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Short description of Supporting Online Material 

Here, we provide short explanations for the different performance metrics used during 
evaluation (Note S1, Fig. S4); how we created the results for several other prediction 
methods (Note S2); we briefly explain the idea behind using a simple Viterbi decoder 
and its limitations (Note S3, Fig. S2); and we provide illustrative sketches of our model 
architecture (Fig. S1) and nested cross-validation process (Fig. S3). 

We list the hardware specifications of the machines used during the project (Table S1) 
and the optimal hyperparameters for each of the final models (Table S2). Further, we 
provide performance statistics for signal peptides (Table S3) and protein groups based 
on their number of transmembrane segments (Table S4). We also list statistics for the 
individual models and cross-validation splits (Tables S5 & S6), confusion matrices for 
the cross-validation and final models (Table S7 & S8), the effect of the Gaussian filter 
and Viterbi decoder on segment performance (Table S9), and estimate the expected 
number of mistakes made in a hypothetical proteome (Table S10). Additionally, we 
show a few more “false positives” that might actually be transmembrane proteins (Fig. 
S5). Finally, we provide performance and annotation statistics for an out-of-distribution 
data set gathered from DeepTMHMM (Tables S11 & S12, Fig. S6) and a CASP-like 
data set of novel membrane proteins (Table S13). 
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Material 

Note S1: Performance metrics explained. 

We evaluated our and other methods using several standard and non-standard 
performance metrics, listed below. Statistics referring to a specific type of segment 
(i.e., transmembrane beta strands or helices, and signal peptides) are calculated using 
only the corresponding subset of proteins. For example, the precision and Qok values 
for transmembrane helices take only the 571 alpha helical transmembrane proteins 
(TMPs) into account, ignoring any false positive predictions made in beta barrel TMPs 
or globular proteins. 

Recall, also called Sensitivity, is the percentage of positive samples (proteins or 
segments) that have been correctly predicted as such. For example, TMbed correctly 
identified 557 of the 571 alpha helical TMPs, i.e., a recall of about 98%. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100%         (Eq. S1) 

Precision reflects the percentage of positive predictions that are actually correct. Since 
only 557 of the 584 alpha helical TMPs predicted by TMbed are correct (the other 27 
are globular proteins), it has a precision of about 95%. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100%         (Eq. S2) 

False Positive Rate (FPR) gives the percentage of negatives samples incorrectly 
predicted as positive ones. For example, 27 out of 5711 globular and beta barrel TMPs 
incorrectly predicted as alpha helical TMPs correspond to a FPR of about 0.5%. 

𝐹𝑃𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100%         (Eq. S3) 

Qok is the percentage of proteins for which all predicted segments of a given type are 
correct, i.e., segment recall and precision are both 100% for those proteins. A Qok of 
79% for beta barrel TMPs corresponds to 45 of 57 proteins that do not have any false 
positive or false negative predictions of transmembrane beta strands. 

𝑄𝑜𝑘 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑇 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑤𝑖𝑡ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑇
∗ 100%        (Eq. S3) 

Qnum shows the percentage of proteins that have the correct number of predicted 
segments of a given type, regardless of their exact position. TMbed predicted the 
correct number of transmembrane beta strands in 50 of 57 beta barrel TMPs, i.e., it 
has a Qnum of about 88%. 

𝑄𝑛𝑢𝑚 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑇

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑤𝑖𝑡ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑇
∗ 100%       (Eq. S4) 

Qtop gives the percentage of correctly predicted segments of a given type that also 
have the correct inside/outside orientation, i.e., its endpoints are on the correct sides 
of the membrane. For example, TMbed correctly predicts 730 of 768 transmembrane 
beta strands (recall of about 95%). Of those 730 segments, 714 also have the correct 
inside/outside orientation, i.e., the Qtop value is about 98%. We consider only the first 
residue on each side of a segment to determine its orientation. 
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𝑄𝑡𝑜𝑝 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑇 𝑤𝑖𝑡ℎ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑇
∗ 100%       (Eq. S5) 

We estimate the error margin of our performance values with the 95% confidence 
interval (CI), i.e., 1.96 times the standard error (SE) based on the sample standard 
deviation (SD): 

𝐶𝐼 = 1.96 ∗ 𝑆𝐸;   𝑆𝐸 =
𝑆𝐷

√𝑁
;   𝑆𝐷 = √

1

𝑁−1
∗ ∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1 ,            (Eq. S6-S8) 

where 𝑁 is the number of measurements 𝑥𝑖 performed and 𝑥̅ is the mean over those. 

