. For stability, we simply need to detect colours where the attractor
set is a singleton. For oscillation, we need to detect cases where all the vertices
have only a single successor in the state-transition graph. Practically, we con-
sider this classification in our tool. Nevertheless, this section presents a general
method for constructing the bifurcation function for various classifiers. This is
unpublished material.

Let us assume that we have a fixed parameter space (set of colours) C' =
{0,1}”. Additionally, let us assume a set of behavioural classes €, and a fea-
ture detection algorithm which can report on the fly that a system under con-
sideration (such as a Boolean network) exhibits an atomic behavioural feature
b € B C € for a specific subset of parametrisations.

As a simple example, assume that we only want to count the number of
attractors for each colour. Then, € = Ny, and B = {1}. That is, a behavioural
class is the absolute count of attractors, and an atomic feature is the existence
of a single attractor. An attractor detection algorithm then reports that a new
attractor (a feature b = 1) has been discovered for a particular set of network
parametrisations @ C C (the algorithm also reports attractor states, but we can
disregard these for the purposes of our example).

We require that € is a commutative monoid with a zero element (denoted ¢)
equipped with an operation @. The behavioural class ¢, for every parametrisa-
tion p € C is then given as the sum of all atomic features reported for this p by
our feature detection algorithm, i.e. ¢, = b1 @ ... ® by, for some k.

Continuing our example of attractor counting, the operation & is addition,
and for a parametrisation p that admits five attractors, the detection algorithm
will report five atomic features (five ones) which together give ¢, = 5.

Naturally, € can also have a richer structure: for example, our practical
application of detecting stability, oscillation and disorder results in € = N3.

Finally, let us note that since € is a commutative monoid, it also has an
associated preorder where a < ¢ when a + b = ¢ for some b. For the purposes
of our classifier, we strengthen this observation and require that € is in fact at
least a partial order (i.e., we cannot have a < b and b < a without a = b).

To incrementally build our classification map, we rely on the procedure
UPDATECLASSIFICATION defined in Algorithm[d] Here, we start with a A which
initially assigns all parametrisations p € C to the zero element of €. Then,
as behavioural features are discovered, they are reported using the procedure
UpPDATECLASSIFICATION(b, Q). Now, we use the fact that € has a partial order,
and thus we can iterate through the keys of the A (the encountered behavioural
classes) in a decreasing order. Of course, since this is only a partial order, there
may be incomparable pairs in such set, but we only require that whenever a < b,
a is encountered after b by the loop on Line [4] (i.e. incomparable elements can
be considered in any order). Then, during each iteration, we determine the set
of parametrisations (the set Update) associated with ¢ € KEYS(.A) whose class
needs to be updated. If this set is not empty, it is transferred to a new class.

To understand why this procedure is correct, note that the loop on Line [4]
maintains an invariant that A partitions the set C' between classes in €. That

10

A+ {e— P};
Function UPDATECLASSIFICATION(b € B,Q C P)
for ¢ in decreasing KEvs(A) do
Update < Q N A(c);
if Update # () then
A(e) < A(c) \ Update;
Ab @ c) + A(b @ ¢) U Update;
end

end
Algorithm 4: Incremental symbolic classification

is, C' = {J.ce A(c), and for any two a,b € €, we have that A(a) N.A(b) is empty.
This is easy to see, since initially, we have A(¢) = P (and for every other ¢ € €,
A(c) = 0). Subsequently, in every iteration, we only transfer the Update set
between two classes. We thus cannot remove a parametrisation, nor can we
associate it simultaneously with two different classes.

The order of iteration then ensures that parametrisations are actually as-
sociated with the correct classes. Consider a scenario where a set Update,, is
transferred from class ¢; to ¢; @ b = ¢y in one iteration. Now assume that co
is encountered by loop on Line {] after c;. Clearly, Update., will be non-empty
and a superset of Update.,. Consequently, Update., is moved again, this time
into co ®b=c1 ®bDb. Intuitively, b is “counted twice” in this scenario.

However, due to the fact that the algorithm explores classes in a decreasing
partial order, this situation cannot happen. We have that b & ¢ > ¢, hence
b @ c is always processed before ¢ (or, in a special case where b = ¢, they are
processed in a single iteration, but here, ClassMap is not modified). Conse-
quently, every parametrisation is moved at most once during any invocation of
UPDATECLASSIFICATION.

