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Sensitivity Analyses 

A series of sensitivity analyses are performed to further support our conclusions. These analyses 

include: three-fold cross validations using both single SSInfNet and multi SSInfNet to ensure that 

the performance is consistent, a comparison with transfer learning- based FCN8 (fully 

convolutional neural network architecture) segmentation network[1], further experiments on other 

independent datasets[2] to show the generalization ability of our models, ablation studies to 

explore which techniques (generative adversarial image inpainting, focal loss, and lookahead 

optimizer) we used in the multi SSInfNet contribute to the improved performance, and a 

computation cost analysis to show the difference between the different models’ computation 

efficiency. The details of these analyses could be found below. 

 

1. Three-fold cross-validation 

We carried out a three-fold cross-validation on the Med-Seg (medical segmentation) COVID-19 

Dataset as shown in Figure 2D to test the robustness of the proposed SSInfNet. We did this for 

both single SSInfNet and multi SSInfNet. Since the analysis is time consuming, we did not perform 

five-fold or 10-fold cross-validation analysis. During self-supervision, we trained the multi 

SSInfNet to reconstruct the CT lung images and the prior by replacing the last layer to output the 

reconstruction of the CT lung images. As for the self-supervision of single SSInfNet, we trained 



the single SSInfNet to reconstruct the edge and the CT lung images. We undergo self-supervision 

to help the single SSInfNet and multi SSInfNet learn a good representation of the CT lung images 

before transferring the learned weights to train on segmenting the infected region of the CT lung 

images to determine if there is an improvement in performance. 

 

2. Comparison with transfer learning 

To address the data set with small labeled samples, we also carried out a comparison of our method 

and the baseline method with a transfer learning technique, which is also frequently used to 

overcome small sample size issue [1]. We compared against FCN8 network for segmenting the 

CT lung images in the Med-Seg (medical segmentation) COVID-19 Dataset as shown in Figure 

2D. We transferred the learned weights from VGG16 network to the multi FCN8 network and 

started the training from the pre-trained weights. We then compared the performance of multi 

FCN8 network with the baseline multi SInfNet and the multi SSInfNet. Originally, the multi FCN8 

network receive 3 input channels, we changed the input channels to be 6 to make the model 

consistent with the other model where the model receives the prior and the CT lung images of 

which both are concatenated together to form 6 input channels. For the multi SSInfNet, the focal 

loss alpha is set as 1 and the gamma is set as 2, the lookahead optimizer k is set as 5 and the alpha 

is set as 0.5. All other parameters are kept the same.  

 

3. Additional independent data sets 

To further compare the performance of our proposed method with other baseline methods, we 

tested them on two additional data sets, which are called as Data set 2 and Data set 3, respectively. 



The Med-Seg (medical segmentation) COVID-19 Data set as shown in Figure 2D is called as Data 

set 1.  

 

The Data sets 2 and 3 are detailed as follows: Data set 2: This is the original dataset that was used 

to evaluate the SInfNet [2]. It contains 50 single labeled CT lung images and 48 multi labeled CT 

lung images for the training set; 48 single & multi labeled images for testing set. There is no 

validation set. Data set 3:  The dataset contains 750 CT images for which the segmentation mask 

is available[3]. These come from 150 patients with novel-coronavirus pneumonia.  The  images  

were  labelled by  a  panel  of  five  senior  radiologist  with  over  25  years  of experience.  The  

labels  used  were  healthy  lung-field,  GGO and consolidation. We  used  the  labelled  CT  images  

to train a U-Net semantic segmentation model that effectively segments  the  lung  field  present  

in  the  CT  image.  Using  this model,  as  well  as  the  opening  and  closing  morphological 

transformations for noise reduction, we cropped the CT images so that they would only include 

lung field. Then, for efficiency reasons, we took the middle most slice of each  CT  scan  and  

removed  all  others.  This  ensures  that we  have  a  data  set  with  a  similar  amount  of  diversity  

to  the original data set, while being significantly smaller. After this, we manually removed any 

CT images that did not have the lungs in full view or had a significant amount of non-lung field 

present in the CT image.  