In our case, 𝑁 usually refers to the five cross-validation iterations. 

 

Note S2: Other prediction methods. 

In order to put the performance of TMbed into context, we made predictions for the 
proteins in our data set using several other methods. 

DeepTMHMM (1) uses ESM-1b (2) embeddings to predict alpha helical and beta barrel 
transmembrane proteins (TMP). We generated all predictions using a local installation 
as described on their web server homepage (https://dtu.biolib.com/DeepTMHMM). 

TOPCONS2 (3), OCTOPUS (4), Philius (5), PolyPhobius (6), and SPOCTOPUS (7) all 
predict alpha helical TMPs. TOPCONS2, Philius, PolyPhobius, and SPOCTOPUS 
additionally predict signal peptides. With the exception of Philius, all other five methods 
use evolutionary information in the form of BLAST profiles or MSAs as additional input 
to the protein sequence. As TOPCONS2 is a consensus prediction method combining 
all of the above methods, we got all predictions from its web server 
(https://topcons.net). Unfortunately, the web server rejected one of the globular 
proteins, P05790, due to its high GA content (incorrectly thought to be a DNA 
sequence). 

CCTOP (8, 9) is another consensus prediction method for alpha helical TMPs. It 
combines a total of 10 prediction methods and topology constraint determined by a 
homology lookup. We used their web server (https://cctop.ttk.hu/) to generate 
predictions for our data sets. Due to sequence length restrictions (up to 5,000 residues) 
we are missing predictions for one alpha helical TMP and six globular proteins. 

SCAMPI2 (10) is an improved version of the older SCAMPI (11) method employed as 
part of TOPCONS2. We downloaded the software from its GitHub repository1 and used 
UniRef90 as the BLAST search database to generate the alignments needed for the 
MSA version of SCAMPI2. 

HMM-TM (12) and PRED-TMBB2 (13) are methods predicting alpha helical and beta 
barrel TMPs, respectively. We computed predictions for our data set using their 
respective web servers (http://www.compgen.org/tools). For both methods, we used 
the most recent improvements employing hidden neural networks (14). As the online 
services only allow batch submissions for the single sequence versions, i.e., without 
the use of MSAs as input, we also installed local versions of their methods (15) and 

                                            

1 https://github.com/ElofssonLab/scampi2 

https://dtu.biolib.com/DeepTMHMM
https://topcons.net/
https://www.uniprot.org/uniprot/P05790
https://cctop.ttk.hu/
https://github.com/ElofssonLab/scampi2
http://www.compgen.org/tools
https://github.com/ElofssonLab/scampi2
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ran them offline. However, the offline version of PRED-TMBB2 does not include the 
protein filtering using pHMMs that the web server employs, significantly increasing its 
false positive rate. Unfortunately, the local MSA versions failed for some of the proteins 
and we were unable to fix the issue. Thus, we are missing predictions for 155 proteins 
(6 beta barrel TMPs, 19 alpha helical TMPs, 130 globular proteins) by HMM-TM (MSA) 
and 26 proteins (2 alpha helical TMPs, 24 globular proteins) by PRED-TMBB2 (MSA). 

The authors of BetAware-Deep (16) kindly provided us with predictions for our data set 
as the web server only allows for submission of a single sequence at a time. Their 
method combines sequence profiles with several machine learning architectures 
(LSTM, CRF) to predict beta barrel TMPs. 

We installed and ran an offline version of BOCTOPUS2 (17) to predict beta barrel 
TMPs in our data set. We generated the sequence profiles and results according to 
the descriptions on their GitHub repository2. 

For TMSEG (18) and PROFtmb (19) we used the predictions generated by our 
PredictProtein (20) pipeline. TMSEG and PROFtmb predict alpha helical and beta 
barrel TMPs, respectively, both using BLAST profiles as additional input. 

