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S1 Previous Works

In this section, we review previous computational methods for pathogenicity classification. The meth-

ods can be divided into two main categories: Read-based methods and protein-content-based methods.

Read-based Methods. Read-based classification approaches use short genomic reads as raw input,

and hence do not depend on assembled genomes or on coding sequences. Several tools were proposed

for the detection of pathogens in metagenomic reads based on mapping the reads to a species, genus,

or phylum of reference genomes, and/or based on their sequence composition homology [1]. However,

these methods were mainly designed for taxonomic assignment using known species that are present in

a reference database, rather than for pathogenicity predictions. In addition to the taxonomy-dependent

methods, several taxonomy-agnostic read-based methods were designed specifically for pathogenicity

predictions [2, 3]. In 2017, Deneke et al. published PaPrBaG [2], an RF approach that uses classifi-

cation features of two types: k-mer occurrence-based features and peptide features. PaPrBaG assigns

pathogenicity prediction to each read in a genome sample, and computes the final prediction of the

genome by averaging over all of its read-based prediction probabilities. A more recent read-based

taxonomy-agnostic classification tool is DeePaC [3], which applies reverse-complement convolutional

and recurrent neural networks to the classification task.

Protein-content-based Methods. Protein-content-based methods are classification approaches

that require the availability of assembled and annotated genomes as they characterize a bacterial

genome by the presence or absence of protein family members [4, 5, 6, 7].

Iraola et al. [5] constructed an SVM-based model to classify a bacteria, based on its genome, as

a human pathogen or a non-pathogen using protein families annotated as virulence genes. Thus,

their method has the disadvantage of not taking into account other protein families that could be

associated with either HP or NHP phenotypes. Other protein-content-based tools constructed new

protein families instead of relying on existing ones [4, 6, 7]. Andreatta et al. [4] developed a method to

predict human pathogenicity in γ-Proteobacteria. They clustered new protein families using BLAST,

and identified protein families that distinguish between the two phenotypes by their enrichment in

either pathogens or non-pathogens. The pathogenicity of a new bacterium was determined by the

presence or absence of proteins that belong to these distinguishing protein families in its genome.

Building on the former method, Cosentino et al. [6] developed PathogenFinder, a similar method

extended to handle a variety of bacterial taxonomic groups. In order to reduce the method’s runtime,

CD-HIT was used instead of BLAST in the protein family clustering step of the algorithm, which took

four weeks for a dataset of 885 genomes.

Recently, Barash et al. [7] developed BacPaCS, a sparse-SVM-based method for bacterial pathogenic-

ity classification. Barash et al. also used CD-HIT for the construction of protein families, but in order

to reduce the runtime of the clustering phase and to scale up the method to larger training data,

only the top 10% of the longest gene sequences in the training set were used for the construction of

protein families. Although this selection reduced the estimated runtime from 8 months to 12 days (for

21,155 genomes), the clustering step still remained the most computationally expensive step of the
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training in all the aforementioned methods. Furthermore, when examining the top-scoring features of

the BacPaCS classifier, as reported in the paper, it is evident that many of the top-ranking features

appear in only a few genomes, which may hamper the classifier’s ability to contribute to the general

understanding of pathogenic lifestyle, or to predict the pathogenicity of novel bacterial species.

The number of available sequenced strains per bacterial species varies greatly, mainly due to a bias

towards pathogen studies [2]. Thus, the distribution of strains per species in a given database may not

represent their distribution in the real world or in future applications. Consequently, this may result

in a training dataset and a classifier that are biased towards specific species. Existing read-based

methods addressed this issue by selecting one strain per species for their training sets [2, 3]. However,

previous protein-content-based methods [4, 6, 7] did not properly address this normalization issue,

and thus their generality may be at fault.

S2 Dataset Creation Process

S2.1 Labeling Method

To identify the HP and NHP bacteria in our dataset, we initially followed Barash et al. [7] annotation-

based pathogenicity classification method, as described below:

1. Genomes are labeled as HP if they satisfy any of the following criteria:

(a) The ‘Disease’ field is not empty, and does not contain a commensal term, as defined below.

(b) One of the fields ‘Isolation Source’, ‘Host Health’, or ‘Comments’ includes an HP term. In

addition, the same fields cannot include any of the NHP terms (the terms used for HP and

NHP are presented below).

(c) A genome was manually verified as HP, by reviewing it in the literature.

2. Excluding the generated HP list, genomes are labeled as NHP if they satisfy any of the following

criteria:

(a) One of the fields ‘Isolation Source’, ‘Host Health’, or ‘Comments’ includes an NHP term.

(b) One of the fields ‘Isolation Source’, ‘Host Health’, or ‘Comments’ includes a weaker NHP

term.

3. The following term lists were used for the criteria above:

• HP terms: virulence, disease, superbug, patient, diarrhea, waterborne, foodborne, toxin,

clinical, intensive, outbreak, infection, pathogen, water borne, food borne.

• NHP terms: healthy, probiotic, commensal.

• Weaker NHP terms: ‘comparative’, ‘reference’.

• Commensal terms: ’healthy’, ’Healthy’, ’Commensal’, ’Commensal (plant)’, ’Periodontally

healthy’.

4



A manual examination of a random sample from the training set revealed that some of the genomes

were mislabeled. These labeling mistakes were caused by using keywords that can both describe HP

and NHP genomes. In addition, a manual examination of a random sample from the group of genomes

that were labeled as inconclusive revealed that some genomes could be labeled by utilizing additional

keywords and fields. Therefore, the following modifications to the annotation process were made:

• ‘Other Clinical’ and ‘Isolation Comments’ were added to the list of relevant fields in 1(b) and

2(a).

• The word ’intensive’ was removed from the HP terms.

• The words ‘microbiome’ and ‘microbiota’ were added to the NHP terms.

• All the weaker NHP terms were removed.

This rule-based labeling process correctly identifies HP genomes due to the pathogenic sample

collection process. First, the PATRIC database utilizes information from standard medical practice

in which clinical samples are taken from diseased individuals based on the illness symptoms. Thus,

the decision of which sample to take (e.g., stool, urine, blood, nasal swab, sputum swab) is illness-

related. Second, the samples are processed based on the suspected pathogens, i.e., cultured using

specific conditions that will allow the growth of the suspected pathogen. Therefore, in the case of an

identification of a bacterial strain, it can be medically referred to as the infectious agent.

S2.2 Manual Inspection of the WSPC Test Set Genomes

We manually inspected all the genomes in the WSPC test set (Section 2.1.3, main text) to ensure

that their labels are correct by reviewing the associated PATRIC metadata. We verified a genome

as HP if the isolation source is a diseased individual, and as NHP if the isolation source is a healthy

individual or a probiotic supplement. Additionally, we performed a literature search to confirm the

corresponding label.

The following strains could not be verified as HP or NHP:

1. The PATRIC metadata of a strain belonging to the species Escherichia marmotae (Genome ID:

1499973.23) indicated that it was collected as part of a study that sequenced metagenomes from

urinary tract patients as well as from a control group. There was no indication to which of the

two groups this strain belonged, and it was thus removed from the test set.

2. The PATRIC metadata of a strain belonging to an unclassified species of the genus Starkeya

(Genome ID: 2666134.3) indicated that the host health status is diseased. However, this genus

includes soil bacteria [8], and we were not able to find a study suggesting that Starkeya species

could be pathogenic. Therefore, this genome was removed from the test set.

In addition, two strains were mislabeled by the automatic annotation. A strain of the species

Bacillus clausii was labeled HP because of the keyword ”disease” in the ”Comments” field. The full

sentence ”Genome analysis of Bacillus clausii B619/R for evaluation of its health promoting and disease
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preventing properties” indicates that it is a commensal probiotic bacterium, which is also supported

by the literature [9]. Therefore, its label was corrected to NHP. A strain of the unclassified species

Clostridium sp. C5-48 was labeled as HP because of the keyword ”patient” in the isolation source

field. However, this strain was collected from the feces of an alcoholic patient to study his metagenomic

population in the colon, and a different database indicates that this strain is commensal [10]. Therefore,

its label was corrected to NHP.