 

4. Ablation studies 

We carried out ablation studies to compare the performance differences between the combination 

of the different techniques that we incorporated into the multi SSInfNet. This analysis helped us 

determine which one contributes to the improved performance. We carried out 4 different ablations 



of our proposed Multi SSInfNet: Multi SSInfNet, Multi SSInfNet – focal loss (without focal loss), 

Multi SSInfNet – lookahead optimizer (without lookahead optimizer), Multi SSInfNet – focal loss 

– lookahead optimizer (without focal loss and lookahead optimizer). All other parameters are 

maintained the same with focal loss alpha as 1 and gamma as 2, the lookahead optimizer k value 

as 5 and alpha as 0.5. 

 

5. Computation cost analysis 

We performed a computation cost analysis to show the difference between the different models’ 

computation efficiency.  
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Supplementary Figures 

 

 

Supplementary Figure 1. Architecture of the supervised InfNet. 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 2. A is the original architecture of the SInfNet. B is the architecture of our 

self-supervised InfNet model. Highlighted purple block is the difference between the original 

single SInfNet and the single SSInfNet. 

 

 

 

 

Supplementary Figure 3. A is the architecture of the original multi SInfNet model. B is the 

architecture of our self-supervised multi InfNet model. Highlighted green block is the difference 

between the original multi SInfNet and our self-supervised multi SSInfNet. 

 

 

 



 

Supplementary Figure 4. ROC for single InfNet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Supplementary Algorithm 1. SSInfNet 

 
 
 

 

 

 

 

 

 

 

 

 

 



Supplementary Tables 

 
 

Supplementary Table 1. Image phenotypes 

 
Image Phenotype Description Formula 

First Order 

Features (20) 

Area 
The number of pixels in the 

mask. 
 

Energy 

 

The magnitude of voxel values in 

an image. 

 

∑(X(i) + c)2

Np

i=1

 

Here, c is optional value shifting the 

intensities to prevent negative values 

in 𝐗 

Total Energy 

 

Energy scaled by the volume of 

the voxel. 

 
Vvoxel ∑(X(i) + c)2

Np

i=1

 

Entropy 

 

The uncertainty/randomness in 

the image values. 

− ∑ p(i) log2(p(i) + ϵ)

Ng

i=1

 

Here, ϵ is an arbitrarily small positive 

number (≈2.2×10−16). 

Minimum The Minimum of 𝐗 min(𝐗) 

10th percentile The 10th percentile of 𝐗  

90th percentile The 90th percentile of 𝐗  

Maximum The maximum of 𝐗 max(𝐗) 

Mean The average gray level intensity. 
1

Np

∑ X(i)

Np

i=1

 

Median 

 
The median gray level intensity.  

Interquartile 

Range 

 

The subtract of 25th and 

75th percentile of the image array. 
𝐏75−𝐏25 

Range The range of gray values. max(𝐗)−min(𝐗) 

Mean Absolute 

Deviation 

(MAD) 

The mean distance of all intensity 

values from the Mean Value of 

the image array. 

1

Np

∑ |X(i) − X̅|

Np

i=1

 

Robust Mean 

Absolute 

Deviation 

(RMAD) 

The mean distance of all intensity 

values from the mean value. 

1

N10−90

∑ |X10−90(i) − X10−90
̅̅ ̅̅ ̅̅ ̅̅ |

N10−90

i=1

 

Root Mean 

Squared (RMS) 

The square-root of the mean of 

all the squared intensity values. 
√

1

Np

∑(X(i) + c)2

Np

i=1

 

Skewness 

 

The asymmetry of the 

distribution of values about the 

mean value. 

1
Np

∑ (X(i) − X̅)3Np

i=1

√
1

Np
∑ (X(i) − X̅)2Np

i=1

3 



Kurtosis 

 

A higher value means that the 

mass of the distribution is 

concentrated towards the tail(s) 

rather than towards the mean. A 

lower value means that the mass 

of the distribution is concentrated 

near the mean value. 

1
Np

∑ (X(i) − X̅)4Np

i=1

√
1

Np
∑ (X(i) − X̅)2Np

i=1

4 

Variance 

 

The mean of the squared 

distances of each intensity value 

from the Mean value. 