We used the SignalP 6.0 (21) web server3 to generate additional signal peptide 
predictions. We chose the “slow” model mode to get accurate predictions. Just like 
TMbed, SignalP 6.0 uses a protein language model to generate embeddings (22). 

 

Note S3: Viterbi decoder. 

We use an untrained Viterbi decoder to translate the class probability distributions 
generated by our models into actual class labels for each residue in a sequence. The 
decoder scores state transitions according to the class probabilities predicted by the 
CNN model, trying to find the path with the highest sum of probabilities. We apply a 
score penalty of −100 to transitions not intended by our defined grammar (Fig. S2), 
effectively preventing the decoder from considering those transitions. 

 

The main purpose of the decoder is to enforce a small set of rules: 

1) Signal peptides may only start at the N-terminus of a sequence. 
2) Signal peptides and transmembrane segments must be at least five residues long. 
3) The inside/outside orientation of non-membrane parts must change after every 

transmembrane segment. 

 

We explicitly model the transition from IN to OUT state to allow for sequence parts that 
pass the membrane boundaries without actually being in contact with the membrane. 
For example, this includes parts of beta barrel TMPs that pass through the pore formed 
by their own beta barrel structure (Manuscript: Fig. 1). 

                                            

2 https://github.com/ElofssonLab/boctopus2 

3 https://services.healthtech.dtu.dk/service.php?SignalP-6.0 

https://github.com/ElofssonLab/boctopus2
https://services.healthtech.dtu.dk/service.php?SignalP-6.0
https://github.com/ElofssonLab/boctopus2
https://services.healthtech.dtu.dk/service.php?SignalP-6.0
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A downside to this is that the model is free to change the IN/OUT state to accommodate 
transmembrane segments even if the majority of the non-membrane residues on both 
sides of the segment are on the same side of the membrane, circumventing rule 3. 

For example: ...iiiiiHHHHHHHHHHHoiiii... 

However, disallowing the direct transitions between IN and OUT would prevent 
correctly modelling sequences where such transitions do happen and can encourage 
the model to split transmembrane segments to insert a single non-membrane residue, 
thereby accommodating the same orientation on both sides of the original segment. 

For example: ...iiiiiHHHHHHoHHHHHiiii... 

Given those two alternatives, we decided to allow for direct transitions. 

 

Table S1: Hardware specifications. 

 CPU RAM GPU VRAM Storage 

Desktop 
Machine 

Intel Core i5-
2500K 

24GB DDR3 NVIDIA GeForce 
RTX 3060 

12GB 
GDDR6 

SSD 

Server 
Machine 

Intel Xeon 
Gold 6248 

400GB 
DDR4 ECC 

NVIDIA Quadro 
RTX 8000 

48GB 
GDDR6 

SSD 

* List of most relevant hardware components in the two machines used during 
method development. We used the server machine to create sequence embeddings, 
while training and testing our new method on the Desktop machine. 

 

Table S2: Final hyperparameters. 

 Learning rate Weight decay 

Model 0 0.005 0.01 

Model 1 0.010 0.10 

Model 2 0.005 0.10 

Model 3 0.010 0.10 

Model 4 0.010 0.10 

* Optimal learning rate and weight decay values selected for each model during 
nested cross-validation. Numbers in the model name indicate the test set; for example, 
model 0 was trained and optimized on sets 1-4, and evaluated on set 0. 
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Table S3: Signal peptide performance. 

 
Proteins (661 vs. 4993) Segments (661) 

Recall (%) FPR (%) Recall (%) Precision (%) 

TMbed 98.8±0.8 0.1±0.1 93.3±1.4 94.5±1.3 

SignalP 6.0 97.0±1.0 0.2±0.1 92.6±1.7 95.5±1.7 

DeepTMHMM 99.2±0.5 0.2±0.2 95.3±1.8 96.0±1.7 

TMSEG 95.0±1.5 5.3±0.4 77.4±3.7 81.5±3.7 

TOPCONS21 93.9±1.7 2.3±0.5 81.8±3.0 87.1±2.3 

Philius1 93.3±1.6 5.9±0.6 84.5±1.8 90.6±1.7 

PolyPhobius1 92.4±1.7 1.9±0.3 84.1±2.7 91.0±1.8 

SPOCTOPUS1 93.5±1.8 3.6±0.5 85.3±2.7 91.2±1.5 

* Protein and segment performance for signal peptide (SP) prediction based on 
661 globular proteins with SPs and 4993 globular proteins without SPs. Performance 
values were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error); bold: best values 
for each column; italics: differences statistically significant with over 95% confidence 
(only computed between best and 2nd best). 

