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Supplementary materials

Results
HOT regions in ESCs

Further characterisation of the ESC HOT regions revealed that they contain many
features of LOT regions but at a considerably larger scale. Previous reports have
demonstrated that chromatin modifiers are enriched in enhancer regions. In the present
study, we found that the levels of enhancer markers, including histone modifications
H3K27ac and H3K4mel [1, 2] and DNase I hypersensitivity [3], in HOT regions
significantly exceed the levels in LOT regions. Similar results were observed for active
markers, such as H3K9ac. Interestingly, the permissive histone marker H2AZ was
significantly depleted in HOT regions, whereas the repressive marker H4K20mel was
significantly enriched in HOT regions. Strikingly, compared to LOT regions, HOT
regions were simultaneously enriched with both permissive histone marker H3K4me3
and repressive marker H3K27me3 signals; these signals are thought to play an
important role in pluripotency by silencing developmental genes in ESCs while keeping

them poised for activation upon differentiation [4, 5].

RNA polymerase II can transcribe enhancers and produce noncoding RNAs that
contribute to enhancer activity [6-10]. We measured the levels of RNA polymerase II
in HOT and LOT regions to determine the effects of these regions on transcriptional

control. RNA polymerase II was highly enriched in HOT regions relative to LOT



regions, which was consistent with RNA signalling levels (Fig. S3A). This result helps
to explain why HOT regions drive high-level expression of their associated genes
compared to LOT regions (Fig. S3B). Our results suggest that HOT regions could be
involved in regulating RNA polymerase II activities and could therefore affect gene
expression. Thus, HOT regions may harbour features resembling those of recently

identified enhancer RNAs that can contribute to enhancer function [6-8, 11-15].

To further investigate the factors that constitute HOT and LOT regions, we compiled
chromatin immunoprecipitation-sequencing (ChIP-seq) data for 13 different chromatin
regulators and 30 TFs in ESCs from the ENCODE project [3] (Figs. S3C and S3F).
Notably, a broad spectrum of chromatin regulators (12 out of 13, 92%) and transcription
regulators (26 out of 30, 87%) that are responsible for cell growth, tissue development,
cell cycle progression and developmental events, including ATF2, POUSF1, HDAC2,
HDACS6, and PHFS, are especially enriched in ESC HOT regions relative to LOT
regions. In contrast, four chromatin regulators and TFs (CTCF, RAD21, BCL11A, and
MAFK) were significantly enriched in ESC LOT regions relative to HOT regions.
Recent studies have revealed that CTCF and RAD21 co-occupy many genomic targets
of pluripotency factors in ESCs to play key roles in the control of pluripotency and
cellular differentiation [16, 17]. Strikingly, SUZ12 and JARID1 were differentially
depleted within HOT and LOT regions. SUZ12, a subunit of PRC2, maintains
pluripotency in ESCs by repressing developmental genes that are preferentially

activated during ESC differentiation [18]. Recent studies from multiple model



organisms, including corn fungus, yeast, C. elegans, Drosophila, zebrafish, and mice,
have demonstrated that JARID1 proteins, as histone H3K4 demethylases, play key roles

in development and differentiation [19-21].

Distinct sequence signatures of HOT regions

To gain insight into characteristic sequence features of HOT regions, we studied the
enrichment of known TF motifs in HOT and LOT regions using HOMER [22]. Both
the genome and the LOT/HOT regions were used as backgrounds in the motif scanning
within HOT/LOT regions, respectively. Overall, 226 out of 542 (41.7%) TFs with
known motifs exhibited significantly enriched binding in HOT or LOT regions. Of
these 226 TFs, 59 (26.1%) TFs exhibited specifically enriched binding within HOT
regions relative to the expectations based on the backgrounds of both genome and LOT
regions. The majority of these TFs play important roles in development, including
MYB, MZF1, TCF7, ZBTB7A/B, HNF4A, POU1F1, PAX2, SRF, XBP1, EGR3 and
CREBI, as well as in cell proliferation and differentiation, including RORA, E4FI1,
MECOM, SPI, RREBI and FOXMI. Thirty-four (15.2%) factors exhibited
significantly enriched binding in LOT regions relative to expectations based on the
backgrounds of both the genome and HOT regions. Strikingly, 12 of these 34 TFs (p-
value = 0.0012, binomial test) were housekeeping TFs associated with the regulation
of transcription (NFE2L1, REST, TCF4, NFYC, YY), protein binding (NFKB1, RBPJ,
SMAD4), TF activity (RELA), negative regulation of granulocyte differentiation