1.4 Bifurcation decision tree inference

Once we obtain a A as outlined in the previous section, a natural goal would be
to somehow visualise this map. It may not be possible to produce a readable
table or a plot which would describe the A visually. For this reason, we pro-
pose usage of decision trees as a reasonably universal visualisation tool which
addresses this issue.

This leaves us with two problems: First, there are many different decision
trees that we can generate from a single A. In general, we cannot efficiently
determine which decision will lead to a more compact tree, however, we can
still employ heuristics that address this problem. Second, the sets of parametri-
sations in A are symbolically encoded. And while the bifurcation decision tree
(BDT) will have to be explicit (so that we can draw it), it still needs to be gen-
erated using these symbolic sets, as instantiating them explicitly could easily
exceed the available computer memory.

11

Consequently, to provide an automated procedure for generation of bifur-
cation decision trees, we take the heuristic algorithm known as ID3 [6], and
adapt it to symbolic datasets, such that it can be used to process our A. This
approach has been previously explored within [2].

Function LEARNTREE(B,,, ..., B.,)
if £ =1 then return LEAFNODE(c;);
(Cmazs 'maz) = MAJORITY(B,,, ..., Be,);
if 7,4, > precision then return LEAFNODE(¢pqz);
entropy <— ENTROPY(B,,, ..., B,);
for A € do
positive - ENTROPY(Vi. B., N A);
negative < ENTROPY(Vi. B,, N A);
gain, < entropy — (3positive + jnegative);
end
D + A € 2 with maximal gain 4;
r_node < LEARNTREE(Y:. B, N D);
1 node + LEARNTREE(Vi. B, N D);
return DECISIONNODE(D, 1 node, r node);
Function ENTROPY(By, ..., By)
By + U B;
return Zle Bil 100y (A2

" TBaul [Baul
Function MAJORITY(B,,,...,B.,)
k)
Bay < U1 Be;;
. |Be,| .
Vi. r; < Bl

return (¢;,r;) with maximal r;;
Algorithm 5: Symbolic ID3

This adaptation is presented in Algorithm Here, we assume that A is
expanded into a collection of symbolic sets B.,,...,B.,, where c;,...,c; are
the keys (i.e. the behaviour classes) used within A, and each set B, contains
the parametrisations assigned to this class (i.e. A(c;) = Be,). Furthermore, we
assume there is a collection of decision attributes 2, such that each A € 2 is
a symbolically represented subset of P (our parameter space). In this represen-
tation, A can be seen as a binary decision attribute where a parametrisation
p € C either satisfies it (p € A), or not (p € A).

For simplicity, let us assume that the decision attributes represent the valid-
ity of individual logical parameters of a Boolean network. That is, 2 = { Ap |
Pc P} where Ap = { x € {0,1}” | #(P) = 1 }. However, for other applications,
we may also choose different, more complicated decision attributes. In theory,
our method can support any attributes that can be encoded into a symbolic set.

Algorithm description Now, the algorithm itself works as follows: For
a given dataset, the algorithm considers all available decision attributes, and

12

selects the one with the highest information gain. Here, the information gain is
computed as a difference in information entropy before and after conditioning
on the decision attribute.

Given a symbolic dataset specified as a collection of BDDs, ENTROPY in
Algorithm [5| computes the overall information entropy of the dataset. Note
that we use |B]| to denote the cardinality of the set B — this information is
easily computed using dynamic programming while traversing the graph of the
corresponding BDD.

The procedure LEARNTREE then conditions on individual decision attributes
A € 2 by intersecting B,, with A or A (attributes where one of the intersections
is empty for all B., are automatically discarded). Based on these values, it
computes the information gain gain , for each attribute and selects the decision
attribute D with the highest information gain. Finally, a decision node is created
and the remaining datasets are processed recursively.

A leaf node is created by LEARNTREE once a single class remains. Alter-
natively, we can also specify a desired precision constant threshold which is
applied to the whole tree. Then, we create a leaf node whenever the proportion
of a single class in the whole dataset is higher than this threshold. For example,
if we specify a precision of 0.95, a leaf node is created if 95% of parametrisa-
tions belong to a single class. While this produces an inexact tree, it can also
significantly reduce its size while preserving reasonable amount of information
with a clearly bounded error.

Overall, this algorithm allows us to easily process even very large sets of
parametrisations that can only be represented symbolically. However, note that
the algorithm still has to explicitly iterate through the list of the possible de-
cision attributes for each created decision node, which can be substantial. As
future work, similar to the incremental classification approach, one could ex-
plore whether some of these calculations could be also efficiently implemented
using multi-valued decision diagrams.