1 Evaluation includes only 660 of the 661 globular proteins with SPs due to one 
sequence being rejected by the prediction web server. 

 

Table S4: Performance relative to number of transmembrane segments. 

 
TMB TMH 

2, 4 (13) 8+ (44) 1 (164) 2-5 (175) 6+ (232) 

Qok (%) 65.0±36.7 85.6±8.6 78.1±3.1 61.0±5.5 52.7±3.2 

Recall (%) 65.0±36.7 96.6±4.4 79.3±4.5 84.1±1.9 90.6±0.7 

Precision (%) 75.0±38.0 99.5±0.6 83.4±2.7 83.8±2.3 90.3±0.8 

* TMbed segment performance for transmembrane beta strand (TMB) and helix 
(TMH) prediction based on 57 beta barrel and 571 alpha helical TMPs. TMPs are 
subdivided into groups based on their number of transmembrane segments: a) 2 or 4 
TMBs, b) 8 or more TMBs, c) a single TMH, d) 2-5 TMHs, and e) 6 or more TMHs. The 
numbers in parenthesis indicate the number of proteins within that group. Performance 
values were averaged over the five independent cross-validation test sets; error 
margins given for the 95% confidence interval (1.96*standard error). 
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Table S5: Cross-Validation protein performance. 

 
β-TMP α-TMP Globular 

Recall (%) FPR (%) Recall (%) FPR (%) Recall (%) FPR (%) 

Model 0 85.7 0.1 97.5 0.2 99.7 3.7 

Model 1 100.0 0.0 97.3 0.7 99.3 2.5 

Model 2 83.3 0.0 96.5 0.7 99.3 4.8 

Model 3 100.0 0.2 98.2 0.5 99.3 1.6 

Model 4 100.0 0.0 98.3 0.3 99.7 1.6 

Average 
±1.96SE 

93.8±7.5 0.1±0.1 97.5±0.7 0.5±0.2 99.5±0.2 2.8±1.2 

* Protein prediction performance for each TMbed model on the corresponding 
independent test set. Numbers in the model name indicate the test set; for example, 
model 0 was trained on sets 1-4 and evaluated on set 0. Last row lists the average 
over all five sets and 1.96 times the sample standard error, i.e., the 95% confidence 
interval. 

 

Table S6: Cross-Validation TM segment performance. 

 

TMB TMH 

Qok (%) 
Recall 
(%) 

Precision 
(%) 

Qok (%) 
Recall 
(%) 

Precision 
(%) 

Model 0 64.3 95.6 98.5 56.7 88.7 88.4 

Model 1 83.3 87.1 98.4 68.2 89.6 89.3 

Model 2 75.0 94.9 99.2 61.1 88.4 89.3 

Model 3 80.0 97.6 100.0 62.8 87.8 87.5 

Model 4 100.0 100.0 100.0 63.5 88.9 89.1 

Average 
±1.96SE 

80.5±11.4 95.0±3.4 99.2±0.7 62.4±3.7 88.7±0.6 88.7±0.7 

* Segment prediction performance for each TMbed model on the corresponding 
independent test set. Numbers in the model name indicate the test set; for example, 
model 0 was trained on sets 1-4 and evaluated on set 0. Last row lists the average 
over all five sets and 1.96 times the sample standard error, i.e., the 95% confidence 
interval. 
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Table S7: Cross-Validation confusion matrix. 