S2.3 Manual Verification of the BacPaCS Test Set Genomes

We manually curated the 100 genomes included in the BacPaCS test set using the metadata associated

with each genome and the literature. We verified a genome label as HP if it was isolated from a diseased

host (based on the PARTIC database entry), and if there was also evidence in the literature that the

corresponding species or strain is pathogenic. We verified a genome label as NHP if it was isolated

from a healthy host, and if the corresponding species or strain was also described in the literature as

commensal or probiotic.

A list of all the genomes included in the original BacPaCS test set along with their verified labels,

references to relevant studies, as well as an indication of whether each genome was included in Bench-

mark Test 2, is given in Table S2. In what follows, we summarize the modifications we made following

the verification process.

1. A total of 18 strains belonging to the species Pseudomonas aeruginosa, Acinetobacter nosocomi-

alis, Streptococcus sp. NPS 3089, Acinetobacter baumannii, Escherichia coli, and Enterococcus

faecium were originally labeled as NHP, but were verified by us as HP as these strains were iso-

lated from clinical samples or described in the literature as well-known pathogenic strains. This

may explain the discrepancy between the pathogenicity annotations detected by Bartosezewitch

et al. [3].

2. The labels of another six strains belonging to the species Fusobacterium nucleatum, Fusobac-

terium periodonticum and Rothia aeria, could not be verified by us as neither HP nor NHP:

• The species Fusobacterium nucleatum included one strain that was collected from subgin-

gival dental plaque (which may be an initiating factor in periodontal diseases [11]) and

the species Fusobacterium periodonticum included four strains that were collected from the

tongue or from dental plaque. For these genomes there was no indication in the correspond-

ing metadata whether the hosts carried a periodontal disease. The species Fusobacterium

nucleatum and Fusobacterium periodonticum are associated with a wide spectrum of human

periodontal diseases [12, 13]. Therefore, these strains could not be reliably labeled and were

removed from the test set.

• The species Rothia aeria included one strain, which was isolated from an air sample of

the living environment in the Mir space station [14]. Rothia aeria is described as an op-

portunistic periodontal pathogen that causes infections of immunocompromised patients

and neonates, but its virulent features remain uncertain [14]. As it was collected from the
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environment, it is not clear whether this specific strain can cause disease, and therefore it

was removed from the test set.

S3 Methods

S3.1 Evaluation Metrics

Some of the test sets used in this paper consist of more HP than NHP labeled genomes. Using a

regular accuracy metric (the proportion of correct predictions in the test set) may result in misleading

classification evaluation due to the imbalance between the two classes. Therefore, we used Sensitivity

(true positive rate), Specificity (true negative rate), and Balanced Accuracy (BACC), which denotes

the mean of sensitivity and specificity [15]. In addition, for ranking evaluation of WSPC, we used the

areas under the precision recall (AUPR) [16], and the receiver operation characteristic (AUROC) [17]

curves. Since AUROC considers the ranking of all predictions while accuracy only considers a single

prediction threshold (i.e., 0.5) [18], we used AUROC for the feature selection parameter tuning (Section

S3.2 and Section 2.4.3 in the main text). Note that in the case of a highly imbalanced dataset, AUPR

is more informative than AUROC [19]. However, since there is only a slight imbalance between the

classes of the validation set ( ratio of 2:1 HP to NHP), and as AUROC is more commonly used than

AUPR in the general case, we opted to use AUROC for the purpose of parameter tuning.
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S3.2 Feature Selection of the WSPC Classifier - Parameter Tuning

Figure S1: Performance evaluation of the RF classifier using different values for the k and t parameters of the
two-step feature selection process (Section 2.4.3, main text). We trained on the training set, and evaluated on the
validation set. A. AUROC values achieved by the classifier, as a function of k - the number of features selected
in the first feature selection step (based on their χ2 scores, without correlation reduction). The maximum value
was obtained for k = 450. B. AUROC values achieved by the classifier using different subsets of the 450 features
selected in the first feature selection step, as a function of t - the clustering threshold. The maximum value was
obtained for t = 0.18 resulting in a subset of 244 features, and is equal to the AUROC score value obtained
before removing correlated features (t = 0). 8



S3.3 Mean Decrease Impurity Measure Computation for Feature Importance

The Mean Decrease Impurity (MDI) importance measure [20, 21] of a feature of interest is computed

by the Scikit-learn python package [22] as follows:

1. For each tree in the forest, the total decrease in Gini impurity in all the splits that use this

feature, weighted by the proportion of samples reaching that split, is computed.

2. The resulting value in each tree is averaged over all trees in the forest

Consequently, the MDI values for all features sum to one. Thus, an “important” feature is often

selected for tree splits and yields a high decrease of Gini impurity, leading to a high MDI. To evaluate

the feature importance of each PGFam feature in the final set of features, we computed its average

MDI value using 100 RF classifiers with different random seeds (seeds 0-99) trained on the combined

training and validation sets.

S4 Classification Performance Comparison on Benchmark Test 1
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Figure S2: Classification performance comparison between WSPC and extant classifiers on 94 out of 100
genomes of the original BacPaCS test set with manually verified labels (Benchmark Test 1, Section 2.2 in the
main text).

S5 Biological Interpretation

S5.1 A Detailed Description of Each of the Top HP PGFams

As a part of the feature selection process, we performed clustering based on a correlation measure

between all pairs of features (i.e., genes), and then selected a PGFam representative from each cluster.

Interestingly, 14 out of the 15 PGFams that yielded highest MDI scores in the HP category (Table 1

in the main text), each belong to a ”singleton” cluster that contains a single member.
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In what follows, we describe the biological function of each of the 15 PGFams in Table 1 from the

main text. In addition, we provide a list of PGFams that belong to the same cluster as the PGFam

ranked seventh (tRNA-modifying protein YgfZ).

1. Uroporphyrinogen III decarboxylase (EC 4.1.1.37) is an enzyme that catalyzes the fifth step in

heme biosynthesis [23]. Heme is essential to the function of hemoproteins, which are involved in

processes such as energy generation by the electron transport chain and detoxification of host

immune effectors. Both heme acquisition and synthesis are important for pathogenesis [24].

Uroporphyrinogen decarboxylase was found to be important for the survival of Actinobacillus

pleuropneumoniae, a pathogen swine, during infection [25].

Other PGFams in the corresponding cluster: None.

2. Dihydrolipoamide acetyltransferase (EC 2.3.1.12) is an enzyme component of the multienzyme

pyruvate dehydrogenase complex, which has an important role in aerobic respiration path-

ways [26]. It has been shown that Dihydrolipoamide acyltransferase is critical for Mycobacterium

tuberculosis pathogenesis [27], and for the colonization of Vibrio cholerae [28].

Other PGFams in the corresponding cluster: None.

3. Cytosol aminopeptidase PepA (EC 3.4.11.1). Aminopeptidases are enzymes that catalyze the

cleavage of amino acids and are active in several essential cellular processes [29]. PepA transcrip-

tionally regulates the carB gene, which playes multiple roles in the pathogenicity of Xanthomonas

citri [30]. In addition, PepA mediates pH regulation of virulence genes in Vibrio cholerae [31].

Other PGFams in the corresponding cluster: None.

4. Protoheme IX farnesyltransferase is an enzyme involved in catalysing the conversion of heme B

to heme O, encoded by the gene ctaB. Heme O is incorporated into the electron transport chain

as an electron acceptor, facilitating aerobic respiration and energy production [32]. The deletion

of ctaB was observed to cause attenuated growth and virulence of Staphylococcus aureus [33],

and it was also observed that this gene plays a critical role in the ability of S. aureus to secrete

cytolytic toxins [34].

Other PGFams in the corresponding cluster: None.

5. Molybdopterin synthase catalytic subunit MoaE (EC 2.8.1.12), is involved in the molybdenum

cofactor (MoCo) biosynthetic pathway [35]. Bacteria posses MoCo-dependent enzymes that

catalyze redox reactions associated with bacterial respiration and energy conversion processes.

These enzymes have been linked to virulence in a variety of bacteria [36]. The prevalence of

MoCo-dependent enzymes in key bacterial pathogens, paired with the mounting evidence of

their central roles in bacterial fitness during infection, suggest that they could be important

future drug targets [37].