1.5 Conclusions

Overall, this section presented the algorithmic techniques necessary to enable
bifurcation analysis of parametrised Boolean networks in AEON. This includes
translation of uninterpreted Boolean functions into logical parameters; symbolic
encoding of the asynchronous state-transition graph (for parametrised BNs);
attractor detection through transition guided reduction (originally presented
for monochromatic state-transition graphs); classification of the network’s be-
haviour classes into a symbolically represented bifurcation function; and a sym-
bolic learning technique for automated inference of bifurcation decision trees.

2 AEON

This supplement contains a snapshot of the version of the tool AEON used
to perform the experiments in the paper. However, the tool is also available

13

online at https://biodivine.fi.muni.cz/aeon/ and we recommend you use
the online up-to-date version when possible.
The bundled AEON snapshot contains:

e aeon/manual: A comprehensive manual describing AEON’s functionality.

e aecon/web and aeon/source: The source code of the web-based GUI and
native compute engine used by AEON.

e aecon/bin: Pre-compiled binaries of the AEON compute engine for the
three major PC operating systems.

Further guidance about using these resources is given in aeon/README.md.

3 Original Model

The studied interferon model was originally constructed based on the SBGN
curated pathway available at https://fairdomhub.org/models/713. The ac-
tual .sbml model was then obtained from the COVID-19 disease map project
at https://git-r3lab.uni.lu/covid/models. The model is available as both
model/original.sbml and model/original.aeon file in this supplement. Note
that attached model uses a different layout of the regulatory graph than in
the original .sbml to ease readability. The regulatory graph of the model
is shown in Figure The full resolution figure is also available in the file
figures/model original full.png and can be reproduced in AEON by open-
ing either the .sbml or .aeon model file. Also, note that AEON does not sup-
port special characters in variable names (aside from underscore), so all variable
names have been normalized to be compatible with AEON.

A table summarising the bifurcation function for this original model (as com-
puted by AEON) is shown in Figure To reproduce this figure, run bifurcation
analysis (Start Analysis button) in AEON’s interface.

As we can see, this bifurcation function contains a (relatively) high number
of single state attractors that appear simultaneously (reporting multi-stability).
However, by inspecting the individual attractors (using the Attractor button in
AEON’s interface), we can actually uncover that most of these multi-stabilities
do not alter the network phenotypes (Immune _response_phenotype and Inf-
lammation_phenotype variables). In order to make the bifurcation function
easier to read, we thus provide and analyse a reduced model that restricts the
number of possible multi-stable attractors.

4 Reduced Model

The original model contains a complex of three mutually dependent variables,
NFKBIA, NFKB-NFKBIA-complex and NFKB1-cell. This complex is visible in the
upper-middle section of the regulatory graph of the original model (we recom-
mend opening the model in AEON to see a full zoomable version). By inspecting

14

https://biodivine.fi.muni.cz/aeon/
https://fairdomhub.org/models/713
https://git-r3lab.uni.lu/covid/models

Figure 1: Regulatory graph of the original interferon model.

15

X Bifurcation Function

Elapsed: 9.791s
Total number of classes: 7

Behavior Witness
class count

©® 102784 Witness Attractor
OJOJORO, 93296 Witness Attractor
® 33408 Witness Attractor
©OOOOO®O®®® 31264 Witness Attractor
(ONOJOJOROXO} 496 Witness Attractor
OJOJORONORONO) 496 Witness Attractor
OJONO) 400 Witness Attractor

>> Explore Bifurcation Function <<

= disorder | © oscillation | ® stability

Figure 2: A tabular summary of the bifurcation function of the original model
as produced by AEON.

the attractor states of the original model, we can see that in many cases, the
values of phenotype-corresponding variables are the same. Furthermore, the
attractors often only differ in the values of the three variables in this complex.
Here, we will therefore try to eliminate this source of multi-stability.

Overall, the complex has several associated input variables — some are unique
to the complex, some are shared with other parts of the model. However, it
only interacts with the rest of the model “downstream” using two regulations:
NFKB1-cell — NFKB1 nucleus and NFKBl-cell — p50_p65_complex_cell.
Consequently, in every network attractor, the behaviour of the model depends
on the behaviour of the NFKB1-cell variable, as the remaining variables in this
complex do not regulate anything else directly.