(RUNXT), multicellular organismal development (TCF12), and the nucleus (SP3).
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Additionally, we found that a small fraction (8 out of 226, 3.5%) of TFs exhibited
specifically enriched binding in both HOT and LOT regions relative to the expectations
based on the two backgrounds. These TFs play important roles in development and
differentiation, including POU3F2, TCF3, SPY, and MYC, as well as housekeeping

roles such as response to oxidative stress, including FOXO1 and NFE2L2.

Identifying HOT regions in many cell types

To characterise the HOT regions in as many human cells as possible, we applied a
uniform processing pipeline to create a catalogue of HOT regions based on DNase-seq
data from 349 samples, including 154 cell and tissue types studied under the ENCODE
Project [3, 23]. We identified an average of 8,036 HOT regions per cell type (range
2,405 to 19,753, Table S2), spanning on average ~1.7% of the genome. In total, we
identified 59,986 distinct HOT regions along the genome, collectively spanning 18.8%.
To assess the rate of discovery of new HOT regions, we performed a saturation analysis
as described in a previous study [3] and predicted saturation at approximately 107,184
(standard deviation = 8,608) HOT regions and 774,925,252 bp (standard deviation =
33,534,434) (40.9%) of genome coverage (Fig. S2A). This result indicates that we have

discovered more than half of the estimated total HOT regions.

Of these 59,986 HOT regions, 287 (0.5%) localise to UTRs defined by GENCODE,
and a collective 9% lie within promoter (n = 4,039, 6.7%) and exon (n = 1,391, 2.3%)

regions. Among the remaining HOT regions, 56.8% (n =34,090) and 33.6% (n=20,179)
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are positioned in intronic and intergenic regions, respectively (Fig. S2B).

Gene Ontology (GO) analysis of HOT regions

We next performed GO analysis on HOT region-associated genes (HOT genes). This
analysis revealed that HOT genes are linked to developmental processes of the
respective cell and tissue types (Fig. S3E). To gain further understanding of the
transcriptional regulatory circuitry of development, it would be valuable to identify key
developmental TFs that control this process. As the majority of HOT genes are involved
in developmental processes, we deduced that candidate key developmental TFs could
be identified in human cells by identifying HOT genes that encode TFs. We then
performed this analysis in all of the 154 human cell types. For cells in which key
developmental TFs have already been identified, this analysis captured the vast
majority of these factors (Table S3). A catalogue of candidate key developmental TFs
for other cell types can be found in Table S4. These candidates will be helpful in
deducing the transcriptional regulatory circuitry of diverse human cell types and in

further understanding cell development and cell differentiation.

Materials and Methods

Characterisation of HOT Regions

The genome-wide ChIP-seq densities of TF and histone modifications around HOT

regions and LOT regions (Figs. S3A, S3C and S3F) were created by mapping reads to
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these regions and their corresponding +5 kb flanking regions. Each HOT/LOT region
and its flanking regions were split into 50 equally sized bins. This procedure split all
HOT/LOT regions, regardless of their size, into 150 bins. All HOT/LOT regions were
then aligned, and the average ChIP-seq density in each bin was calculated to create a

genome-wide average in units of reads per kilobase per million (rpkm).