Other PGFams in the corresponding cluster: None.
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6. Class 2 dihydroorotate dehydrogenase (DHODase) participates in the pyrimidine de novo biosyn-

thesis pathway. The pyrimidine synthetic pathway plays essential roles in the pathogenesis and

antibiotic resistance of P. aeruginosa and E. coli, and in the survival of the pathogen H. pylori.

Other PGFams in the corresponding cluster: None.

7. Uncharacterized tRNA-modifying protein YgfZ, participates in the synthesis and repair of iron-

sulfur (Fe-S) clusters. A mutation in YgfZ causes growth defects in Escherichia coli, particularly

under oxidative stress, and lowers the activities several Fe-S enzymes [38].

Other PGFams in the corresponding cluster:

PGF 00024322 NAD(P) transhydrogenase subunit beta (EC 1.6.1.2)

PGF 00045982 Pyruvate dehydrogenase E1 component (EC 1.2.4.1)

PGF 00416576 3’-to-5’ oligoribonuclease (orn)

PGF 01053024 Glutamine synthetase adenylyl-L-tyrosine phosphorylase (EC 2.7.7.89) / Glutamate-

ammonia-ligase adenylyltransferase (EC 2.7.7.42)

PGF 03000099 Ribonuclease Y

PGF 04792416 LSU ribosomal protein L32p @ LSU ribosomal protein L32p, zinc-independent

PGF 05562713 [Protein-PII] uridylyltransferase (EC 2.7.7.59) / [Protein-PII]-UMP uridylyl-

removing enzyme

PGF 10461681 Ribonuclease E (EC 3.1.26.12)

PGF 10525969 Magnesium and cobalt efflux protein CorC

8. 23S rRNA (uracil(1939)-C(5))-methyltransferase (EC 2.1.1.190). Methylation of 23S rRNA was

found to provide a significant advantage for bacteria at osmotic and oxidative stress [39].

Other PGFams in the corresponding cluster: None.

9. YpfJ protein, zinc metalloprotease superfamily, is a protein that cleaves other proteins and

uses zinc as a metal cofactor. Metalloproteases play multiple roles in virulence including the

disruption of physiologically important host processes, release of nutrients such as metals from

host metalloproteins, cleavage of host immune components, and interference with host immune

signaling cascades [40].

Other PGFams in the corresponding cluster: None.

10. Threonine dehydratase biosynthetic (EC 4.3.1.19). Threonine dehydratase mediated isoleucine

biosynthesis is an important step in maintaining the metabolic pool of isoleucine, a branch chain

amino acid. It has been shown that down-regulation of threonine dehydratase in the pathogen

Mycobacterium tuberculosis increases its susceptibility to oxidative stress [41]. It also has been

suggested that the genes for threonine biosynthesis are critical factors for the multiplication

of Staphylococcus aureus in the blood [42]. Although S. aureus is usually commensal in the

skin and the mucosa, its presence in the blood can lead to a bloodstream infection with a high

fatality rate [43]. The enzymes belonging to the branch chain amino acid biosynthetic pathway
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in bacteria are promising drug targets due to the lack of a similar pathway in mammals, which

would reduce related toxicity [44].

Other PGFams in the corresponding cluster: None.

11. The enzyme glutathione reductase (EC 1.8.1.7) is part of the antioxidant glutathione system.

Glutathione is an abundant antioxidant in bacteria, where it serves a key function in protecting

the cell from the action of low pH, chlorine compounds, osmotic stresses, and reactive oxygen

species (ROS) [45]. Glutathione reductase is one of the main enzymes involved in glutathione

metabolism [45]. Recent studies suggested that generation of ROS acts as a common mechanism

of antibiotics-induced bacterial death, thus inhibiting antioxidant systems such as the glutathione

system may limit antibiotic resistance [46].

Other PGFams in the corresponding cluster: None.

12. Cell division integral membrane protein, YggT and half-length relatives. This is an unknown

gene with the predicted function of a cell division integral membrane protein, and its gene symbol

is YggT. YggT seems to play a role in osmotic stress tolerance in Escherichia coli [47]. It has

been suggested that osmostress responsive systems contribute to the virulence potential of a

number of pathogenic bacteria [48].

Other PGFams in the corresponding cluster: None.

13. Superoxide dismutase [Cu-Zn] precursor (EC 1.15.1.1) enzyme. As part of the innate immune

response, macrophages and neutrophils attack invading microbes with toxic superoxide [49].

To counteract this attack, some microbial pathogens express Cu, Zn superoxide dismutase en-

zymes [50]. This enzyme was shown to induce protection against oxidative stress and enhance the

pathogenicity of Bacillus anthracis [51]. In addition, it was shown to contribute to the resistance

of Mycobacterium tuberculosis against oxidative burst products generated by macrophages [52].

Other PGFams in the corresponding cluster: None.

14. Sulfur carrier protein FdhD. FdhD is required for formate dehydrogenase to be functional. For-

mate dehydrogenase was suggested to be involved in oxidative stress tolerance in E. coli [53].

Other PGFams in the corresponding cluster: None.

15. Deoxyribodipyrimidine photolyase. Photolyases are enzymes that repair UV-induced DNA

lesions by using light energy. Interestingly, many human and plant pathogens contain pho-

tolyases [54].

Other PGFams in the corresponding cluster: None.

S5.2 Top NHP Features
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PGFam Function MDI (SD1) HPs NHPs P-Ratio2 #
Genera3

1 PGF 03029062 Dihydroorotate dehy-
drogenase (NAD(+)),
catalytic subunit (EC
1.3.1.14)

0.034 (0.01) 70 182 5.17 98

2 PGF 01667671 Cytidylate kinase (EC
2.7.4.25)

0.031
(0.009)

7 125 31.57 60

3 PGF 02930287 Reverse rubrerythrin 0.027 (0.01) 11 125 21.05 57
4 PGF 08946513 Flavodoxin 0.021

(0.007)
67 170 5.04 94

5 PGF 01469197 RNA methyltransferase,
TrmA family

0.021
(0.009)

76 180 4.71 100

6 PGF 01333294 Activator of (R)-2-
hydroxyglutaryl-CoA
dehydratase

0.019
(0.007)

25 128 9.95 77

7 PGF 01284176 Rubrerythrin 0.018
(0.009)

35 142 7.96 81

8 PGF 00006245 Formate–
tetrahydrofolate ligase
(EC 6.3.4.3)

0.016
(0.007)

138 201 2.91 122

9 PGF 00033940 Phosphoribosyl-
aminoimidazole-
carboxamide formyl-
transferase (EC 2.1.2.3)

0.016
(0.006)

6 106 30.64 53

10 PGF 10332317 Electron transport com-
plex protein RnfB

0.014
(0.006)

18 123 13.08 62

11 PGF 08126536 Flavoprotein 0.013
(0.006)

13 114 16.47 58

12 PGF 00401757 no significant homology. 0.013
(0.006)

8 106 23.83 44

13 PGF 00016404 LSU ribosomal protein
L32p @ LSU ribo-
somal protein L32p,
zinc-dependent

0.012
(0.005)

88 173 3.92 100

14 PGF 00075770 FIG00519347: Ribonu-
cleotide reductase-like
protein

0.012
(0.003)

51 135 5.24 76

15 PGF 00003251 Macrolide export ATP-
binding/permease pro-
tein

0.01 (0.002) 16 69 8.25 40

Table S1: The top NHP PGFams that serve as features of the WSPC classifier according to their average Mean
Decrease Impurity (MDI) rank, along with the number of HP and NHP genomes in the training set that contain
the respective PGFams. The average MDI rank of a PGFam is the average value of the feature’s MDI values
computed using 100 random forest classifiers with different random seeds trained on the training set. 1Standard
Deviation. 2The ratio between the proportion of NHPs with the corresponding PGFam and the proportion of
HPs with the corresponding PGFam. To avoid zero division, add-one smoothing was performed. 3 The number
of different genera to which the genomes that contain the respective PGFams belong.
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S6 BacPaCS Test Genomes

Genome
ID

Genome Name BacPaCS
Label1

Validated
Label 2

References3 OPP4 Balanced
Test5

1 470.3353 Acinetobacter baumannii strain
HWBA8

NHP HP Clinical isolate
[55]

