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Supporting Text  

Effect of Fitness Cutoff on Cross-Feeding Prevalence 

One parameter that may have a major effect on the emergence of species interaction is the fitness drop 

cutoff used when allowing a mutation to fix. Presumably, using a less stringent cutoff (i.e., allowing even 

more deleterious mutations to fix) may allow species to explore additional regions of the fitness landscape 

and potentially other configurations through which the two species may rely on each other. Conversely, a 

more stringent cutoff (allowing only very slightly deleterious mutation to fix) may prevent the 

evolutionary process from reaching configurations that allow the two species to interact. To test this 

hypothesis, we ran additional simulations, using a cutoff of either 10% or 1% (compared to the 5% used 

in the main text). Indeed, we found that using a more relaxed cutoff (10%) resulted in a higher frequency 

of mutualistic, commensal, and collapsed communities, and less independent communities (6.3%, 46.4%, 

13.4%, 33.9%, respectively, of a total of 1000 simulation runs; P < 0.007 for collapse and P < 10
-8 

for the 

rest; χ
2
 test). Similarly, simulations with a more strict cutoff (1%) had significantly fewer evolutionary 

trajectories resulting in mutualistic, commensal, or collapsed communities, and more trajectories resulting 

in independent communities (0%, 27.5%, 3.1%, 69.4%, respectively, of a total of 2000 simulation runs; P 

< 10
-10

 in all cases; χ
2
 test). 

Notably, the fitness cutoff used in our study was chosen as an intermediate value between the two 

cutoffs used by [1], and as shown above has a significant effect on the frequency of evolved 

commensalism and mutualism. Since this fitness cutoff represents the strength of selection, a permissive 
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fitness cutoff (as the one used in our study) allows genetic drift to play a dominant role in determining 

evolutionary trajectories, in agreement with the balance between selection and genetic drift hypothesize to 

govern the evolution of endosymbionts [2]. 

Effect of Richer Media on Cross-Feeding Prevalence 

Another factor that may likely affect the prevalence at which obligate cross-feeding emerges is the media 

on which the community grows. Media that is richer than the minimal media used in our primary 

simulations may inhibit the establishment of cross-feeding since the evolving species will be able to get 

required resources from the environment without interacting with their partner. Accordingly, we expect 

that evolution on richer media would increase the prevalence of independent communities at the expense 

of commensal, mutualistic, and collapsed communities.     

To investigate this potential impact of richer media, we first ran 500 additional simulations using 

a carbon rich media (note that the number of simulations used in this section is substantially smaller than 

that used in the primary text due to time constraints). This media was similar to the minimal media used 

in our primary set of simulations but contained five different monosaccharides: glucose, fructose, 

galactose, mannose, and ribose (in contrast to the minimal media that contain glucose as the sole carbon 

source). We found that simulations using this carbon rich media in fact resulted in a similar prevalence of 

independent and mutualistic communities as that observed in simulation on minimal media (52.6% vs. 

51% and 2.2% vs. 3%, respectively; P > 0.05; χ
2
 test ). This media did impact however the prevalence of 

collapsed and commensal communities, resulting in a significant depletion of collapsed communities 

compared to simulations using the minimal media (5% vs. 10.7% on minimal media; P < 10
-4

) and more 

commensal communities (40.2% vs. 35.3%; P < 0.04; χ
2
 test). This finding suggests that the availability 

of diverse carbon sources may allow communities that would otherwise collapse to survive owning to 

these additional nutrients in the environment but does not on its own give rise to a significant increase in 

independent communities.    
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To explore the effect of other rich media, we further ran simulations using three types of amino-

acid rich media. The first contained (in addition to the content of the minimal media) the nine amino-acids 

that are essential in humans (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, 

tryptophan, and valine). The second similarly contained in addition to the minimal media the eleven 

conditionally or non-essential amino-acids in humans (alanine, arginine, aspartate, asparagine, cysteine, 

glutamate, glutamine, glycine, proline, serine, and tyrosine). The third contained all twenty amino-acids. 