1

Np

∑(X(i) − X̅)2

Np

i=1

 

Uniformity 

 

A higher value means a smaller 

range of discrete intensity. ∑ p(i)2

Ng

i=1

 

Gray Level 

Co-occurrence 

Matrix 

(GLCM) 

Features (28) 

Autocorrelation 
the magnitude of the fineness and 

coarseness of texture. 
∑ ∑ p(i, j)i

Ng

j=1

Ng

i=1

j 

Joint Average 
Returns the mean gray level 

intensity of the 𝑖 distribution. 
∑ ∑ p(i, j)i

Ng

j=1

Ng

i=1

 

Cluster 

Prominence 

The skewness and asymmetry of 

the GLCM. 
∑ ∑(i + j − μx − μy)4p(i, j)

Ng

j=1

Ng

i=1

 

Cluster Shade 
The skewness and uniformity of 

the GLCM. 
∑ ∑(i + j − μx − μy)3p(i, j)

Ng

j=1

Ng

i=1

 

Cluster Tendency 
The grouping of voxels with 

similar gray-level values. 
∑ ∑(i + j − μx − μy)2p(i, j)

Ng

j=1

Ng

i=1

 

Contrast 

The local intensity variation. A 

larger value is associated with a 

greater disparity among 

neighboring voxels. 

∑ ∑(i − j)2p(i, j)

Ng

j=1

Ng

i=1

 

Correlation 

The linear dependency of gray 

level values to their respective 

voxels in the GLCM. 

∑ ∑ p(i, j)ij − μxμy
Ng

j=1

Ng

i=1

σx(i)σy(j)
 

Difference 

Average 

The difference between 

occurrences of pairs with similar 

intensity values and occurrences 

of pairs with differing intensity 

values. 

∑ kpx−y(k)

Ng−1

k=0

 

Difference 

Entropy 

The randomness/variability in 

neighborhood intensity value 

differences. 
∑ px−y(k)

Ng−1

k=0

log2(px−y(k) + ϵ) 

Difference 

Variance 

The heterogeneity that places 

higher weights on differing 

intensity level pairs that deviate 

more from the mean. 

∑ (k − DA)2px−y(k)

Ng−1

k=0

 

Dissimilarity  ∑ ∑ |i − j|p(i, j)

Ng

j=1

Ng

i=1

 

Joint Energy 
The homogeneous patterns in the 

image. A greater Energy implies 
∑ ∑ p(i, j)2

Ng

j=1

Ng

i=1

 



that there are more instances of 

intensity value pairs in the image. 

Joint Entropy 
The randomness/variability in 

neighborhood intensity values. 
− ∑ ∑ p(i, j)2 log2(p(i, j) + ϵ)

Ng

j=1

Ng

i=1

 

Homogeneity 1  ∑ ∑
p(i, j)

1 + |i − j|

Ng

j=1

Ng

i=1

 

Homogeneity 2 

 
 ∑ ∑

p(i, j)

1 + |i − j|2

Ng

j=1

Ng

i=1

 

Informational 

Measure of 

Correlation 1 

(IMC1) 

 

The correlation between the 

probability distributions 

of 𝑖 and 𝑗 (quantifying the 

complexity of the texture), using 

mutual information I (x, y) 

 

 
HXY −  HXY1

max{HX, HY}
 

 

− I(i, j)  

=  ∑ ∑ p(i, j)log2 (px(i)py(j))

Ng

j=1

Ng

i=1

− ∑ ∑ p(i, j)log2(p(i, j))

Ng

j=1

Ng

i=1

=  HXY −  HXY1 

Informational 

Measure of 

Correlation 2 

(IMC2) 

The correlation between the 

probability distributions of 𝑖 
and 𝑗 (quantifying the complexity 

of the texture). 

