Expected Number of Spurious Motifs

We compute the expected number of spurious motifs, i.e., motifs occurring by chance, in n randomly generated strings each having m random characters from the alphabet Σ .

Let M be a motif of length l and L be an occurrence of M of length l+q with δ deletions, β substitutions and α insertions where , $-d \leq q \leq d$. The number of such possible L is

$$N(\delta,\beta,\alpha) = \binom{l+q}{\delta} \binom{l+q-\delta}{\beta} \binom{l+q-\delta+\alpha}{\alpha} |\Sigma|^{\alpha} (|\Sigma|-1)^{\beta}$$

and the probability that a random L of length l+q is a neighbor of M is

$$N(\delta, \beta, \alpha)/|\Sigma|^{l+q}$$
.

As discussed in the section on methods in the main article, the possible number of deletions, substitutions and insertions (δ , β , α , respectively), for a d-neighbor are given by the following set of equations: $\max\{0,q\} \leq \delta \leq (d+q)/2$, $\alpha = \delta - q$, $\beta = d+q-2\delta$. Thus, for any random L of length l+q, the probability that L is an occurrence of M is

$$P = \sum_{\delta = \max\{0, q\}}^{\frac{d+q}{2}} \frac{N(\delta, d+q-2\delta, \delta-q)}{|\Sigma|^{l+q}}.$$

There could be (m-l-q+1) number of (l+q)-mers of a string S of length m. The probability that M does not occur in S is

$$R = \prod_{q=-d}^{d} (1 - P)^{m-l-q+1}.$$

The probability that M occurs in each of the input strings in $S = \{S^{(1)}, S^{(2)}, \dots, S^{(n)}\}$ is $(1-R)^n$. Since M can be any arbitrary motif, the expected number of common (l, d)-motifs of S is

$$E(\mathcal{S}, l, d) = |\Sigma|^l (1 - R)^n. \tag{1}$$

Table 1 shows the expected number of spurious motifs for $l \in [5, 21]$ and d upto $\max\{l-2, 13\}$, n = 20, m = 600 and $\Sigma = \{A, C, G, T\}$ computed using (1).

Table 1 Expected number of spurious motifs in random instances for $n{=}20, m{=}600$. Here, ∞ represents value $\ge 1.0e{+}7$.

\overline{l}	d=0	1	2	3	4	5	6	7	8	9	10	11	12	13
5	0.0	1024.0	1024.0	∞										
6	0.0	4096.0	4096.0	∞	∞									
7	0.0	14141.8	16384.0	∞	∞	∞								
8	0.0	225.8	65536.0	65536.0	∞	∞	∞							
9	0.0	0.0	262144.0	262144.0	∞	∞	∞	∞						
10	0.0	0.0	1047003.6	1048576.0	∞	∞	∞	∞	∞					
11	0.0	0.0	1332519.5	4194304.0	∞	∞	∞	∞	∞	∞				
12	0.0	0.0	294.7	1.678e + 07	1.678e + 07	∞	∞	∞	∞	∞	∞			
13	0.0	0.0	0.0	6.711e + 07	6.711e + 07	∞	∞	∞	∞	∞	∞	∞		
14	0.0	0.0	0.0	2.517e + 08	2.684e + 08	∞	∞	∞	∞	∞	∞	∞	∞	
15	0.0	0.0	0.0	2.749e + 07	1.074e + 09	∞	∞	∞	∞	∞	∞	∞	∞	∞
16	0.0	0.0	0.0	139.1	4.295e+09	4.295e + 09	∞	∞	∞	∞	∞	∞	∞	∞
17	0.0	0.0	0.0	0.0	1.718e + 10	1.718e + 10	∞	∞	∞	∞	∞	∞	∞	∞
18	0.0	0.0	0.0	0.0	3.965e + 10	6.872e + 10	∞	∞	∞	∞	∞	∞	∞	∞
19	0.0	0.0	0.0	0.0	1.226e + 08	2.749e + 11	2.749e + 11	∞						
20	0.0	0.0	0.0	0.0	35.8	1.100e + 12	1.100e + 12	∞						
21	0.0	0.0	0.0	0.0	0.0	4.333e+12	4.398e+12	∞						