We first ran 300 simulations using either the essential amino-acids or the non-essential amino-acids 

media. We found that these media indeed resulted in a decrease in obligate cross-feeding and an increase 

in independent communities relative to minimal media. Specifically, simulations using the essential 

amino-acids media resulted in more independent communities (64.7% vs. 51%; P < 10
-5

) and fewer 

collapsed communities (1.7% vs. 10.7%; P < 10
-6

). The prevalence of commensal and mutual 

communities was generally similar to that observed in minimal media (31.7% vs. 35.3 and 2% vs. 3%, 

respectively). Simulations using the non-essential amino-acids media similarly resulted in more 

independent communities than minimal media (66.7% vs. 51%; P < 10
-7

), fewer commensal communities 

(26.7% vs. 35.3%; P < 0.01), fewer mutualistic communities (0.3% vs. 3%; P < 0.01) and fewer collapsed 

communities (6.3% vs. 10.7%; P < 0.05). Finally, we ran 300 simulations using the media that contained 

all amino-acids. As expected, this very rich media resulted in dramatically different prevalence of the 

various interaction types, with markedly more independent communities compared to simulations on 

minimal media (94% vs. 51%, P < 10
-10

), significantly less commensal communities (6% vs. 35.3%; P < 

10
-10

), and no mutualistic or collapsed communities (0% vs. 3%; P < 0.01 and 0% vs. 10.7%; P < 10
-8

, 

respectively). This striking result suggests that the presence of all amino-acids in the media was sufficient 

to drastically reduce the frequency of dependence evolving.  

Effect of Genomic Evolution Pattern on Cross-Feeding Prevalence 

In addition to the media, it is also possible that the pattern by which gene deletions occur could affect the 

likelihood with which obligate cross-feeding evolves in our simulations. Specifically, we wished to 
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examine whether a non-symmetric deletion rate (i.e., when one species is more likely to have genes 

deleted than the other) or a multi-gene deletion strategy (i.e., having more than one gene deleted at a time) 

would impact our findings. To explore this, we ran additional simulation sets (again, using a more limited 

number of simulation rans) that employ different strategies for choosing which genes to delete. In the first 

set, we added a bias to the process of selecting which gene to delete, whereby genes in one species were 

twice as likely to be deleted as the genes in the other species. Running 300 simulations with this strategy 

we found that the prevalence of the various interaction types was similar to that observed in our main 

simulation set (independent: 51%, commensal: 34.7%, mutualistic: 2.7%, collapsed: 11.7%; P > 0.5 for 

all compared to unbiased deletions). We additionally did not find significant differences in the average 

genome size of the deletion-prone species compared to the other (P > 0.5, two sample t-test). In the 

second simulation set, we modeled deletion of larger portions of the genome by deleting two adjacent 

genes at a time (i.e., pairs of genes that are next to each other based on genomic position). Once no two-

gene deletions are possible (i.e., due to large fitness effects) the simulation switches back to deleting 

genes one at a time (as in our primary simulation) until the minimal genomes are reached. Running 300 

simulations using this alternative deletion method, we found that it resulted in fewer independent 

communities (42.7% vs. 51%; P < 0.01) and more collapsed communities (16.7% vs. 10.7%; P < 0.001). 

The prevalence of commensal and mutualistic communities was similar to that observed in our primary 

simulation set (39.3% and 1.3%, respectively). This finding suggests that deletion of larger portions of the 

genome at a time could increase the frequency of cross-feeding dependence but could also destabilize 

such relationships. 

Genome Size of Species Evolved in Mono-Culture Conditions 

To study the effect of the co-culture condition on the size of the evolved minimal genomes we performed 

additional simulations in mono-culture growth conditions. Specifically, we ran 2000 evolution 

simulations that were similar to the simulations described in the main text except that they included only a 
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single species. We found that the resulting minimal genomes of these species were similar in size to that 

of species in independent pairs (297.87 vs. 297.85), with no statistically significant difference in size (P > 

0.5, two sample t-test). As with the independent species’ genomes, the mono-culture species’ genomes 

were significantly smaller than commensal provider genomes (P < 10
-6

) and significantly larger than 

commensal dependent genomes (P < 10
-20

). 