 
Predicted Label 

β-TMP α-TMP SP No SP 

T
ru

e
 L

a
b

e
l β-TMP 53 0 3 1 

α-TMP 0 557 4 10 

SP 3 9 643 6 

No SP 0 18 6 4969 

* Aggregated confusion matrix for the five TMbed models on the corresponding 
independent test sets. Protein categories are beta barrel TMPs (β-TMP), alpha helical 
TMPs (α-TMP), globular proteins with signal peptides (SP) and globular proteins 
without signal peptides (No SP). 

 

Table S8: Ensemble confusion matrix. 

 
Predicted Label 

β-TMP α-TMP SP No SP 

T
ru

e
 L

a
b

e
l β-TMP 56 0 1 0 

α-TMP 0 567 0 4 

SP 3 1 656 1 

No SP 0 7 4 4982 

* Confusion matrix for the final TMbed ensemble on the complete data set, i.e., 
for every sequence there are four models that have seen it during training and one 
model that has not. Protein categories are beta barrel TMPs (β-TMP), alpha helical 
TMPs (α-TMP), globular proteins with signal peptides (SP) and globular proteins 
without signal peptides (No SP). 
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Table S9: Effect of Gaussian filter and Viterbi decoder. 

 

TMB TMH 

Qok (%) 
Recall 
(%) 

Precision 
(%) 

Qok (%) 
Recall 
(%) 

Precision 
(%) 

TMbed 80.5±11.4 95.0±4.3 99.2±0.7 62.4±3.7 88.7±0.6 88.7±0.7 

Viterbi 77.7±15.9 95.4±4.0 99.1±1.1 61.6±3.5 88.9±0.8 88.7±0.8 

Gaussian 79.1±13.5 95.3±3.8 98.2±1.6 57.6±4.3 86.1±0.7 84.7±1.2 

CNN 45.5±13.9 94.7±4.0 92.0±6.2 50.0±4.7 87.4±1.0 79.6±2.5 

* Comparison between the CNN model, models combining the CNN with either 
the Gaussian filter or the Viterbi decoder, and the final TMbed model combining all 
three components. Segment performances for transmembrane beta strand (TMB) and 
helix (TMH) prediction are based on 57 beta barrel and 571 alpha helical TMPs. 
Performance values were averaged over the five independent cross-validation test 
sets; error margins given for the 95% confidence interval (1.96*standard error). 
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Table S10: Expected misclassifications. 

 
Misclassifications 

β-TMP α-TMP 

TMbed     22   193 

DeepTMHMM     53 (+31)   278 (+85) 

TMSEG    521 (+328) 

TOPCONS2    683 (+490) 

OCTOPUS  1666 (+1473) 

Philius    766 (+573) 

PolyPhobius    933 (+740) 

SPOCTOPUS  2701 (+2508) 

SCAMPI2 (MSA)  1135 (+942) 

CCTOP    744 (+551) 

HMM-TM (MSA)  3352 (+3159) 

BOCTOPUS2   880 (+858)  

BetAware-Deep   984 (+962)  

PRED-TMBB2 1573 (+1551)  

PROFtmb 1049 (+1027)  

* Number of expected misclassified proteins in a hypothetical proteome with 
20,000 proteins. Misclassifications are the sum of false positive and false negative 
predictions for the specific tasks of predicting proteins with transmembrane alpha 
helices (α-TMP) or beta strands (β-TMP). The number in parentheses is the difference 
to our method, TMbed. Expected prediction error rates for the methods are based on 
their confusion matrices on our data set of 6282 proteins. The hypothetical proteome 
contains 5000 (25%) alpha helical and 200 (1%) beta barrel transmembrane proteins. 
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Table S11: Out-of-distribution protein performance. 