To find sequence motifs enriched in HOT and LOT regions, we analysed the genomic
sequences under the DHSs within these regions. HOMER [22] was used with the
default parameters to examine whether any of the 542 TFs from TRANSFAC [24],
JASPAR [25], and UniPROBE [26] were overrepresented. Overrepresentation was
statistically evaluated using three independent background sets: the entire chromosome
20, all the RefSeq transcription start sites (TSSs) (£2.0 kb), and all of the CpG islands
annotated in the hgl9 genome. A motif was retained only when it was significantly

overrepresented (P < 0.01) compared to all of these backgrounds.

Gene Ontology Analysis

For gene ontology (GO) analysis, a subset of 19 data sets, which represented the
diversity of cells in the collection used for this study, was first selected. Each HOT
region was assigned to the closest genes annotated in GENCODE (V15) by determining
the distance from the centre of the HOT region to the TSS of each GENCODE gene.
For each cell, the genes associated with HOT regions in that cell and no more than six

other cells in the subset were analysed using Database for Annotation, Visualization
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and Integrated Discovery (DAVID) [27]. For each cell, the four top scoring categories
(i.e., the categories with the lowest p-values) were selected for display. A threshold p-
value score of 10 was incorporated as a minimum requirement filter for scoring as a

top category.

Supplementary figures

Figure S1. Validation of HOT regions in GM12878, HeLas3, HepG2 and K562

cell lines, related to Figure 1.

(A) Distribution of TFBS complexity signal across the 80,326 TFBS-clustered regions
in H1 cells. TFBS-clustered regions are plotted in increasing order based on their TFBS
complexity signal. HOT regions are defined as the population of TFBS-clustered
regions above the inflection point of the curve. (B) Error bar showing the GSC results
of HOT/LOT regions versus classical HOT/LOT regions in GM12878, HeLaS3,
HepG2, and K562. Red lines indicate the mean and normalised SD of 10,000 bootstrap
samples; blue bar indicates the real statistics. (C) ROC curves of the validation of
predicted HOT regions, area under roc curve (AUC area) were shown in brackets. (D)
The proportion of HOT regions and classical HOT regions containing different numbers
of TF ChIP-seq peaks in GM 12878, HeLaS3, HepG2, and K562. (E) The distributions
of TFBS complexity of HOT regions containing different numbers of TF ChIP-seq
peaks in GM12878, HeLaS3, HepG2, and K562. (F) The proportion of motifless

binding peaks occurred in experimental HOT regions and predicted HOT regions. (G)



The proportion of motifless HOT regions occurred in experimental HOT regions and

predicted HOT regions.

Figure S2. General features of HOT regions in many cell types, related to

Figure 1

(A) Saturation analysis of HOT regions. We modelled saturation for element count and
length using a Weibull distribution (r> = 0.995) and predicted saturation at
approximately 107,184 (sd = 8,608) and 774,925,252 (sd = 33,534,434) for count and
length, respectively. The cell line estimation of 95% saturation is 222 and 154 for count
and length, respectively. (B) Distribution of 59,986 HOT regions and 301,322 LOT
regions with respect to GENCODE gene annotations. Promoter regions are defined as

the first region located within 1 kb upstream and downstream of a GENCODE TSS.

Figure S3. Identification and characterisation of HOT regions in ESCs, related

to Figure 1

(A) Metagene representations of the mean ChIP-seq signal for the indicated DNasel,
RNA polymerase II (RNAPII), histone modifications and RNA-seq across LOT (blue)
and HOT (red) regions. Metagenes are centered on the TFBS-clustered region (5863 bp
and 11,890 bp for LOT and HOT regions, respectively) with 5 kb surrounding each
TFBS-clustered region. (B) Gene expression level of HOT-specific genes (red) and

LOT-specific genes (blue). (C) Metagene representations of the mean ChIP-seq signal



for the indicated transcription factors, transcriptional cofactors, and chromatin
regulators across LOT (blue) and HOT (red) regions. (D) Motif enrichment in HOT and
LOT regions comparing with different backgrounds. Heat map showing the most
differentially distributed motifs (multiple testing corrected P-value < 0.01) between
HOT regions compared with the genome average values (first column), HOT and LOT
regions (second column), LOT regions compared with the genome average values (third
column), LOT and HOT regions (fourth column). (E) GO terms for HOT-region-
associated genes that were closest to its associated HOT regions 19 human cell and
tissue types with corresponding p-values obtained by DAVID. (F) Metagene
representations of the mean ChIP-seq signal for the additional indicated transcription
factors, transcriptional cofactors, and chromatin regulators across LOT (blue) and HOT

(red) regions.

