Additional File 2

The smoothing step in HM-EnPF

Here, we assume $\mathcal{T}_{obs} = \mathcal{T}$ for simplicity. The smoothing step also consists of the following three sub-steps. At tth $(t \in \mathcal{T}_{obs})$ time step, for $s = t + 1, \ldots, T$,

- 1. Particle Filter Step
 - (a) Resample $\hat{\boldsymbol{x}}_{t|s}^{(n)}$ according to

$$p(\boldsymbol{x}_{t}|\boldsymbol{Y}_{s}) = \frac{1}{\sum_{i} p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s|s-1}^{(n)})} \sum_{n=1}^{N} p(\boldsymbol{y}_{s}|\boldsymbol{x}_{s|s-1}^{(n)}) \delta(\boldsymbol{x}_{t} - \boldsymbol{x}_{t|s-1}^{(n)}),$$
(S1-1)

where $\delta(\cdot)$ is a Dirac delta function.

- (b) Calculate first and second moments $\mu_{t|s} = E[\{\hat{x}_{t|s}^{(n)}\}]$ and $V_{t|s} = Var[\{\hat{x}_{t|s}^{(n)}\}]$, respectively.
- (c) Standardize $\hat{\boldsymbol{x}}_{t|s}^{(n)}$ as

$$\hat{\boldsymbol{z}}_{t|s}^{(n)} = V_{t|s}^{-\frac{1}{2}} \cdot (\hat{\boldsymbol{x}}_{t|s}^{(n)} - \boldsymbol{\mu}_{t|s}). \tag{S1-2}$$

- (d) Calculate third and fourth central moments $\hat{\boldsymbol{m}}_{t|s}^{(3)} = E[\{\hat{\boldsymbol{z}}_{t|s}^{(n)}\}^3]$ and $\hat{\boldsymbol{m}}_{t|s}^{(4)} = E[\{\hat{\boldsymbol{z}}_{t|s}^{(n)}\}^4]$, respectively.
- 2. Ensemble Kalman Filter Step
 - (a) Calculate Kalman gain

$$K_{s} = \frac{1}{N-1} \left\{ \sum_{n=1}^{N} (\boldsymbol{x}_{t|s-1}^{(n)} - E[\{\boldsymbol{x}_{t|s-1}^{(n)}\}]) (\boldsymbol{x}_{s|s-1}^{(n)} - E[\{\boldsymbol{x}_{s|s-1}^{(n)}\}])' \right\} (V_{s|s-1} + R_{s})^{-1}.$$
 (S1-3)

(b) Calculate $\tilde{\boldsymbol{x}}_{t|s}^{(n)}$ as

$$\tilde{\boldsymbol{x}}_{t|s}^{(n)} = \boldsymbol{x}_{t|s-1}^{(n)} + K_s(\boldsymbol{y}_s - \boldsymbol{x}_{s|s-1}^{(n)} + \boldsymbol{w}_s^{(n)}). \tag{S1-4}$$

- (c) Calculate first and second moments $\tilde{\mu}_{t|s} = E[\{\tilde{\boldsymbol{x}}_{t|s}^{(n)}\}]$ and $\tilde{V}_{t|s} = Var[\{\tilde{\boldsymbol{x}}_{t|s}^{(n)}\}]$, respectively.
- (d) Standardize $\tilde{x}_{t|s}^{(n)}$ as

$$\tilde{\boldsymbol{z}}_{t|s}^{(n)} = \tilde{V}_{t|s}^{-\frac{1}{2}} \cdot (\tilde{\boldsymbol{x}}_{t|s}^{(n)} - \tilde{\boldsymbol{\mu}}_{t|s}). \tag{S1-5}$$

- (e) Calculate third and fourth central moments $\tilde{\boldsymbol{m}}_{t|s}^{(3)} = E[\{\tilde{\boldsymbol{z}}_{t|s}^{(n)}\}^3]$ and $\tilde{\boldsymbol{m}}_{t|s}^{(4)} = E[\{\tilde{\boldsymbol{z}}_{t|s}^{(n)}\}^4]$, respectively.
- 3. Merging Step Calculate $\boldsymbol{x}_{t|s}^{(n)}$ as

$$\boldsymbol{x}_{t|s}^{(n)} = \hat{V}_{t|s}^{\frac{1}{2}} S(\boldsymbol{z}_{t}^{(n)}, \hat{\boldsymbol{m}}_{t|s}^{(3)}, \hat{\boldsymbol{m}}_{t|s}^{(4)}) + \hat{\boldsymbol{\mu}}_{t|s}, \tag{S1-6}$$

$$\boldsymbol{z}_{t}^{(n)} = S(\tilde{\boldsymbol{z}}_{t|s}^{(n)}, \tilde{\boldsymbol{m}}_{t|s}^{(3)}, \tilde{\boldsymbol{m}}_{t|s}^{(4)})^{-1}. \tag{S1-7}$$