We can therefore construct a simplified model that only contains this com-
plex and variables on which it depends (available as models/complex.aeon and
models/complex.sbml). By analysing this simplified model in AEON, we can
see that the variable NFKB1-cell is always stable. Depending on the input vari-
ables, it can stabilise as false, or show a switched bi-stable behaviour between
true and false. However, an attractor of this fragment of the network will
never exhibit unstable behaviour in NFKB1-cell, i.e. there is no attractor in
which the value of NFKB1-cell changes.

As a result, we can replace NFKB1-cell with an artificial constant input
variable and eliminate the rest of the complex and its inputs (unless they also
influence other parts of the network). This yields a reduced model (available as
models/reduced.sbml and models/reduced.aeon). The regulatory graph of
this model is shown in Figure[3] A tabular summary of the bifurcation function

16

of this model is then shown in Figure |4l As we can see, the number of unique
stable attractors has decreased considerably compared to Figure

5 Bifurcation Analysis

The bifurcation decision tree as presented in the paper is shown in Figure
and a fully expanded version of the tree is shown in Figure [6]

The construction of the tree has been conducted by using the “Explore
Bifurcation Function” procedure of AEON. As a root of the constructed BDT,
we have selected the input parameter Viral dsDNA_rna _reduced that represents
the internal biological phenotype of the cell displaying the detected replication
of the virus DNA inside of the cell. Both subtrees have similar distributions of
the four attractor phenotypes shown in Figure [4]

The bifurcation decisions in the next level of the tree are based on the input
parameter that gives the most significant information gain regarding bifurcation.
Interestingly, this parameter reflects the presence/absence of the drug GRL0617.
Setting of GRL0617 significantly changes the list of attractor phenotypes. De-
spite the setting of Viral dsDNA_rna _reduced, non-presence of GRL0O617 results
in a single stable attractor or a bistable attractor, respectively, depending on
the presence (resp. absence) of the virus protein Nsp15.

In the case where GRL0617 is present, we have selected the well known
azithromycin antibiotics drug as the next input parameter decision point. Al-
though azithromycin has been very recently clinically reported as not significant
for COVID treatment, we have been interested in how it affects the distribu-
tion of the attractors. The drug is known for its anti-inflammatory effects.
In this model, azithromycin gives very low information gain towards bifurca-
tions. Anyway, the corresponding subtrees with different settings of the root
Viral_ dsDNA_rna reduced have different structure. We have proceeded in man-
ually generating the subtrees by following the same order of parameter decisions.
All of these parameters correspond to the virus proteins with the only exception
of TREML4 (the signalling protein reporting the presence of a virus in the organ-
ism) and NFKBIA_NFKB_component (the “virtual” parameter introduced during
the model reduction procedure).

6 Phenotype Expression

AEON allows to display detailed information concerning values of variables in
attractors of the selected class/node of the BDT. In particular, by running the
task “Stability Analysis” for a selected node of the BDT, the list of all model
variables is reported including the values they reach in attractors corresponding
with the BDT node. In particular, for every variable it is reported for how many
parametrisations it appears as true (resp. false) in a single stable state attractor,
and in how many parametrisations it is bistable (true and false in different
stable states of a multi-stable attractor). Indirectly, the stability analysis over

17

X Bifurcation Function

Elapsed: 5.27s
Total number of classes: 4

Behavior Witness

class count
®©® 16872 Witness Attractor
® 8216 Witness Attractor
ONOJOXO} 7512 Witness Attractor
ONOXOJ 168 Witness Attractor

>> Explore Bifurcation Function <<

= disorder | ¢ oscillation | ® stability

Figure 4: A tabular summary of the bifurcation function of the reduced model
as produced by AEON.

Viral_dsRNA_rna_reduced

[1

GRLO617_drug GRLO617_drug

| |
! 1 { 1

Nsp15 Azithromycin_drug Nsp15 Azithromycin_drug

W B (o) G G @) (e
J J

v vy _ 71\ l I 1 -
Mixed Phenotype Mixed Phenotype
[OIO[0[0] ®® (4 types) ®©® (2 types) ®®

Figure 5: Bifurcation decision tree of the reduced model as presented in the
paper.

19

TE B TE N
4 & L i
- - H = H o)
—— —1 -
E= = & |
ovoe | = | - osee o) [eoee
F— LA S s
......... — . — =P et
=~ h b = =S e
. 5 = {J\@QR\ - s N
e &

Figure 6: A fully expanded bifurcation decision tree of the reduced model (a high
resolution version available as figures/tree_full.png).

the parameterised BN gives us the information on how robust the stability of
the given variable is with respect to perturbations in the parameters.