Associating Gene Retention with Interaction Type: 

We compared mutualistic and independent species and identified a set of 80 genes that are deleted at a 

significantly higher frequency in mutualistic species (chi-square test; FDR 1%; Table S1B). This set was 

enriched for various pathways, including oxidative phosphorylation, histidine metabolism, 

lipopolysaccharide biosynthesis, and nitrogen metabolism. For example, the gene tyrA, necessary for 

tyrosine synthesis, was never deleted in independent species but in 31.9% of mutualistic species, 

reflecting frequent tyrosine cross-feeding in mutualistic communities (as also observed above). We 

additionally identified a set of 132 genes that are deleted at a significantly higher frequency in 

independent species, though this set was not significantly enriched for any specific pathway. Interestingly, 

however, the gene with the greatest difference in retention rate in this set was tyrP (deleted in 96.3% of 

independent species but only in 68.2% of mutualist species) which is necessary for tyrosine transport, 

reflecting the need of mutualistic species to uptake this metabolite. Moreover, the larger number of genes 

identified to be deleted more often in independent species, despite the fact that independent species were 

found to retain a larger number of total genes compared to mutualistic species, suggests that a multitude 

of mutualist strategies exist, each involving the retention of a different subset of genes. 

Similarity of Retained Gene Sets between Community Partners  

We examined how similar, on average, are the sets of genes retained between the two partners in each 

community. We found that mutualistic species were less similar to each other than independent species (P 

< 10
-20

; two sample t-test). This finding suggests that the evolution of metabolic dependency is associated 
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with a process of functional diversification, where each of the two species retains certain metabolic 

capacities that the other species has lost. This result is perhaps not surprising given the phenotypic 

differences that must emerge to give rise to mutual dependence on cross-feeding. To further investigate 

this diversification process we turned our attention again to commensal communities, in which the two 

species can be labeled as dependent and provider and therefore the direction of dependency is clear. Such 

communities also represent an intermediate level of interaction as compared to mutualistic communities, 

in which each species is acting as both provider and dependent, which complicates dissection of the 

mechanism of interaction. Indeed, the two partner species in commensal communities were more similar 

to one another than species in mutualistic communities (P = 1.4 x 10
-7

) but more divergent than species in 

independent communities (P < 10
-20

). 

The Dynamics of Gene Deletion Events 

We set out to examine the dynamics of gene deletion events in commensal communities, specifically 

focusing on the order in which deletions occurred in the provider and dependent species and aiming to 

detect dependencies between these deletion events that could highlight key evolutionary steps on the route 

to cross-feeding. To this end, we used a permutation-based analysis to identify instances where a gene in 

one species tended to be deleted after another gene was deleted in the partner species (see Supporting 

Methods). We identified 9 such gene pairs (at 1% FDR), all of which involved one gene in the provider 

tending to be deleted first before a second, different gene was deleted in the dependent. Specifically, 

deletion of the tyrA gene in the dependent often followed deletion of a set of genes (talA, talB, aroP, and 

pheP) in the provider. talA and talB catalyze a reaction connecting glycolysis to the pentose phosphate 

pathway, and their deletion likely disrupts central carbon metabolism and diverts excess flux toward 

aromatic amino acid biosynthesis. Similarly, aroP and pheP are both transporters capable of transporting 

phenylalanine, and their deletion potentially prompts the excretion of tyrosine instead of phenylalanine. 

These deletions therefore promote over production and excretion of tyrosine by the provider, allowing the 
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dependent to lose tyrA, a gene necessary for tyrosine synthesis. The deletion of the pheA, a gene 

necessary for phenylalanine synthesis in the dependent, was also found to follow the deletion of talA and 

talB in the provider, which is not surprising given the similarity in the biosynthesis pathways of these two 

amino acids. Finally the deletion of pyrG in the dependent tended to follow the deletion of cdd, cmk, and 

codA in the provider. The deletion of cmk (necessary for recycling CMP into CTP) and of cdd and codA 