[56] Yes

2 106654.48 Acinetobacter nosocomialis strain
SSA3

NHP HP Clinical isolate
[55]

[56] Yes

3 520.659 Bordetella pertussis strain B227 HP HP [57] Yes
4 28450.385 Burkholderia pseudomallei strain

MSHR5864
HP HP [58] [59] Yes

5 83554.74 Chlamydia psittaci strain GIMC
2005:CpsCP1

HP HP [60] Yes

6 813.141 Chlamydia trachomatis strain SQ12 HP HP [61] Yes
7 545.38 Citrobacter koseri strain FDAAR-

GOS 287
HP HP [62, 63] [63] Yes

8 777.186 Coxiella burnetii strain Heizberg HP HP [64] Yes
9 1352.1760 Enterococcus faecium strain

Ef aus00233
NHP HP Hospital out-

break isolate
[65]

[66] Yes

10 562.22306 Escherichia coli strain FDAAR-
GOS 433 strain Not applicable

HP HP [67] Yes

11 210.2912 Helicobacter pylori strain F20 HP HP [68] Yes
12 573.16474 Klebsiella pneumoniae strain KP9 HP HP [69, 70] [70] Yes
13 1639.2624 Listeria monocytogenes strain H34 HP HP [71] [71] Yes
14 1041522.28 Mycobacterium colombiense CECT

3035 strain CECT 3035
HP HP [72] [72] Yes

15 722731.3 Mycobacterium shigaense strain
UN-152

HP HP [73] [74] Yes

16 1773.8714 Mycobacterium tuberculosis strain
MDRMA2441

HP HP [75] Yes

17 2104.190 Mycoplasma pneumoniae strain
KCH-405

HP HP [76] Yes

18 37326.9 Nocardia brasiliensis strain
FDAARGOS 352

HP HP [77, 78] Yes

19 28131.10 Prevotella intermedia strain OMA14 HP HP [79] [80] Yes
20 287.4623 Pseudomonas aeruginosa strain

PB350
HP HP [81] [82] Yes

21 1280.11681 Staphylococcus aureus strain
USA300-SUR15

HP HP [83] [84] Yes

22 1302.83 Streptococcus gordonii strain
FDAARGOS 257

HP HP [85, 86] [86] Yes

23 1338.30 Streptococcus intermedius strain
FDAARGOS 233

HP HP [87] [87] Yes

24 1902136.3 Streptococcus sp. NPS 308 NHP HP Clinical isolate
[88]

[88] Yes

25 730.54 [Haemophilus] ducreyi strain
FDAARGOS 297

HP HP [89, 90] Yes

26 28025.19 Bifidobacterium animalis strain BL3 NHP NHP [91] Yes
27 1496.1556 Clostridioides difficile strain BR81 NHP NHP [92, 93] [93] Yes
28 74426.49 Collinsella aerofaciens strain indica NHP NHP [94] [95] Yes
29 853.172 Faecalibacterium prausnitzii strain

Indica
NHP NHP [96] Yes

30 1841863.3 Gordonibacter sp. Marseille-P2775
strain Marseille-P2775

NHP NHP [97] Yes

31 1582.99 Lactobacillus casei strain LC5 NHP NHP [98] Yes
32 1613.133 Lactobacillus fermentum strain

FTDC 8312
NHP NHP [99] Yes

33 1590.548 Lactobacillus plantarum strain LP3 NHP NHP [100] Yes
34 47715.277 Lactobacillus rhamnosus strain Pen NHP NHP [101] Yes

Continued on next page
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35 487.1231 Neisseria meningitidis strain 38277 NHP NHP [102] [102] Yes
36 1944646.3 Phoenicibacter massiliensis strain

Marseille-P3241
NHP NHP [103] Yes

37 1849491.6 Staphylococcaceae bacterium S31
strain S31

NHP NHP [104] Yes

38 1308.247 Streptococcus thermophilus strain
ST3

NHP NHP [105] Yes

39 137591.34 Weissella cibaria strain CMS3 NHP NHP [106] Yes
40 515619.32 [Eubacterium rectale] ATCC 33656 NHP NHP [107] Yes
41 470.3349 Acinetobacter baumannii strain

15A34
NHP HP Clinical isolate

[55]
No

42 470.3350 Acinetobacter baumannii strain
15A5

NHP HP Clinical isolate
[55]

No

43 470.3348 Acinetobacter baumannii strain
CBA7

NHP HP Clinical isolate
[55]

No

44 470.3347 Acinetobacter baumannii strain
JBA13

NHP HP Clinical isolate
[55]

No

45 470.3356 Acinetobacter baumannii strain
SAA14

NHP HP Clinical isolate
[55]

No

46 470.3357 Acinetobacter baumannii strain
SSA12

NHP HP Clinical isolate
[55]

No

47 470.3352 Acinetobacter baumannii strain
SSA6

NHP HP Clinical isolate
[55]

No

48 470.3358 Acinetobacter baumannii strain
SSMA17

NHP HP Clinical isolate
[55]

No

49 470.3355 Acinetobacter baumannii strain
USA15

NHP HP Clinical isolate
[55]

No

50 470.3351 Acinetobacter baumannii strain
USA2

NHP HP Clinical isolate
[55]

No

51 470.3354 Acinetobacter baumannii strain
WKA02

NHP HP Clinical isolate
[55]

No

52 520.747 Bordetella pertussis strain C934 HP HP [57] No
53 520.694 Bordetella pertussis strain H361 HP HP [57] No
54 520.667 Bordetella pertussis strain H698 HP HP [57] No
55 520.529 Bordetella pertussis strain H754 HP HP [57] No
56 520.670 Bordetella pertussis strain H771 HP HP [57] No
57 520.535 Bordetella pertussis strain H812 HP HP [57] No
58 520.698 Bordetella pertussis strain H876 HP HP [57] No
59 520.699 Bordetella pertussis strain I093 HP HP [57] No
60 520.572 Bordetella pertussis strain I112 HP HP [57] No
61 520.537 Bordetella pertussis strain I238 HP HP [57] No
62 520.629 Bordetella pertussis strain I461 HP HP [57] No
63 520.543 Bordetella pertussis strain I763 HP HP [57] No
64 520.574 Bordetella pertussis strain I998 HP HP [57] No
65 520.546 Bordetella pertussis strain J018 HP HP [57] No
66 520.650 Bordetella pertussis strain J073 HP HP [57] No
67 520.737 Bordetella pertussis strain J078 HP HP [57] No
68 520.708 Bordetella pertussis strain J122 HP HP [57] No
69 520.671 Bordetella pertussis strain J178 HP HP [57] No
70 520.672 Bordetella pertussis strain J179 HP HP [57] No
71 520.678 Bordetella pertussis strain J194 HP HP [57] No
72 520.680 Bordetella pertussis strain J296 HP HP [57] No
73 28450.655 Burkholderia pseudomallei strain

2010007509
HP HP [108, 59] [59] No

74 813.142 Chlamydia trachomatis strain SQ14 HP HP [61] No
75 168807.6 Escherichia coli O127:H6 strain

EPEC1
NHP HP Pathogenic E.

coli strain [109]
No

76 562.16466 Escherichia coli strain 5CRE51 HP HP [110] No
77 562.22333 Escherichia coli strain ATCC 43896 HP HP [111] No

Continued on next page

15



Genome
ID

Genome Name BacPaCS
Label1

Validated
Label 2

References3 OPP4 Balanced
Test5

78 562.15193 Escherichia coli strain Ecol 276 HP HP [112] No
79 562.22323 Escherichia coli strain FDAAR-

GOS 434 strain Not applicable
HP HP [113] No

80 562.22307 Escherichia coli strain FDAAR-
GOS 448 strain Not applicable

HP HP [114] No

81 562.16428 Escherichia coli strain G199 NHP HP Pathogenic E.
coli strain [115]

No

82 562.22326 Escherichia coli strain UFU EC98 HP HP [116] No
83 573.16440 Klebsiella pneumoniae strain 459 HP HP [117] [70] No
84 573.15319 Klebsiella pneumoniae strain