 

β-TMP α-TMP Globular 

Recall 
(%) 

FPR 
(%) 

Recall 
(%) 

FPR 
(%) 

Recall 
(%) 

FPR 
(%) 

TMbed 100.0±0.0 0.6±0.6 95.5±4.5 1.2±0.9 98.1±1.2 3.9±3.9 

DeepTMHMM 100.0±0.0 0.5±0.5 95.4±4.4 1.2±0.9 98.2±1.1 3.9±3.8 

TOPCONS2 - - 98.8±2.4 6.8±2.0 93.2±2.0 1.2±2.4 

CCTOP1 - - 98.9±2.2 5.5±1.9 94.5±1.9 1.1±2.2 

BOCTOPUS2 100.0±0.0 5.9±1.8 - - 94.1±1.8 0.0±0.0 

* Evaluation of the ability to distinguish between 14 beta barrel TMPs (β-TMP), 86 
alpha helical TMPs (α-TMP) and 567 globular, water-soluble non-TMP proteins from 
the DeepTMHMM data set; all proteins are non-redundant with respect to the TMbed 
data sets. Recall and false positive rate (FPR) were averaged over 1000 bootstrap 
iterations (random sampling with replacement); error margins given for the 95% 
confidence interval (1.96*standard deviation); bold: best values for each column; 
italics: differences statistically significant with over 95% confidence (only computed 
between best and 2nd best, or all methods ranked 1 and those ranked lower). 

1 Evaluation missing for one of 85 α-TMPs. 
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Table S12: Out-of-distribution segment performance. 

 

TMB TMH 

Qok (%) Recall 
(%) 

Precision 
(%) 

Qok (%) Recall 
(%) 

Precision 
(%) 

TMbed 64.2±25.7 93.3±5.3 93.3±5.3 52.6±10.8 82.8±4.7 83.8±4.8 

DeepTMHMM 78.8±22.4 98.2±1.8 98.2±1.8 46.8±10.4 79.8±5.5 80.0±5.6 

TOPCONS2 - - - 65.0±10.0 88.9±3.7 89.4±3.7 

CCTOP1 - - - 63.5±10.0 88.9±4.0 89.0±3.9 

BOCTOPUS2 43.0±26.1 91.0±5.3 92.0±4.9 - - - 

OPM2 61.1±14.3 92.0±6.4 91.6±6.4 52.7±7.2 83.9±2.9 83.3±3.0 

* Segment performance for transmembrane beta strand (TMB) and helix (TMH) 
prediction based on 14 beta barrel and 86 alpha helical TMPs from the 
DeepTMHMM data set; all proteins are non-redundant with respect to the TMbed 
data sets. Qok, recall and precision were averaged over 1000 bootstrap iterations 
(random sampling with replacement); error margins given for the 95% confidence 
interval (1.96*standard deviation); bold: best values for each column; italics: 
differences statistically significant with over 95% confidence (only computed 
between best and 2nd best, or all methods ranked 1 and those ranked lower; ignores 
the OPM baseline). 

1 Evaluation missing for one of 85 α-TMPs. 

2 OPM represents the baseline for how much the DeepTMHMM data set annotations 
agree with our annotations collected from the OPM database, i.e. we are using the 
OPM annotations as predictions for the DeepTMHMM data set. The performance 
statistics were evaluated for a set of 44 beta barrel and 184 alpha helical TMPs 
common to both data sets (TMbed and DeepTMHMM). 
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Table S13: Segment performance on new membrane proteins. 

 

TMB TMH 

Qok 
(%) 

Recall 
(%) 

Precision 
(%) 

Qok 
(%) 

Recall 
(%) 

Precision 
(%) 

TMbed 0.0 93.3 100.0 25.0 60.0 62.5 

DeepTMHMM 0.0 86.7 92.9 25.0 40.0 43.5 

TOPCONS2 - - - 25.0 52.0 48.1 

CCTOP - - - 25.0 48.0 50.0 

BOCTOPUS2 0.0 0.0 0.0 - - - 

* Segment performance for transmembrane beta strand (TMB) and helix (TMH) 
prediction based on one beta barrel and four alpha helical TMPs; all proteins are 
non-redundant with respect to the TMbed data sets and the DeepTMHMM data set. 
Error margins omitted due to extremely small data set size; none of the performance 
differences are statistically significant; bold: best values for each column. 
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Figure S1: TMbed model architecture. 