(catalyzing reactions that could convert CMP or related products into other bases) could result in cytidine 

excretion and accordingly allows the dependent to lose pyrG (a component of CTP synthase) which 

creates a dependency on cytidine (Fig S2). To further examine the mechanism involved in these 

interactions, we tested whether the deletions of these key genes are sufficient to cause over-production 

and excretion of the relevant metabolites. Indeed, we found that deletion of cdd, cmk, and codA in the 

ancestral species (i.e., without any additional gene deletions) led to cytidine excretion. Deletion of talA, 

talB, aroP, and pheP in the ancestral species, however, was insufficient to cause excretion of either 

phenylalanine or tyrosine, suggesting that additional gene deletions are necessary to give rise to this 

phenotype. 

The Number of Metabolites Excreted by Species Throughout Evolution and its 

Association with Evolved Interactions 

We examined the total number of different metabolites being excreted by each species over time, 

hypothesizing that species that excrete useful metabolites early on are more likely to become provider 

species. Surprisingly, however, we found that during the first half of the evolutionary process future 

providers in fact tend to excrete a similar or even a smaller number of metabolites on average compared 

to future dependents (Fig S3), and only toward the end of the evolutionary process did providers excrete 

more metabolites than dependent species. This pattern could suggest that species that eventually became 

dependent were less optimal early on, excreting more waste products, and that this wasteful behavior may 

have led to the development of dependence. Notably, all species gradually excrete more metabolites over 
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the course of the evolution process, likely reflecting more complex growth strategies imposed by their 

shrinking genome. 
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Supporting Methods 

Evolution Simulation 

The evolution simulation was initiated with a pair of genome scale metabolic models. For this study all 

simulations were initiated with two identical copies of the iAF1260 E. coli model [3]. This model 

includes 1260 genes, 2382 reactions, and 1668 metabolites (which includes extracellular, periplasmic, and 

cytoplasmic versions of some of the same metabolites). For 304 of those metabolites the model contains 

transport and exchange reactions that allow them to be exchanged with the external environment. During 

each step in the evolutionary process, a gene in one of the two species was chosen uniformly at random 

from the set of all genes still retained by the two species. The chosen gene and all the metabolic reactions 

that can no longer be performed without this gene were deleted from the species’ model. The iAF1260 

model contains genes that are required for multiple metabolic reactions as well as genes with redundant 

effects, and as a result the set of reactions that will be lost as a result of a gene deletion is contingent on 

which genes have already been deleted previously. The fitness effect of this gene deletion in the context 

of the community was determined using the co-culture growth model (see below) to evaluate the growth 

rate of the reduced model when grown with the current model of the partner species. If the calculated 

fitness effect (when compared to the fitness of that species prior to this gene deletion) was positive, 

neutral, or smaller than the chosen cutoff (cutoffs used include 1%, 5%, and 10%), the deletion became 

permanent and the process repeated with the reduced model. However, if the fitness effect exceeded the 

cutoff, the deletion was considered to be too harmful to occur and the process repeated until a gene that 

could be deleted was found. This evolutionary process continued until deletion of any remaining gene 

from either of the two species would cause a drop in fitness exceeding the cutoff, in which case the 

simulation ended. The simulation also ended if the chosen gene deletion in one species (i.e., a gene 

deletion that was relatively harmless for that species) caused the other species to drop significantly in 
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fitness (>50%) in the co-culture. Such simulations, where a partner species was no longer being 

supported, represent collapsed communities. 

Co-Culture Growth Simulation 

The co-culture growth simulation was based on a previously introduced dynamic Flux-Balance Analysis 

framework and is described in more detail elsewhere [4]. Briefly, given a multi-species community 

inhabiting a shared medium, the framework assumed that at each time step, each species grew optimally 

given the current concentration of metabolites in the medium (i.e., selfish growth), and then updated the 

abundance of each species and the concentration of metabolites in the medium based on the predicted 

growth and activity of each species. Specifically, at each time step, the framework first calculated the 

upper bound on metabolites’ uptake for each species based on the concentration of metabolites in the 

medium and the cell density of each species. A Flux Balance Analysis (FBA) was then used to determine 

the fluxes through each species’ reactions given these uptake constraints by maximizing the species’ 

biomass production (as a proxy for growth). A second optimization was performed to minimize the total 

flux through all reactions while keeping the biomass production fixed at the maximum rate (representing 

a minimization of enzyme usage). The predicted growth rate of each species and the predicted rates at 

which each species uptakes and excretes various metabolites were then used to update the cell density and 

concentrations of metabolites in the medium. The process was then repeated at the next time step.  