√1 − e−2(HXY2−HXY) 

Inverse 

Difference 

Moment (IDM) 

The local homogeneity of an 

image. ∑
px−y(k)

1 +  k2
  

Ng−1

k=0

 

Maximal 

Correlation 

Coefficient 

(MCC) 

The complexity of the texture 

MCC = 

√second largest eignvalue of Q 

 

Q(i, j)  =  ∑
p(i, k)p(j, k)

px(i)py(k)

Ng

k=0

 

Inverse 

Difference 

Moment 

Normalized 

(IDMN) 

The local homogeneity of an 

image. 
∑

px−y(k)

   1 + (
k2

Ng
2)

Ng−1

k=0

 

Inverse 

Difference (ID) 

The local homogeneity of an 

image. With more uniform gray 

levels, the denominator will 

remain low, resulting in a higher 

overall value. 

∑
px−y(k)

1 + k

Ng−1

k=0

 

Inverse 

Difference 

Normalized 

(IDN) 

The local homogeneity of an 

image. IDN normalizes the 

difference between the 

neighboring intensity values by 

dividing over the total number of 

discrete intensity values. 

∑
px−y(k)

   1 + (
k

Ng
)

Ng−1

k=0

 



Inverse Variance  ∑
px−y(k)

   k2

Ng−1

k=0

 

Maximum 

Probability 

The most predominant pair of 

neighboring intensity values. 
max(p(i, j)) 

Sum Average 

The relationship between 

occurrences of pairs with lower 

intensity values and occurrences 

of pairs with higher intensity 

values. 

∑ px+y(k)k  

2Ng

k=2

 

Sum Variance  ∑(k − SA)2px+y(k) 

2Ng

k=2

 

Sum Entropy 

The distribution of neighboring 

intensity level pairs about the 

mean intensity level in the 

GLCM. 

∑ ∑(i − μx)2p(i, j)

Ng

j=1

Ng

i=1

 

Gray Level 

Dependence 

Matrix 

(GLDM) 

Features (15) 

Small 

Dependence 

Emphasis  

The distribution of small 

dependencies. A larger value 

indicates less homogeneous 

textures. 

∑ ∑
P(i, j)

i2  
Nd
j=1

Ng

i=1

NZ

 

Large 

Dependence 

Emphasis 

The distribution of large 

dependencies. A larger value 

means more homogeneous 

textures. 

∑ ∑ P(i, j)j2 
Nd
j=1

Ng

i=1

NZ

 

Gray Level (GL) 

Non-Uniformity 

The similarity of gray-level 

intensity values in the image 

∑ (∑ P(i, j))
Nd
j=1

2Ng

i=1

NZ

 

Gray Level (GL) 

Non-Uniformity 

Normalized 

 
∑ (∑ P(i, j))

Nd
j=1

2Ng

i=1

∑ ∑ P(i, j)2 
Nd
j=1

Ng

i=1

 

Dependence 

Non-Uniformity 

The similarity of dependence 

throughout the image. 
∑ (∑ P(i, j))

Ng

i=1

2Nd
j=1

NZ

 

Dependence 

Non-Uniformity 

Normalized 

 
∑ (∑ P(i, j))

Ng

i=1

2Nd
j=1

NZ
2  

Gray Level (GL) 

Variance 

The variance in grey level in the 

image. 

∑ ∑ P(i, j)(i − μ)2 
Nd

j=1

Ng

i=1
 

Where μ =  ∑ ∑ iP(i, j) 
Nd
j=1

Ng

i=1
 

Dependence 

Variance 

The variance in dependence size 

in the image. 

∑ ∑ P(i, j)(j − μ)2 
Nd

j=1

Ng

i=1
 

Where μ =  ∑ ∑ jP(i, j) 
Nd
j=1

Ng

i=1
 

Dependence 

Entropy 
 ∑ ∑ p(i, j) log2(p(i, j) + ϵ)

Nd

j=1

Ng

i=1

 

Low Gray Level 

(LGL) Emphasis 

The distribution of low gray-level 

values, with a higher value 

indicating a greater concentration 

of low gray-level values in the 

image. 

∑ ∑
P(i, j)

i2  
Nd
j=1

Ng

i=1

NZ

 

 



High Gray Level 

(HGL) Emphasis 

The distribution of the higher 

gray-level values, with a higher 

value indicating a greater 

concentration of high gray-level 

values in the image. 