In the case study model, we have used the stability analysis to assess the
long-term behaviour of the variables representing the individual biological phe-
notypes. This information is presented in Table [I| (also shown in the main
paper). In particular, the effect of setting GRLO0617 to false always (in the con-
text of the constructed BDT) results in fixing the immune response to false.
On the contrary, the presence of GRL0617 enables the possibility of getting the
immune response bistable or fixing it to true. Assuming GRL0617 set true,
another significant observation is that after setting azithromycin true the bi-
ological phenotype corresponding to the production of interferons is fixed to
false. Finally, the paths of the BDT where both GRL0617 and azithromycin are
true display an important decision point caused by the Nspl5 virus protein. In
particular, this virus protein disables the immune response to appear true on
a single stable attractor. The effect of this protein on the immune response is
therefore destabilising.

Every row of Table [I| has been constructed by employing the stability anal-
ysis in a simple BDT where the studied parameter (component) is chosen at
the root. In particular, we obtain the information on how the behaviour of
phenotype-related variables in attractors changes with setting the studied pa-
rameter to true. More specifically, for each biological phenotype, we compute
the portion of parametrisations where it is true at a single steady state and
where it is bistable. The reported trend characterises how this portion changes
with respect to the situation where all parameters (including the root) are not
fixed. In Figure[7] there are depicted the respective BDTs used for the biological

20

Nsp15

N
Mixed Phenotype
(4 types)

Mixed Phenotype

Mixed Phenotype
(2 types)

(4 types)

Mixed Phenotype
(3 types)

GRLO617_drug Azithromycin_drug

Mixed Phenotype
(2 types)

Mixed Phenotype

Mixed Phenotype
(4 types)

(4 types)

Mixed Phenotype
(3 types)

Figure 7: Rooted decisions over selected input parameters. Stability analysis in
mixed phenotype nodes makes the source of data used to generate Table

interf. IR INFL
component production
© OO O] OO © OO
N N\ hY N | S NS
Nsplb — — N\ Vi — _
GRL0617 = Va Ve Ve = Ve
azithromycin Ny ya Ny N Ny N

Table 1: Qualitative influence of individual components on the stabilisation
(more/less prominent or unchanged) of a particular phenotype (column) in ei-
ther stable (®) or bistable (®®) regime.

phenotype stability analysis.

The exact numeric data based on which Table [1] is constructed is available
in tables/stability_analysis.txt. In this file, we have four smaller tables,
each showing the distribution of phenotypes in different situation. First, a gen-
eral case (all parameters unknown) gives us a baseline. Then, for each of the
considered parameters (N, Nspl5, GRL0617, and azithromycin), a table shows
the distribution of phenotypes when a parameter is fixed to true. Based on this,
a “trend” in Table [can be inferred.

References
[1] Jiff Barnat et al. Detecting attractors in biological models with uncertain

parameters. In Computational Methods in Systems Biology, pages 40-56,
Cham, 2017. Springer.

21

2]

[7]

Nikola Benes et al. Formal analysis of qualitative long-term behaviour in
parametrised Boolean networks. In International Conference on Formal En-
gineering Methods, pages 353-369, Cham, 2019. Springer.

Nikola Benes et al. AEON: Attractor bifurcation analysis of parametrised
Boolean networks. In Computer Aided Verification, pages 569-581, Cham,
2020. Springer.

Nikola Benes et al. Computing bottom SCCs symbolically using transition
guided reduction. In International Conference on Computer Aided Verifica-
tion, pages 505-528, Cham, 2021. Springer.

Randal E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677-691, 1986.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81-106,
1986.

Yang Zhao and Gianfranco Ciardo. Symbolic computation of strongly con-
nected components and fair cycles using saturation. Innovations in Systems
and Software Engineering, 7(2):141-150, 2011.

22

	Algorithms and Methods
	Symbolic encoding
	Boolean networks
	Parametrised Boolean networks
	Uninterpreted Boolean functions
	Symbolic Representation of BNs

	Attractor detection
	Basic Symbolic BSCC Detection
	Transition guided reduction

	Behaviour classification
	Bifurcation decision tree inference
	Conclusions

	AEON
	Original Model
	Reduced Model
	Bifurcation Analysis
	Phenotype Expression

