Additional File 6

Corticosteroid Pharmacokinetics/dynamics

Because corticosteroid pharmacokinetics/dynamics in skeletal muscle have been modeled based on differential equations by Yao et al. (2008) as shown in Fig. ??, the time-dependent concentration of corticosteroid in nucleus in rat skeletal muscle can be obtained as followings;

$$\frac{d\text{mRNA}_{\text{R}}(t)}{dt} = k_{s_Rm} \cdot \left\{1 - \frac{\text{DR}_{\text{N}}(t)}{\text{IC}_{50_\text{Rm}} + \text{DR}_{\text{N}}(t)}\right\} - k_{d_Rm} \cdot \text{mRNA}_{\text{R}}(t), \tag{S3-1}$$

$$\frac{d\mathbf{R}(t)}{dt} = k_{s_R} \cdot \mathbf{mRNA_R}(t) + R_f \cdot k_{re} \cdot \mathbf{DR_N}(t) - k_{on} \cdot \mathbf{D}(t) \cdot \mathbf{R}(t) - k_{d_R} \cdot \mathbf{R}(t),$$

(S3-2)

$$\frac{dDR(t)}{dt} = k_{on} \cdot D(t) \cdot R(t) - k_{T} \cdot DR(t),$$

$$\frac{dDR_{N}(t)}{dt} = k_{T} \cdot DR(t) - k_{re} \cdot DR_{N}(t),$$
(S3-3)

$$\frac{dDR_N(t)}{dt} = k_T \cdot DR(t) - k_{re} \cdot DR_N(t), \tag{S3-4}$$

where $mRNA_R(t)$ is the concentration of mRNA of the receptor protein, R(t) is the concentration of the receptor protein, DR(t) is the concentration of the drug-receptor complex, $DR_N(t)$ is the concentration of the drug-receptor complex in nucleus, and Synthesis and Degradation mean synthesis and degradation processes, respectively. $DR_N(t)$ was used for d_t . These parameter values, k_{s_Rm} , IC_{50_Rm} , k_{d_Rm} , k_{s_R} , k_{d_R} , k_{f} , k_{re} , k_{on} , k_{d_R} , k_{T} , are shown in Table 1. According to Sun et al. (1998), the time-evolution of the plasma concentration of corticosteroid is given as

$$D(t) = 39,130 \cdot e^{-7.54t} + 12,670 \cdot e^{-1.20t}.$$
 (S3-5)

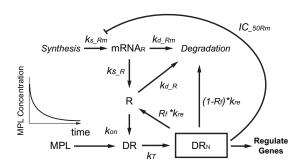


Figure 1: Corticosteroid Pharmacokinetics/dynamics in rat skeletal muscle. The pharmacokinetics/dynamics developed by Yao et al. (2008). The dynamics behavior of the concentration of biomolecules is described by differential equations. mRNA_R is the concentration of mRNA of the receptor protein, R is the concentration of the receptor protein, DR is the concentration of the drug-receptor complex, DR_N is the concentration of the drug-receptor complex in nucleus, and Synthesis and Degradation mean synthesis and degradation processes, respectively.

Table 1: The values of the parameters for corticosteroid pharmacodynamics illustrated in Fig. ??.

parameter	value
$k_{s_Rm}(\text{fmol/g/h})$	0.416
$k_{d_Rm}(1/\mathrm{h})$	0.139
$k_{s_R}(\mathrm{fmol/g/h})$	0.777
$k_{d_{-}R}(1/{ m h})$	0.0356
$k_{on}(1/\text{nmol/h})$	0.00269
$k_T(1/T)$	90
$k_{re}(1/\mathrm{h})$	0.618
R_f	0.720
$IC_{-50Rm}(\text{fmol/mg})$	0.911
$GR_{mRNA}^0(\text{fmol/g})$	2.99
$GR^0(fmol/mg)$	65.3