∑ ∑ P(i, j)i2 
Nd
j=1

Ng

i=1

NZ

 

 

Small 

Dependence Low 

Gray Level 

(SDLGL) 

Emphasis 

The joint distribution of small 

dependence with lower gray-level 

values. 

∑ ∑
P(i, j)

i2j2  
Nd
j=1

Ng

i=1

NZ

 

 

Small 

Dependence 

High Gray Level 

(SDGHL) 

Emphasis 

The joint distribution of small 

dependence with higher gray-

level values. 

 

Large 

Dependence Low 

Gray Level 

(LDLGL) 

Emphasis 

The joint distribution of large 

dependence with lower gray-level 

values. 

∑ ∑
P(i, j)j2

i2  
Nd
j=1

Ng

i=1

NZ

 

 

Large 

Dependence 

High Gray Level 

(LDHGL) 

Emphasis 

The joint distribution of large 

dependence with higher gray-

level values. 

∑ ∑ P(i, j)i2j2 
Nd
j=1

Ng

i=1

NZ

 

 

Neighboring 

Gray Tone 

Difference 

Matrix 

(NGTDM) 

Features (5) 

 

Coarseness 

An indicator of the spatial rate of 

change. Higher value indicates 

lower spatial change rate and a 

locally more uniform texture. 

1

∑ pisi
Ng

i=1

 

Contrast 
The spatial intensity change 

depending on the overall gray 

level dynamic range. 

(
1

Ng,p(Ng,p − 1)
∑ ∑ pipj(i − j)2)  

Ng

j=1

Ng

i=1

× (
1

Nv,p

∑ Si

Ng

i=1

) 

Busyness 
The change from a pixel to its 

neighbor. A high value indicates 

a rapid changing. 

∑ pisi
Ng

i=1

∑ ∑ |ipi − jpj|
Ng

j

Ng

i=1

 

Complexity 
The non-uniformity and busyness 

of the image. 

1

Nv,p

∑ ∑ |i − j|
pisi + pjsj

pi + pj

Ng

j

Ng

i=1
 

Strength 

A greater value means slow 

change in intensity but larger 

coarse differences in gray level 

intensities. 

∑ ∑ (pi + pj)(i − j)2Ng

j

Ng

i=1

∑ si
Ng

i=1

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2. The three-fold cross-validation performance of single networks. It 

should be noted that the data were obtained by combining the training, testing, and validation set 

from the Med-Seg (medical segmentation) COVID-19 dataset, and then splitting the combined 

data into 3 folds.  

 

 

Three-fold Cross-Validation Performance for Single 

Segmentation 

 Single U-Net Single SInfNet Single SSInfNet 

 Mean Error Mean Error Mean error 

F1 0.39 0.05 0.76 0.04 0.72 0.04 

IoU 0.28 0.04 0.64 0.04 0.60 0.04 

Recall 0.38 0.05 0.77 0.04 0.77 0.04 

Precision 0.41 0.05 0.79 0.04 0.76 0.02 

 

 

 

 

 

 

Supplementary Table 3. The three-fold cross validation performance of multi networks 

 

  

Cross-Validation Performance for Multi Segmentation 

  Multi-UNet Multi-SInfNet Multi-SSInfNet 

  Mean Error Mean error Mean Error 

GGO 

F1 0.26 0.04 0.69 0.06 0.70 0.06 

IoU 0.17 0.03 0.63 0.06 0.64 0.06 

Recall 0.25 0.03 0.77 0.05 0.72 0.06 

Precision 0.3 0.04 0.73 0.05 0.79 0.05 

Consolidation 

F1 0.18 0.04 0.39 0.07 0.61 0.07 

IoU 0.13 0.03 0.33 0.06 0.55 0.07 

Recall 0.21 0.04 0.45 0.06 0.68 0.07 

Precision 0.19 0.04 0.82 0.04 0.74 0.07 

Background 

F1 1 0 1 0 1 0 

IoU 1 0 1 0 1 0 

Recall 1 0 1 0 1 0 

Precision 1 0 1 0 1 0 

Overall 

F1 0.48 0.03 0.69 0.04 0.77 0.04 

IoU 0.43 0.02 0.65 0.04 0.73 0.04 

Recall 0.49 0.02 0.74 0.04 0.80 0.04 

Precision 0.5 0.03 0.85 0.03 0.84 0.04 

.  