FDAARGOS 436 strain Not appli-
cable

HP HP [118] [70] No

85 1196172.3 Listeria monocytogenes serotype 4b
str. 02-1289 strain 02-1289

HP HP [119, 71] [71] No

86 1196162.3 Listeria monocytogenes serotype 4b
str. 10-0809 strain 10-0809

HP HP [120, 71] [71] No

87 1773.8686 Mycobacterium tuberculosis strain
LE13

HP HP [75] No

88 1773.8719 Mycobacterium tuberculosis strain
TBDM2489

HP HP [75] No

89 2104.189 Mycoplasma pneumoniae strain
KCH-402

HP HP [76] No

90 487.1548 Neisseria meningitidis strain
M26417

HP HP [121] [102] No

91 287.3868 Pseudomonas aeruginosa strain
RIVM-EMC2982

NHP HP Clinical isolate
[122]

[82] No

92 1280.12234 Staphylococcus aureus strain JE2 HP HP [123, 84] [84] No
93 1280.11677 Staphylococcus aureus strain

USA300-SUR11
HP HP [124, 84] [84] No

94 76857.43 Fusobacterium nucleatum subsp.
polymorphum strain KCOM 1275

NHP INC [12] No

95 172042.4 Rothia aeria strain JCM 11412 NHP INC [14] No
96 860.11 Fusobacterium periodonticum strain

KCOM 1261
NHP INC [125] No

97 860.17 Fusobacterium periodonticum strain
KCOM 1262

NHP INC [125] No

98 860.16 Fusobacterium periodonticum strain
KCOM 2555

NHP INC [125] No

99 860.18 Fusobacterium periodonticum strain
KCOM 2653

NHP INC [125] No

100 47715.310 Lactobacillus rhamnosus strain LR5 NHP NHP [126] No

Table S2: A list of genomes included in the BacPaCS test set. 1The original label given to each genome by
Barash et al. [7]. 2,3Manually validated label according to the PATRIC metadata entry and according to the
literature, along with the respective reference. INC stands for an inconclusive label, see text. 4A reference is
provided if the corresponding species is known to cause opportunistic infections. 5Whether the genome is part
of the balanced version of the BacPaCS test, which includes one genomes per species.

S7 WSPC Test Genomes

Genome
ID

Genome Name Label HP/NHP1Species References2OPP.3

1 163603.4 Actinomadura latina strain ATCC
BAA-277

HP 1/0 Actinomadura latina [127] No

2 648.157 Aeromonas caviae strain ScAc2001 HP 9/0 Aeromonas caviae [128] No
3 565.15 Atlantibacter hermannii strain 3608 HP 1/0 Atlantibacter hermannii [129] No

Continued on next page
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4 29459.655 Brucella melitensis strain
HN20190002

HP 13/0 Brucella melitensis [130] No

5 87883.284 Burkholderia multivorans strain
C1576

HP 107/0 Burkholderia multivo-
rans

[131] No

6 195.2778 Campylobacter coli strain 202823 HP 95/0 Campylobacter coli [132,
133]

No

7 201.69 Campylobacter lari strain 503734 HP 3/0 Campylobacter lari [134,
135]

No

8 2572066.4 Campylobacter sp. CFSAN093243 HP 194/0 Campylobacter jejuni [134,
136,
137]

No

9 1491.1756 Clostridium botulinum strain
ZBS3 16-240-01

HP 7/0 Clostridium botulinum [138] No

10 65058.433 Corynebacterium ulcerans strain 02-
13

HP 8/0 Corynebacterium ulcer-
ans

[139] No

11 208962.153 Escherichia albertii strain 13S38 HP 34/0 Escherichia albertii [140] No
12 562.55247 Escherichia coli strain 4374 HP 4352/396 Escherichia coli [141] No
13 210.6620 Helicobacter pylori strain MHP47 HP 526/0 Helicobacter pylori [142] No
14 104628.50 Helicobacter suis strain NHP19-

4022
HP 2/0 Helicobacter suis [143] No

15 44275.61 Leptospira interrogans serovar
Copenhageni strain CLEP00179

HP 6/0 Leptospira interrogans [144] No

16 1639.7756 Listeria monocytogenes strain
SCPM-O-B-7909

HP 197/0 Listeria monocytogenes [145] No

17 78331.108 Mycobacterium canettii strain
NLA000701671

HP 1/0 Mycobacterium canettii [146] No

18 1768.199 Mycobacterium kansasii strain
JALMAMYKAN-1

HP 34/0 Mycobacterium kansasii [147] No

19 2664891.3 Mycobacterium tuberculosis com-
plex sp. AY1MRC

HP 1/0 Mycobacterium tuber-
culosis complex sp.
AY1MRC

[148] No

20 1773.20690 Mycobacterium tuberculosis strain
Mycobacterium tuberculosis 79499

HP 3445/2 Mycobacterium tuber-
culosis

[149] No

21 485.8128 Neisseria gonorrhoeae strain 5671
strain not applicable

HP 289/0 Neisseria gonorrhoeae [150] No

22 90370.3046 Salmonella enterica subsp. enterica
serovar Typhi strain 343077 206161

HP 1480/2 Salmonella enterica [151] No

23 624.2242 Shigella sonnei strain 7109.28 HP 850/0 Shigella sonnei [152] No
24 686.65 Vibrio cholerae O1 biovar El Tor

strain NALMLE37
HP 344/0 Vibrio cholerae [153] No

25 150053.31 Yersinia enterocolitica subsp.
palearctica strain Ye9N

HP 5/0 Yersinia enterocolitica [154] No

26 85698.208 Achromobacter xylosoxidans strain
DN2019

HP 16/0 Achromobacter xylosox-
idans

[155] Yes

27 470.9648 Acinetobacter baumannii strain
KT 2016 39

HP 2281/0 Acinetobacter bauman-
nii

[156] Yes

28 29430.96 Acinetobacter haemolyticus strain
11654

HP 25/0 Acinetobacter
haemolyticus

[157] Yes

29 28090.110 Acinetobacter lwoffii strain
FDAARGOS 620 strain Not
applicable

HP 2/0 Acinetobacter lwoffii [158] Yes

30 48296.376 Acinetobacter pittii strain VNMU
150

HP 43/2 Acinetobacter pittii [159] Yes

31 2026190.21 Bacillus mobilis strain 1428.155 HP 1/0 Bacillus mobilis [160,
161]

Yes

32 2026186.33 Bacillus paranthracis strain ELWA-
3 3298

HP 1/1 Bacillus paranthracis [162] Yes

33 817.1653 Bacteroides fragilis strain PP971 HP 61/45 Bacteroides fragilis [163] Yes
Continued on next page
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34 95486.460 Burkholderia cenocepacia strain
MS-2140

HP 206/0 Burkholderia cenocepa-
cia

[164] Yes

35 292.237 Burkholderia cepacia strain IST612 HP 3/0 Burkholderia cepacia [165] Yes
36 28450.2018 Burkholderia pseudomallei strain

haikou8
HP 168/0 Burkholderia pseudo-

mallei
[59] Yes

37 1507806.57 Campylobacter fetus subsp. tes-
tudinum strain wqj4

HP 14/0 Campylobacter fetus [166] Yes

38 57706.80 Citrobacter braakii strain CB00017 HP 1/0 Citrobacter braakii [167] Yes
39 67824.24 Citrobacter farmeri strain YDC697-

2
HP 1/0 Citrobacter farmeri [63, 168] Yes

40 546.797 Citrobacter freundii strain YDC638-
3

HP 34/1 Citrobacter freundii [63] Yes

41 545.121 Citrobacter koseri strain AS012499 HP 7/1 Citrobacter koseri [63] Yes
42 67827.42 Citrobacter werkmanii strain

YDC667-1
HP 4/0 Citrobacter werkmanii [63] Yes

43 133448.15 Citrobacter youngae strain
AS012330

HP 1/0 Citrobacter youngae [63] Yes

44 1496.5104 Clostridioides difficile strain
TMD0138

HP 601/39 Clostridioides difficile [93, 169] Yes

45 413503.68 Cronobacter malonaticus strain
BJ15

HP 8/0 Cronobacter malonati-
cus

[170] Yes

46 413501.15 Cronobacter muytjensii strain
Cr150

HP 1/0 Cronobacter muytjensii [170] Yes

47 28141.803 Cronobacter sakazakii strain SD45 HP 47/0 Cronobacter sakazakii [170] Yes
48 413502.35 Cronobacter turicensis strain SH11 HP 2/0 Cronobacter turicensis [170] Yes
49 539.170 Eikenella corrodens strain EI 09 HP 8/0 Eikenella corrodens [171,