Figure S4. Association of HOT regions with functional regulatory elements,

related to Figure 2

(A) Examples of known cell-selective experimentally validated distal, non-promoter
cis-regulatory elements. Shown above each set of DNasel data are schematics
displaying HOT regions relative to the genes they control. (B-D) GSC results between
HOT regions and LMRs, UMRs and DMVs, Red lines indicate the mean and

normalised SD of 10,000 bootstrap samples; blue bar indicates the real statistics.
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Figure S5. GO analysis of super-enhancer and HOT regions, Related to Figure

4

(A) GO analysis of super-enhancer-associated genes and HOT region-associated genes
in HI hESC, CD20, and pancreas cells. The top 10 scoring categories were selected for
display. A threshold p-value score of 10 was incorporated as a minimum requirement

filter for scoring as a top category.

Supplementary tables

Table S1. H1-hESC TFBS cluster information, related to Figure 1

Table showing the TF complexity cutoffs for HOT regions in HIhESCs: the total
number of HI-hESC TFBS clusters is 80,326, the number of HOT regions is 8,533, and

the median lengths of HOT and LOT regions are 11,890 bp and 5,863 bp, respectively.

Table S2. Comparison of motifless binding peaks and HOT regions, related to

Figure 1

Table showing the detailed information of the comparison of motifless binding peaks

and HOT regions in 5 cell types.

Table S3. Information on HOT regions in 154 files, related to Figure 1
Table showing the TF complexity cutoffs for HOT regions, HOT region number, total
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number of TFBS clusters and genome coverage in 154 cell lines.

Table S4. Key TF genes, Related to Figurel

Function role and references about Key developmental transcription factor genes.

Table S5. Key developmental transcription factor genes, Related to Figurel

Development associated transcription factor genes identified in 154 cell lines.

Table S6. Repetitive elements in HOT regions, related to Figure 2

Overlap of repeat-masked elements by repeat family for families with more than 2,000
elements overlapping DHSs. Column 1 shows the repeat family; column 2 shows the
repeat class. Column 3 shows the average size of elements in the family; column 4
shows the total number of occurrences of elements of the family in the genome. Column

5 indicates the number of repeat families that overlap a HOT region by at least 95%.

Table S7. 1046 validated elements in HOT regions, related to Figure 2

Enrichment of validated elements in HOT and LOT regions. The number of non-VISTA
enhancer-associated elements is 373, while the total number of validated elements is

1,046.

12



Table S8. Genes associated with “gained” HOT regions, related to Figure 5

Table showing 1011, 692, 839, 1547 and 854 expressed genes (RPKM > 1) associated
with “gained” HOT regions of ME, NPC, TBL, MSC and IMR90 cells, respectively.

GO analysis of these genes in respective cell were also showed.

Table S9. Genes associated with enriched TF genes, related to Figure 5

Table showing 106, 153, 178, 75 and 35 enriched TF genes with RPKM > 1 for ME,
NPC, TBL, MSC and IMR90 cells, respectively. GO analysis of these genes in

respective cell were also showed.

Table S10. Enrichment of bivalent genes in HOT regions, related to Figure 5

We got totally 3,191 bivalent genes from Zhao et al., 2007 and Pan et al., 2007, and the

enrichment was calculated by hypergeometric test.

Table S11. GO analysis of activated HOT regions in H1-derived cells, related to

Figure 6

Table showing GO results of genes associated “activated” HOT regions in H1-derived

cells.
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Figure S2
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Figure S3
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Figure S3
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Figure S4
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Figure S5
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