 

 

 



Supplementary Table 4. Comparison with transfer learning based FCN8 network. 

Quantitative result of Ground-glass Opacities & Consolidation on the test data set of the Med-Seg 

(medical segmentation) COVID-19 dataset. Prior was obtained from the single segmentation 

InfNet.  

 
Methods  Multi FCN8 Multi U-Net Multi SInfNet Multi SSInfNet 

  mean error mean error mean error mean error 

 

G
G

O
 

F1 0.41 0.059 0.26 0.057 0.38 0.054 0.43 0.057 

IoU 0.3 0.046 0.18 0.043 0.27 0.042 0.31 0.046 

Recall 0.45 0.066 0.216 0.053 0.58 0.065 0.58 0.072 

Precision 0.52 0.06 0.405 0.085 0.41 0.058 0.48 0.059 

 

C
o

n
s 

F1 0.42 0.092 0.35 0.097 0.29 0.078  0.46 0.096 

IoU 0.33 0.082 0.26 0.08 0.22 0.068  0.36 0.088 

Recall 0.56 0.097 0.32 0.089 0.61 0.099 0.56 0.11 

Precision 0.51 0.103 0.46 0.116 0.31 0.084  0.56 0.101 

 B
ac

k
g

ro
u

n
d
 

F1 1.0 0.002 0.857 0.01 1.0 0.002  1.00 0.002 

IoU 0.99 0.003 0.754 0.017 0.99 0.003 0.99 0.003 

Recall 1.0 0.001 0.998 0.001 0.99 0.002 0.99 0.002 

Precision 0.99 0.002 0.755 0.017 1.0 0.002  1.00 0.002 

 

O
v

er
al

l F1 0.61 0.051 0.49 0.055 0.55 0.044 0.63 0.052 

IoU 0.54 0.044 0.40 0.046 0.5 0.038 0.55 0.046 

Recall 0.67 0.055 0.51 0.048 0.73 0.055 0.71 0.061 

Precision 0.67 0.055 0.54 0.073 0.57 0.048 0.68 0.054 

 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Supplementary Table 5. Model performance on independent COVID-19 CT Dataset set 2 

 
A: Single InfNet 

 

  

  

SInfNet SSInfNet 

Mean Error Mean error 

 

F1 0.8 0.011 0.78 0.028 

IoU 0.67 0.016 0.64 0.038 

Recall 0.79 0.014 0.84 0.017 

Precision 0.82 0.038 0.73 0.061 

 
     

     

         B: Multi InfNet 
  

  

  

Multi-SInfNet Multi-SSInfNet 

Mean Error Mean error 

GGO 

F1 0.79 0.056 0.70 0.066 

IoU 0.72 0.064 0.61 0.065 

Recall 0.77 0.064 0.67 0.07 

Precision 0.89 0.043 0.89 0.038 

Consolidation 

F1 0.48 0.101 0.38 0.096 

IoU 0.39 0.092 0.32 0.085 

Recall 0.70 0.104 0.78 0.096 

Precision 0.52 0.107 0.38 0.097 

Background 

F1 1 0 1 0 

IoU 1 0 1 0 

Recall 1 0 1 0 

Precision 1 0 1 0 

Overall 

F1 0.76 0.052 0.70 0.054 

IoU 0.70 0.052 0.64 0.05 

Recall 0.82 0.056 0.81 0.055 

Precision 0.80 0.05 0.76 0.045 

 

 

 

 

 

 

 

 



Supplementary Table 6. Model performance on the independent COVID-19 CT Data set 3 

 
A: Single InfNet 

 

  

  

SInfNet SSInfNet 

Mean Error Mean error 

 

F1 0.96 0.002 0.58 0.009 

IoU 0.93 0.003 0.41 0.009 

Recall 0.96 0.001 0.53 0.007 

Precision 0.97 0.005 0.64 0.013 

      

      

 

     

     

     