172]
Yes

50 2528037.4 Eikenella exigua strain EI 02 HP 1/0 Eikenella exigua [171,
173]

Yes

51 1117645.412 Elizabethkingia anophelis strain
PHOL-515

HP 11/0 Elizabethkingia anophe-
lis

[174] Yes

52 238.101 Elizabethkingia meningoseptica
strain GX196

HP 6/0 Elizabethkingia
meningoseptica

[174] Yes

53 61645.317 Enterobacter asburiae strain
TUM17941

HP 20/0 Enterobacter asburiae [175] Yes

54 2494701.5 Enterobacter chengduensis strain
C2-143-1

HP 2/0 Enterobacter cheng-
duensis

[176] Yes

55 550.2644 Enterobacter cloacae strain
AS012445

HP 119/1 Enterobacter cloacae [176] Yes

56 299767.100 Enterobacter ludwigii strain
AS012471

HP 6/0 Enterobacter ludwigii [175] Yes

57 1812935.59 Enterobacter roggenkampii strain
AS012293

HP 12/0 Enterobacter
roggenkampii

[177] Yes

58 1351.3480 Enterococcus faecalis strain
VNMU281

HP 98/13 Enterococcus faecalis [178,
179]

Yes

59 1353.134 Enterococcus gallinarum strain
EGR748

HP 2/1 Enterococcus galli-
narum

[180,
181]

Yes

60 727.2505 Haemophilus influenzae strain
AS012767

HP 409/0 Haemophilus influenzae [182] Yes

61 729.1932 Haemophilus parainfluenzae strain
COPD-014-E1 O

HP 3/0 Haemophilus parain-
fluenzae

[183] Yes

62 548.678 Klebsiella aerogenes strain
AS012329

HP 96/0 Klebsiella aerogenes [184] Yes

63 1134687.181 Klebsiella michiganensis strain
AS012446

HP 13/0 Klebsiella michiganensis [185] Yes

64 571.798 Klebsiella oxytoca strain AS012479 HP 28/0 Klebsiella oxytoca [186] Yes
65 573.29103 Klebsiella pneumoniae strain

ST974-OXA48
HP 3859/8 Klebsiella pneumoniae [186] Yes

Continued on next page
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66 1463165.235 Klebsiella quasipneumoniae strain
M36

HP 67/0 Klebsiella quasipneu-
moniae

[187] Yes

67 244366.462 Klebsiella variicola strain AS012291 HP 129/0 Klebsiella variicola [187] Yes
68 109328.8 Leptotrichia trevisanii strain

JMUB3870
HP 1/0 Leptotrichia trevisanii [188] Yes

69 480.450 Moraxella catarrhalis strain
AS012766

HP 64/0 Moraxella catarrhalis [189] Yes

70 582.399 Morganella morganii strain
AS012332

HP 18/0 Morganella morganii [190] Yes

71 1809.19 Mycobacterium ulcerans strain
CSURQ0185

HP 3/0 Mycobacterium ulcer-
ans

[191] Yes

72 36809.633 Mycobacteroides abscessus strain
1322-S0

HP 682/0 Mycobacteroides ab-
scessus

[192] Yes

73 948102.18 Mycobacteroides franklinii strain
9917

HP 1/0 Mycobacteroides
franklinii

[193] Yes

74 487.3238 Neisseria meningitidis strain
N186 00

HP 278/43 Neisseria meningitidis [102] Yes

75 455432.12 Nocardia terpenica strain IFM 0706 HP 1/0 Nocardia terpenica [194,
195]

Yes

76 419475.21 Ochrobactrum pseudogrignonense
strain SHIN

HP 1/0 Ochrobactrum pseudo-
grignonense

[196,
197]

Yes

77 1202713.3 Paenalcaligenes suwonensis strain
191B

HP 1/0 Paenalcaligenes suwo-
nensis

[198] Yes

78 44250.11 Paenibacillus alvei strain bk032014 HP 1/0 Paenibacillus alvei [199] Yes
79 753.7 Pasteurella canis strain QBSD HP 1/0 Pasteurella canis [200] Yes
80 584.1255 Proteus mirabilis strain L76 HP 68/2 Proteus mirabilis [201] Yes
81 585.92 Proteus vulgaris strain AS012427 HP 2/0 Proteus vulgaris [202] Yes
82 588.149 Providencia stuartii strain

AS012498
HP 7/0 Providencia stuartii [203] Yes

83 287.11178 Pseudomonas aeruginosa strain
PASP309

HP 1957/0 Pseudomonas aerugi-
nosa

[204] Yes

84 46680.55 Pseudomonas nitroreducens strain
SC-1148-IPA-05

HP 1/0 Pseudomonas nitrore-
ducens

[204,
205]

Yes

85 2681497.3 Pseudomonas sp. AU8050 HP 32/0 unclassified Pseu-
domonas

[206,
207]

Yes

86 190721.31 Ralstonia insidiosa strain 5047
strain not applicable

HP 1/0 Ralstonia insidiosa [208] Yes

87 54291.261 Raoultella ornithinolytica strain
Z&Z370

HP 10/0 Raoultella ornithinolyt-
ica

[209] Yes

88 575.68 Raoultella planticola strain
AS012264

HP 5/0 Raoultella planticola [210] Yes

89 648995.31 Rhizobium pusense strain FDAAR-
GOS 618 strain Not applicable

HP 3/0 Rhizobium pusense [211] Yes

90 615.1093 Serratia marcescens strain C3 HP 137/0 Serratia marcescens [212] Yes
91 29378.48 Staphylococcus arlettae strain N283 HP 2/0 Staphylococcus arlettae [213] Yes
92 1280.23630 Staphylococcus aureus strain

SA15KEN strain not applicable
HP 2605/61 Staphylococcus aureus [214,

215]
Yes

93 29388.243 Staphylococcus capitis strain 12-400 HP 29/1 Staphylococcus capitis [216] Yes
94 1283.793 Staphylococcus haemolyticus strain

166 strain not applicable
HP 131/0 Staphylococcus

haemolyticus
[217] Yes

95 2045451.27 Stenotrophomonas indicatrix strain
AS012656

HP 1/0 Stenotrophomonas indi-
catrix

[218,
219]

Yes

96 40324.1544 Stenotrophomonas maltophilia
strain AS012600

HP 216/1 Stenotrophomonas mal-
tophilia

[220] Yes

97 119602.327 Streptococcus dysgalactiae subsp.
equisimilis strain KNZ15

HP 15/0 Streptococcus dysgalac-
tiae

[221] Yes

98 254785.37 Streptococcus halichoeri strain
CCUG67100

HP 1/0 Streptococcus halicho-
eri

[222] Yes

Continued on next page
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99 1313.20171 Streptococcus pneumoniae strain
GPSC334

HP 4748/235 Streptococcus pneumo-
niae

[223,
224]

Yes

100 257758.659 Streptococcus pseudopneumoniae
strain CCUG 72018

HP 40/0 Streptococcus pseudop-
neumoniae

[225] Yes

101 1343.51 Streptococcus vestibularis strain
AS012761

HP 1/1 Streptococcus vestibu-
laris

[226,
227]

Yes

102 40545.1254 Sutterella wadsworthensis strain
809h

HP 20/0 Sutterella wadsworthen-
sis

[228,
229]

Yes

103 1648923.136 Bacillus paralicheniformis strain 6-1 NHP 0/2 Bacillus paralicheni-
formis

[230,
231]

No

104 1423.1028 Bacillus subtilis strain 8-1 NHP 0/3 Bacillus subtilis [232,
233]

No

105 492670.508 Bacillus velezensis strain Marseille-
Q1230

NHP 0/1 Bacillus velezensis [234,
235]

No

106 28116.1355 Bacteroides ovatus strain F11 NHP 2/28 Bacteroides ovatus [236,
237]

No

107 820.4961 Bacteroides uniformis strain A23 NHP 2/46 Bacteroides uniformis [238,
239]