For the purpose of this study, each co-culture simulation consisted of 8 steps of 0.125 hours 

followed by 4 steps of 0.5 hours. This provided a more accurate account of species growth at the initiation 

of any potential interaction, while still providing information about the co-culture growth at a longer time 

scale. The growth rates at the last time point (i.e., after 2.5 hours) were used as a measure of each species’ 

fitness. Both species started at a biomass of 0.01 grams dry mass in 1L volume for mono-culture or 2L for 

co-culture, resulting in the same cell density for both (which is equal to about 4*10^7 cells per liter for E. 

coli). The species were grown on a medium based on M9 minimal media [5], containing sodium, chloride, 
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sulfate, inorganic phosphate, potassium, magnesium, ammonia, glucose, water, hydrogen, and oxygen. In 

addition the metals copper, iron, molybdate, manganese, zinc, nickel, and cobalt were included as they are 

necessary for growth of the E. coli model. These metabolites were all present in the medium at an excess 

concentration of 10M to ensure exponential growth for the entire course of the co-culture simulation. A 

low concentration (0.0001 mM) of jumpstart metabolites were also included to allow growth of obligate 

mutualistic pairs (see below). FBA solutions were calculated using glpkmex, a Matlab interface for 

GLPK, GNU Linear Programing Kit. GLPK version 4.54 was used, and glpkmex version 2.11. 

Jumpstarting Mutualistic Growth 

Simulating the growth of species that evolved to be obligate mutualists with a dynamic FBA model has 

the inherent problem that neither species is able to grow initially on the minimal medium (and 

consequently will not excrete any of the byproducts needed to allow the other species to grow). In 

biological systems this problem can be overcome by heterogeneity in the growth phenotypes of individual 

cells, nutrients released by dead cells, or trace nutrients present in the environment. Rather than 

simulating diverse growth phenotypes or cell death, in this study we jumpstarted mutualistic growth by 

supplementing the minimal growth medium described above with trace amounts of potentially necessary 

metabolites. The set of these “jumpstart metabolites” was determined by identifying metabolites that 

could be produced by non-transfer reactions still present in at least one of the two species (even if the 

pathway was not complete). This set therefore represented an upper bound on which metabolites could be 

exchanged. Jumpstart metabolites were initialized at a low concentration of 0.0001 mM. To ensure that 

species that utilized these metabolites for growth could eventually be supported by the production of these 

metabolites by the partner species (rather than continually relying on the trace amounts of these 

metabolite provided at the beginning of the simulation), at 1 hour into the growth simulation, this same 

low concentration (0.0001 mM) was subtracted from each jumpstart metabolite. 
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Filtering Completed Simulation Runs 

Simulation runtime considerations necessitated using a relatively limited time resolution in the co-culture 

growth simulation (see above). To confirm that the growth patterns observed in evolved communities 

(including obligate cross-feeding interactions) were not artifacts caused by this limited time resolution, 

for each completed simulation we ran additional co-culture growth simulations on the resulting minimal 

models using a finer time resolution. Specifically, co-culture growth was simulated until the medium was 

exhausted with time steps of 0.1 hours, using otherwise the same conditions as the co-culture growth 

model employed during evolution (including removing the jumpstart metabolites at 1 hour). Community 

growth was deemed to have been accurately simulated if: 

1. Glucose eventually ran out, indicating that the two species were able to continue growing stably.  

2. Both species were able to continue growth until this exhaustion of the media. Growth of both species 

must have been at least 50% of their measured fitness value within the last hour before all growth 

ended. 