         B: Multi InfNet 
  

  

  

Multi-SInfNet Multi-SSInfNet 

Mean Error Mean error 

GGO 

F1 0.94 0.019 0.94 0.017 

IoU 0.89 0.029 0.90 0.028 

Recall 0.94 0.022 0.99 0.002 

Precision 0.94 0.019 0.91 0.028 

Consolidation 

F1 0.11 0.05 0.13 0.06 

IoU 0.07 0.037 0.09 0.044 

Recall 0.10 0.046 0.10 0.048 

Precision 0.20 0.079 0.73 0.114 

Background 

F1 0.95 0.011 0.98 0.001 

IoU 0.91 0.019 0.97 0.002 

Recall 0.98 0.002 0.98 0.002 

Precision 0.93 0.02 0.99 0.001 

Overall 

F1 0.67 0.027 0.69 0.026 

IoU 0.62 0.029 0.65 0.024 

Recall 0.68 0.024 0.69 0.017 

Precision 0.69 0.039 0.87 0.048 

 

 

 

 

 



Supplementary Table 7. Results of ablation studies. The performance of the ablation of our 

proposed multi-SSInfNet. Multi-SSInfNet refers to the self-supervised SInfNet with Focal Loss 

and Lookahead optimizer. We tried a variety of the model with a subtraction of the different 

technologies to carry out the ablation.  

 

 

 
Multi-SInfNet 

Multi-

SSInfNet – 

Focal - 

Lookahead 

Multi-SSInfNet - 

lookahead 

Multi-SSInfNet 

- Focal 
Multi-SSInfNet  

Mean Error Mean Error Mean Error Mean error Mean Error 

GGO 

F1 0.38 0.054 0.39 0.057 0.36 0.055 0.36 0.056 0.43 0.057 

IoU 0.27 0.062 0.29 0.045 0.26 0.044 0.26 0.044 0.31 0.046 

Recall 0.58 0.045 0.59 0.071 0.60 0.066 0.58 0.071 0.58 0.072 

Precision 0.41 0.058 0.44 0.06 0.38 0.058 0.39 0.058 0.48 0.059 

Consolidation 

F1 0.29 0.078 0.47 0.1 0.39 0.091 0.42 0.093 0.46 0.096 

IoU 0.22 0.068 0.37 0.093 0.32 0.082 0.32 0.083 0.36 0.088 

Recall 0.61 0.099 0.54 0.118 0.52 0.112 0.59 0.106 0.56 0.11 

Precision 0.31 0.084 0.61 0.104 0.51 0.104 0.49 0.102 0.56 0.101 

Background 

F1 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 

IoU 0.99 0.003 0.99 0.003 0.99 0.003 0.99 0.003 0.99 0.003 

Recall 0.99 0.002 0.99 0.002 0.99 0.002 0.99 0.002 0.99 0.002 

Precision 1 0.002 1 0.002 1 0.002 1 0.002 1 0.002 

Overall 

F1 0.55 0.044 0.62 0.053 0.58 0.049 0.59 0.068 0.63 0.052 

IoU 0.50 0.038 0.55 0.047 0.52 0.043 0.52 0.049 0.55 0.046 

Recall 0.73 0.055 0.71 0.064 0.70 0.06 0.72 0.075 0.71 0.061 

Precision 0.57 0.048 0.68 0.055 0.63 0.054 0.63 0.075 0.68 0.054 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 8. Computational costs of processing one image 

 

 Computational cost (seconds) of different methods 

Epoch FCN8 Multi-SInfNet Multi-SSInfNet 

1 36.61s 49.68 50.28 

2 35.73 51.03 50.41 

3 36.03 50.38 50.17 

4 36.69 48.52 50.34 

5 38.51 48.08 52.19 

6 37.84 48.26 52.88 

7 35.91 48.47 51.88 

8 36.01 49.38 53.73 

9 35.63 49.69 54.26 

10 36.11 48.65 54.43 

Average 36.051 49.21 52.06 

Relative* 0.742 1 1.06 
 

* The computation analysis was calculated relatively to the baseline multi SInfNet. 

 

 

 

 

 

 