No

108 371601.509 Bacteroides xylanisolvens strain
BIOML-A67

NHP 0/11 Bacteroides xylanisol-
vens

[240,
241]

No

109 1680.1978 Bifidobacterium adolescentis strain
BIO5485

NHP 0/24 Bifidobacterium adoles-
centis

[242] No

110 28025.139 Bifidobacterium animalis strain
BIOML-A2

NHP 0/6 Bifidobacterium ani-
malis

[240,
243]

No

111 1681.836 Bifidobacterium bifidum strain
BIOML-A20

NHP 0/33 Bifidobacterium bi-
fidum

[240,
244]

No

112 1689.110 Bifidobacterium dentium strain
UT Austin Bifido FMT C1

NHP 0/4 Bifidobacterium den-
tium

[245] No

113 1679.240 Bifidobacterium longum subsp.
longum strain BIO6283

NHP 0/60 Bifidobacterium longum [246] No

114 1720313.7 Bittarella massiliensis strain
BIOML-A2

NHP 0/2 Bittarella massiliensis [240,
247]

No

115 1737424.51 Blautia massiliensis strain BIOML-
A2

NHP 0/4 Blautia massiliensis [240,
248]

No

116 40520.1620 Blautia obeum strain BIOML-A1 NHP 0/28 Blautia obeum [240,
249]

No

117 2584624.3 Blautia sp. BIOML-A1 NHP 0/40 unclassified Blautia [240,
250]

No

118 418240.274 Blautia wexlerae strain BIOML-A15 NHP 0/17 Blautia wexlerae [240,
251]

No

119 2584625.3 Butyricicoccus sp. BIOML-A1 NHP 0/18 unclassified Butyricicoc-
cus

[240,
252]

No

120 2584626.3 Catenibacterium sp. BIOML-A1 NHP 0/4 unclassified Catenibac-
terium

[240,
253]

No

121 1520.337 Clostridium beijerinckii strain
BIOML-A8

NHP 0/11 Clostridium beijerinckii [240,
254]

No

122 2547410.3 Clostridium sp. C5-48 NHP 1/88 unclassified Clostridium [10] No
123 2584634.3 Coprobacillus sp. BIOML-A1 NHP 0/39 unclassified Coprobacil-

lus
[240,
255]

No

124 410072.542 Coprococcus comes strain F22 NHP 0/6 Coprococcus comes [256] No
125 2584635.3 Coprococcus sp. BIOML-A1 NHP 0/17 unclassified Coprococ-

cus
[240,
257]

No

126 88431.891 Dorea longicatena strain BIOML-A2 NHP 0/14 Dorea longicatena [240,
258]

No

127 2584637.3 Dorea sp. BIOML-A1 NHP 0/9 unclassified Dorea [240,
259]

No

128 39490.144 Eubacterium ramulus strain
BIOML-A2

NHP 0/4 Eubacterium ramulus [240,
260]

No

Continued on next page
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129 2584644.3 Eubacterium sp. BIOML-A2 NHP 0/29 unclassified Eubac-
terium

[240,
261]

No

130 853.7356 Faecalibacterium prausnitzii strain
BIOML-B10

NHP 0/39 Faecalibacterium praus-
nitzii

[240,
262]

No

131 2584645.3 Faecalibacterium sp. BIOML-A1 NHP 0/11 unclassified Faecalibac-
terium

[240,
263]

No

132 292800.500 Flavonifractor plautii strain
BIOML-A3

NHP 0/3 Flavonifractor plautii [240,
264]

No

133 1335613.28 Gordonibacter urolithinfaciens
strain BIOML-A1

NHP 0/1 Gordonibacter
urolithinfaciens

[240,
265]

No

134 2686092.3 Halobacillus sp. Marseille-Q1234 NHP 0/1 unclassified Halobacil-
lus

[266] No

135 1468449.9 Holdemania massiliensis strain
BIOML-A4

NHP 0/5 Holdemania massiliensis [240,
267]

No

136 1613.506 Lactobacillus fermentum strain
CVM-347

NHP 1/11 Lactobacillus fermen-
tum

[268] No

137 1587.365 Lactobacillus helveticus strain
DLBSA201

NHP 0/3 Lactobacillus helveticus [269] No

138 1597.462 Lactobacillus paracasei strain
BIOML-A2

NHP 0/19 Lactobacillus paracasei [240,
270]

No

139 47715.653 Lactobacillus rhamnosus strain
BIOML-A3

NHP 2/20 Lactobacillus rhamno-
sus

[240,
271]

No

140 1623.232 Lactobacillus ruminis strain
BIOML-A15

NHP 0/31 Lactobacillus ruminis [240,
272]

No

141 2584658.3 Lactonifactor sp. BIOML-A5 NHP 0/7 unclassified Lactonifac-
tor

[240,
273]

No

142 2584661.3 Megasphaera sp. BIOML-A1 NHP 0/4 unclassified Megas-
phaera

[240,
274]

No

143 28118.1621 Odoribacter splanchnicus strain
BIOML-A4

NHP 0/16 Odoribacter splanchni-
cus

[240,
275]

No

144 823.3208 Parabacteroides distasonis strain
BIOML-A11

NHP 5/66 Parabacteroides dista-
sonis

[240,
276]

No

145 328812.119 Parabacteroides goldsteinii strain
BIOML-A2

NHP 1/11 Parabacteroides gold-
steinii

[240,
277]

No

146 46503.1849 Parabacteroides merdae strain
BIOML-A28

NHP 0/43 Parabacteroides merdae [240,
278]

No

147 487175.63 Parasutterella excrementihominis
strain BIOML-A4

NHP 0/15 Parasutterella excre-
mentihominis

[240,
279]

No

148 33025.448 Phascolarctobacterium faecium
strain BIOML-A6

NHP 0/17 Phascolarctobacterium
faecium

[240,
280]

No

149 2049039.16 Phascolarctobacterium sp. strain
P2A-2

NHP 0/2 unclassified Phascolarc-
tobacterium

[280] No

150 571933.10 Piscibacillus halophilus strain
Marseille-Q1613

NHP 0/1 Piscibacillus halophilus [281] No

151 2584670.3 Pseudoflavonifractor sp. BIOML-
A8

NHP 0/17 unclassified Pseud-
oflavonifractor

[240,
282]

No

152 301302.2226 Roseburia faecis strain BIOML-A1 NHP 0/2 Roseburia faecis [240,
283]

No

153 166486.885 Roseburia intestinalis strain
BIOML-A1

NHP 0/6 Roseburia intestinalis [240,
284]

No

154 40518.2573 Ruminococcus bromii strain
BIOML-A2

NHP 3/12 Ruminococcus bromii [240,
285]

No

155 592978.29 Ruminococcus faecis strain BIOML-
A1

NHP 0/1 [Ruminococcus] faecis [240,
286]

No

156 1550024.413 Ruthenibacterium lactatiformans
strain BIOML-A15

NHP 0/13 Ruthenibacterium lac-
tatiformans

[240,
287]

No

157 2681551.3 Staphylococcus sp. 170179 NHP 3/2 unclassified Staphylo-
coccus

[288] No

Continued on next page
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158 1304.1361 Streptococcus salivarius strain
BIOML-A17

NHP 2/43 Streptococcus salivarius [240,
289]

No

159 2053618.40 Subdoligranulum sp. strain P1-4 NHP 0/6 unclassified Sub-
doligranulum

[290] No

160 2093855.3 Veillonellaceae bacterium M2-8 NHP 0/3 unclassified Veillonel-
laceae

[291,
292]

No

161 39485.1649 [Eubacterium] eligens strain
BIOML-A1

NHP 0/13 Lachnospira eligens [240,
293]

No

162 39491.2484 [Eubacterium] rectale strain
BIOML-A5

NHP 6/70 unclassified Lach-
nospiraceae

[240,
294]

No

163 33039.1028 [Ruminococcus] torques strain
BIOML-A5

NHP 0/9 [Ruminococcus] torques [240,
295]

No

164 1872444.542 Alistipes sp. strain P1-1 NHP 0/5 unclassified Alistipes [296] Yes
165 1396.2563 Bacillus cereus strain 2-1 NHP 16/7 Bacillus cereus [297,