3. The growth rate of both species at 2.5 ± 0.2 hours was at least 90% of their fitness value as measured 

during the course of the evolution. 

Simulations that failed any of these three criteria were excluded from the downstream analysis. Of the 

16377 completed simulation runs, 16, 317 (99.6%) passed this filtering step. Examples of an evolved 

mutualistic community that passed this filtering step and an evolved commensal community that failed 

this filtering step are illustrated in Figure S4. 

Simulation Runtime 

Each simulation (i.e., a single evolutionary trajectory) required on average 12.2 (± 3.7 STD) hours on a 

single CPU core. This rather extensive runtime is the outcome of the many FBA estimations performed in 

each such simulation. Specifically, it should be noted that not only did each ‘generation’ (i.e., gene 

deletion) in the evolutionary trajectory require 24 FBA optimizations (12 time points for each species) to 
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obtained the necessary data, but that in fact for each generation our framework may have first tested 

several potential gene deletions that proved too deleterious and therefore were not selected (see Methods). 

This step was extremely time-consuming, particularly toward the end of the evolutionary trajectory when 

more and more (and eventually all) remaining genes cannot be selected for deletion. As a result, a single 

non-collapsed evolutionary simulation required on average ~6,650 co-culture simulations (each involving 

24 FBA optimizations), as well as ~1925 additional mono-culture simulations for each of the two species 

(each involving 12 FBA optimizations for each), resulting in ~205,800 FBA optimization per 

evolutionary simulation. Simulations were run on a shared high performance computing cluster 

containing 23 Intel E5345 or E5410 CPUs with 8 cores each, 3 AMD Opteron 6168 CPUs with 48 cores 

each, and 3 AMD Opteron 6278 CPUs with 64 cores each. Around 80-100 simulations were run 

simultaneously through the cluster’s job scheduling system, and 3 GB of memory was requested for each 

simulation. The complete set of simulations took about 3-4 months to run.  

Determining Interaction Type 

Interaction type was determined by comparing the fitness of each species when grown in co-culture with 

its fitness when grown in mono-culture. If the fitness of a species at a given time point was zero in mono-

culture and non-zero in co-culture, the species was labeled as dependent at that time. If it had non-zero 

growth in both mono- and co-culture it was labeled as independent. Communities were labeled by the 

relationships between the two species: If both species were independent, the community was labeled as 

independent. If one species was dependent and the other was independent, the community was labeled as 

commensal. If both species in a community were dependent, the community was labeled as mutualistic. 

Within commensal communities, the dependent species was referred to as ‘dependent’ and the 

independent species was referred to as ‘provider’.  

Determining Metabolic Dependencies 
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For each evolved species we determined what metabolites it depends on (if any). To this end, we first 

identified metabolites that were being exchanged between the two species at the final co-culture growth 

time point by finding exchange reactions for which the two species had fluxes of opposite sign. The 

growth of each dependent species in the pair was then assayed on minimal medium supplemented with all 

possible combinations of these exchanged metabolites, using a single time step mono-culture growth 

model, to identify the smallest set of supplement metabolites that allowed it to grow at >50% its growth 

rate in co-culture. If no combination of supplement metabolites allowed such growth the search was 

expanded to include all combinations of metabolites present in the medium at the end of the co-culture 

simulation and that were not part of the minimal media (such metabolites could have been excreted by the 

provider at previous time steps). In 359 simulations multiple sets of supplement metabolites were 

sufficient for growth and were neither subsets nor supersets of each other. These ambiguous simulations 

were excluded from any analysis of metabolite dependency or association. 

Pathway Analyses 

Pathways annotations for each gene in the model were obtained from the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [6]. To identify enrichment of KEGG pathways in subsets of genes (e.g., those 

that were deleted at significantly different rates between interaction types), we generated 100,000 random 

subsets (out of the 551 genes retained at intermediate frequencies) of the same size and compared the total 

number of genes associated with each pathway in the real set to the number of genes associated with that 

pathway in random sets.  