The TMbed model consists of four parts: a) The ProtT5 encoder converts the input 
sequence into per-residue embeddings with 1024 dimensions for each residue in the 
sequence; b) a convolutional neural network (CNN) predicts class scores based on 
those embeddings; c) a Gaussian filter smooths the class scores and converts them 
into class probabilities via the softmax function; d) a Viterbi decoder assigns class 
labels to each of the residues in the sequence. The CNN consists of four layers: two 
pointwise convolutions (PWC) and two depthwise convolutions (DWC; kernel sizes of 
9 and 21). The output of the first PWC and both DWCs also passes through layer 
normalization and a ReLU activation function. 
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Figure S2: Viterbi decoder state transitions. 

Transitions encoded in the Viterbi decoder to go from one state to another state. We 
split transmembrane beta strands (TMB), helices (TMH), and signal peptides (SP) into 
sub-states to enforce minimum segment lengths of five residues. A decoded sequence 
must start with one of the blue states and may only end with one of the orange states. 
The IN and OUT states on both sides represent the same two internal states and are 
only duplicated to simplify the graph. 
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Figure S3: Nested Cross-Validation. 

For the nested cross-validation process, we split the data set into five cross-validation 
splits (CVS). During each of the outer five iterations, we used one split as the test set 
to estimate the models final performance and the other four to develop the model. We 
further divided those four splits into training set and validation set. We then trained the 
model on the training set and evaluated the performance on the validation set, 
repeating the process for each hyperparameter combination. We repeated this process 
three more times, each time using a different split for the validation set. We chose the 
best set of hyperparameters based on the average performance on all four validation 
sets, trained the model using those parameters on the development set, and evaluated 
its performance on the test set. We repeated this overall process four more times, each 
time choosing a different CVS for the test set, until each CVS had been used for testing 
once. This process yielded five trained models, which we used for the final TMbed 
ensemble. 
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Figure S4: Segment validation criteria. 

Illustration of the two criteria for a predicted segment to be correct: 1) start and end 
positions must not deviate by more than five residues, i.e., max (𝐷1, 𝐷2) ≤ 5, and 2) the 
intersection (overlap) between the observed and predicted segment must be at least 

half of their union, i.e.,  
𝑋

𝑋+𝐷1+𝐷2
≥ 0.5. 
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Figure S5: More potential transmembrane proteins in the globular data set. 

AlphaFold2 (23, 24) structures of nine proteins from the globular data set: major 
surface antigen 4 (Q07408), normal mucosa of esophagus-specific gene 1 protein 
(Q9C002), Kunitz-type protease inhibitor 1 (O43278), G0/G1 switch protein 2 
(P27469), maintenance of telomere capping protein 3 (P53077), sporulation protein 
RMD1 (Q03441), protein root UVB sensitive 2 (Q9SJX7), uncharacterized protein 
YDL157C (Q12082), and meiotically up-regulated gene 33 protein (O74472). For most 
proteins, transmembrane segments (dark purple) predicted by TMbed correlate well 
with membrane boundaries (dotted lines: red=outside, blue=inside) predicted by the 
PPM (25) web server. Images created using Mol* Viewer (26). Though our data set 
lists them as globular proteins, the predicted structures indicate transmembrane 
domains, which align with segments predicted by our method. Predictions were made 
with the final TMbed ensemble model. 

https://www.uniprot.org/uniprot/Q07408#structure
https://www.uniprot.org/uniprot/Q9C002#structure
https://www.uniprot.org/uniprot/O43278#structure
https://www.uniprot.org/uniprot/P27469#structure
https://www.uniprot.org/uniprot/P53077#structure
https://www.uniprot.org/uniprot/Q03441#structure
https://www.uniprot.org/uniprot/Q9SJX7#structure
https://www.uniprot.org/uniprot/Q12082#structure
https://www.uniprot.org/uniprot/O74472#structure
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Figure S6: Out-of-distribution segment length statistics. 

Transmembrane segments length distributions for 44 beta barrel (A) and 184 alpha 
helical (B) transmembrane proteins common to both the TMbed and DeepTMHMM 
data sets. Lines: statistics for the annotated segments in each data set; Bars: statistics 
for the segments predicted by each method during its individual cross-validation. Panel 
B is cropped to the right, missing two annotated segments (L: 40, 44) and four 
predicted segments (L: 37, 38, 40, 43) for TMbed. 
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