298]
Yes

166 79880.75 Bacillus clausii strain B619/R NHP 5/0 Bacillus clausii [299] Yes
167 818.1282 Bacteroides thetaiotaomicron strain

F9-2
NHP 2/15 Bacteroides thetaio-

taomicron
[300,
301]

Yes

168 821.3918 Bacteroides vulgatus strain H23 NHP 3/70 Bacteroides vulgatus [302] Yes
169 2044936.47 Bacteroidia bacterium strain T-B-

M MAG 00007
NHP 0/3 unclassified Bacteroidia [303] Yes

170 2044595.31 Candidatus Gracilibacteria bac-
terium strain P-C-F MAG 00005

NHP 0/2 unclassified Candidatus
Gracilibacteria

[304] Yes

171 2026720.132 Candidatus Saccharibacteria bac-
terium strain T-D-F MAG 00008

NHP 0/20 unclassified Saccharib-
acteria

[303] Yes

172 44737.7 Capnocytophaga sp. strain P-B-
M MAG 00008

NHP 0/1 unclassified Capnocy-
tophaga

[305] Yes

173 35703.89 Citrobacter amalonaticus strain
BIOML-A5

NHP 1/13 Citrobacter amalonati-
cus

[240,
306]

Yes

174 1898207.3769Clostridiales bacterium strain T-D-
F MAG 00006

NHP 0/9 unclassified Clostridi-
ales

[303] Yes

175 1492.181 Clostridium butyricum strain
BIOML-A2

NHP 0/2 Clostridium butyricum [240,
307]

Yes

176 74426.1601 Collinsella aerofaciens strain
BIOML-A15

NHP 0/20 Collinsella aerofaciens [240, 95] Yes

177 2584631.3 Collinsella sp. BIOML-A4 NHP 0/82 unclassified Collinsella [240, 95] Yes
178 218538.1051 Dialister invisus strain P2A-1 NHP 0/1 Dialister invisus [308] Yes
179 2584641.3 Eggerthella sp. BIOML-A4 NHP 0/5 unclassified Eggerthella [240,

309]
Yes

180 158836.472 Enterobacter hormaechei strain
BIOML-A4

NHP 305/6 Enterobacter hor-
maechei

[240,
310]

Yes

181 33945.49 Enterococcus avium strain BIOML-
A3

NHP 4/5 Enterococcus avium [240,
311]

Yes

182 53345.154 Enterococcus durans strain BIOML-
A46

NHP 0/67 Enterococcus durans [240,
312]

Yes

183 1352.8997 Enterococcus faecium strain C59 NHP 666/7 Enterococcus faecium [66] Yes
184 1354.275 Enterococcus hirae strain BIOML-

A52
NHP 0/87 Enterococcus hirae [240,

313]
Yes

185 53346.66 Enterococcus mundtii strain
BIOML-A5

NHP 1/14 Enterococcus mundtii [240,
314]

Yes

186 71452.14 Enterococcus raffinosus strain
BIOML-A1

NHP 0/1 Enterococcus raffinosus [240,
315]

Yes

187 1260.144 Finegoldia magna strain BIOML-A2 NHP 10/2 Finegoldia magna [240,
316]

Yes

188 2584653.3 Finegoldia sp. BIOML-A5 NHP 0/5 unclassified Finegoldia [240,
317]

Yes

189 1871037.250 Flavobacteriaceae bacterium strain
P-A-M MAG 00002

NHP 1/3 unclassified Flavobacte-
riaceae

[318] Yes

Continued on next page
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190 471189.25 Gordonibacter pamelaeae strain
BIOML-A2

NHP 0/1 Gordonibacter pame-
laeae

[240,
319]

Yes

191 104608.5 Leptotrichia sp. strain T-B-
M MAG 00008

NHP 0/1 unclassified Lep-
totrichia

[303] Yes

192 1246.49 Leuconostoc lactis strain BIOML-
A1

NHP 0/2 Leuconostoc lactis [240,
320]

Yes

193 2049035.5 Mogibacterium sp. strain T-C-
M MAG 00002

NHP 0/3 unclassified Mogibac-
terium

[303] Yes

194 1505.72 Paeniclostridium sordellii strain
BIOML-A6

NHP 4/2 Paeniclostridium sordel-
lii

[240,
321]

Yes

195 165179.2440 Prevotella copri strain P2B-2 NHP 0/21 Prevotella copri [322] Yes
196 59823.699 Prevotella sp. strain P-A-

F MAG 00002
NHP 1/7 unclassified Prevotella [323,

324,
325]

Yes

197 1282.3805 Staphylococcus epidermidis strain
JH

NHP 85/69 Staphylococcus epider-
midis

[326,
327]

Yes

198 1311.2752 Streptococcus agalactiae strain
M134

NHP 236/5 Streptococcus agalac-
tiae

[328] Yes

199 1318.781 Streptococcus parasanguinis strain
BIOML-A16

NHP 3/25 Streptococcus parasan-
guinis

[240,
329]

Yes

200 2584682.3 Streptococcus sp. BIOML-A1 NHP 4/5 unclassified Streptococ-
cus

[240,
330]

Yes

201 39778.876 Veillonella dispar strain BIOML-A2 NHP 0/3 Veillonella dispar [240,
331]

Yes

202 29466.1006 Veillonella parvula strain BIOML-
A1

NHP 1/4 Veillonella parvula [240,
332]

Yes

203 1522.125 [Clostridium] innocuum strain
BIOML-A2

NHP 0/15 [Clostridium] innocuum [240,
333]

Yes

204 2044938.12 candidate division SR1 bacterium
strain P-B-M MAG 00018

NHP 0/19 unclassified Bacteria [303] Yes

Table S3: A list of genomes included in the WSPC test set. 1HP to NHP ratio among the labeled genomes
of the corresponding species (before choosing a representative from each species). 2References to literature or a
database entry asserting the label and the ”group” annotations the corresponding genome belongs to. 3OPP:
opportunistic.
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[101] Piotr Jarocki, Marcin Podleśny, Mariusz Krawczyk, Agnieszka Glibowska, Jaros law Pawelec,
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fication of Ochrobactrum anthropi from blood culture using 16rRNA sequencing: a first case

report in an immunocompromised patient in mexico. Frontiers in Medicine, 5:205, 2018.
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and colonization properties of potentially probiotic bacillus paralicheniformis strain fa6 isolated

from grass carp intestine. Fisheries Science, 86(1):153–161, 2020.

[231] PATRIC Database. Bacillus paralicheniformis strain 6-1, Genome ID 1648923.136. https:

//www.patricbrc.org/view/Genome/1648923.136.

[232] Fouad MF Elshaghabee, Namita Rokana, Rohini D Gulhane, Chetan Sharma, and Harsh Pan-

war. Bacillus as potential probiotics: status, concerns, and future perspectives. Frontiers in

Microbiology, 8:1490, 2017.

[233] PATRIC Database. Bacillus subtilis strain 8-1, Genome ID 1423.1028. https://www.

patricbrc.org/view/Genome/1423.1028.

[234] PATRIC Database. Bacillus velezensis strain Marseille-Q1230, Genome ID 492670.508. https:

//www.patricbrc.org/view/Genome/492670.508.

[235] Oleg N Reva, Dirk ZH Swanevelder, Liberata A Mwita, Aneth David Mwakilili, Dillon Mu-

zondiwa, Monique Joubert, Wai Yin Chan, Stefanie Lutz, Christian H Ahrens, Lylia V Avdeeva,

et al. Genetic, epigenetic and phenotypic diversity of four bacillus velezensis strains used for

plant protection or as probiotics. Frontiers in Microbiology, 10:2610, 2019.

[236] PATRIC Database. Bacteroides ovatus strain F11, Genome ID 28116.1355. https://www.

patricbrc.org/view/Genome/28116.1355.

[237] Huizi Tan, Zhiming Yu, Chen Wang, Qingsong Zhang, Jianxin Zhao, Hao Zhang, Qixiao Zhai,

and Wei Chen. Pilot safety evaluation of a novel strain of bacteroides ovatus. Frontiers in

Genetics, 9:539, 2018.

43



[238] PATRIC Database. Bacteroides uniformis strain A23, Genome ID 820.4961. https://www.

patricbrc.org/view/Genome/820.4961.
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