Measuring Genome Similarity 

To compare the similarity of two genomes (e.g., in an evolved community), we used the Jaccard 

similarity coefficient. We then used a two-sample t-test to test for significant differences in similarity 

between different types of communities. 
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Identifying Co-Retained Gene Pairs 

To identify gene-gene co-occurrence relationships, we examined all pairwise combinations of genes that 

were both retained and deleted at least five times. This cutoff was chosen to restrict analysis to genes for 

which sample size would provide enough statistical power to confidently identify co-occurrence. Since 

many genes perfectly co-varied with each other across simulations, we first grouped genes into sets of 

perfectly co-varying genes and identified co-occurrence relationships between these sets. For each pair of 

gene sets, we found the number of species that had retained each set and the number of species that had 

retained both sets and used a hypergeometric test to determine whether these sets have been co-retained 

significantly more or less often than expected by chance (at 1% false discovery rate; [7]). Test for 

enrichment of shared pathways among the significant gene set pairs was done by permuting the 

connections between pairs. 

Identifying Significant Gene Deletion Ordering 

Given a pair of genes, A and B, we recorded the number of times gene A in the dependent was deleted 

before gene B in the provider. We then used a permutation-based assay, permuting the time of deletion 

(measured as the position in the ordering of all gene deletions in that simulation) of each gene between all 

providers or dependents from commensal communities in which that gene had been deleted. Gaps and 

overlaps in the resulting permuted gene deletion histories were resolved by shifting deletions into gaps 

and randomly breaking ties. The number of times gene A in the dependent was deleted before gene B in 

the provider in the original data was compared to this number in the permuted data to identify 

significantly common ordered pairs of gene deletes (at 1% false discovery rate). 

Gene-Metabolite Connections 

To identify correlations between retention or deletion of specific genes and metabolic phenotypes, we 

considered all genes that were both deleted and retained more than 10 times and all metabolites that were 
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depended upon at least 10 times. These cutoffs were chosen to restrict analysis to genes and metabolites 

for which sample size would provide statistical power to confidently identify significant correlations. For 

every pair of such genes and metabolites, we compared the frequency of deletion of that gene in 

commensal species that are dependent on that metabolite to the frequency of deletion of that gene in 

independent species. This was repeated for commensal species that provided the metabolite their partner 

depends upon, and in both cases instances of genes being deleted more often or retained more often in 

species with that metabolic phenotype were identified (at 1% false discovery rate).  
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Supporting Figures 

 

Figure S1: Time of emergence of metabolites’ availability, cross-feeding, and dependence. The distributions of 

evolutionary time (measured as number of gene deletions) elapsed between the different stages of metabolic 

interaction, for commensal species dependent on a single metabolite.  
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Figure S2: Dependent deletion events in pyrimidine biosynthesis. The subset of the pyrimidine biosynthesis 

network in the E. coli model is shown. Reactions catalyzed by enzymes encoded by genes that tend to be lost first in 

the provider are marked in orange (cmk, cdd, and coda), and the reaction catalyzed by an enzymes encoded by a 

gene that is lost later in the dependent is marked in purple (pyrG). 
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Figure S3: The number of different metabolites excreted by species of different interaction types over 

evolutionary time. Plotted is the mean number of unique metabolites excreted by dependent and provider species 

from commensal communities at each point throughout he evolutionary process. The two insets show the 

distribution of the number of metabolites excreted at time 400 and 1800 for both dependents and providers. 
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Figure S4: Example of co-culture growth of communities that passed and failed the quality filtering step. The 

co-culture growth of evolved pairs are plotted both for the settings used during the evolution simulation (left: low 

resolution, short time) and the settings used to validate growth during filtering (right: high resolution, long time). On 

the top is an evolved mutualistic community that passed the filter, and on the bottom is an evolved commensal 

community that failed the filtering step. When the top community was grown with high resolution time steps both 

species reached similar growth rates to that seen at the last time point of the low resolution simulation, and 

maintained roughly those growth rates until glucose was exhausted. The bottom community fails to show such 

consistent behavior. Specifically species 1 never reaches the growth rate it achieved in the low resolution simulation, 

and instead collapses to a very low growth rate shortly after the jumpstart metabolites are removed (1 hour).  


