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Reviewer 1

Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes. 

Were you able to directly test the methods? Yes. 

Comments to author:

Qin and colleagues report a new method, Lisa, that predicts transcriptional regulators of query gene sets 
versus a background gene set based on inferred regulatory importance derived from H3K27ac ChIP-seq 
and DNase-seq data. Lisa is an extension of previous efforts from the group, that used inferred regulatory 
importance from peaks. The strategy seems promising overall and is of general interest to the community. 
However, there are some clarifications and demonstrations needed, which I list below. 

* The introduction and the first sections (including the section on identification of sample clusters) would 
really benefit from a rewrite to make the overall approach and rationale more comprehensible. 
* In particular, I lack a schematic overview and text of the Lisa approach that guides the reader through 
the rationale of the method, and how this compares to Peak-RP. 
* There are several aspects of the Lisa approach that is not justified or, if justified elsewhere, not cited. 
These include the normalization approach and the assumptions of the decay model and additivity of 
multiple binding sites. How do these assumptions affect the final results? Can additivity be justified for 
all loci? How does that fit with models of regulatory redundancy? The authors need to motivate these 
choices or discuss the potential impact these design choices may have. 
* My biggest concern with the approach is the sparsity of available data. The authors indeed point out that 
improvement and new insights will lead from new available data. However, a demonstration of the 
influence of data availability is lacking. How are results affected if data would be reduced to even more 
sparsity for certain samples?

Reviewer 2
Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes: Statistics used appear appropriate. 

Were you able to directly test the methods? Yes. 

Comments to author:

Review: 

The authors describe Lisa, an analysis framework that takes a set of regulated genes from a user and then 
interrogates a database of DNase/ChIP-seq experiments to identify key regulators likely to play a role in 
regulating the given genes. Lisa works by first selecting a limited set of H3K27ac and DNase experiments 
from the Cistrome DB that contain 'regulatory potentials' that discriminate the input genes relative to a set 
of background genes, then performs an in silico perturbation of these profiles using ChIP-seq profiles for 
TFs and other co-factors from Cistrome DB to identify which factors are predicted to influence the 
H3K27ac/DNase patterns the most in the vicinity of target genes (based on their RP model). To validate 
their model, the authors analyze a compendium of knockdown/out and overexpression experiments for 



specific regulators with the expectation that the perturbed factor should be recovered by Lisa. They also 
compare how well Lisa identifies the correct factor compared to the performance of i-CisTarget and 
Enricher. 

This work attempts to address a pressing need in the field of gene regulation by attempting to leverage the 
incredible amount of chromatin profiling information available (i.e. Cistrome DB) to make accurate 
predictions about which transcription factors or other regulators are likely to play roles in regulating 
specific sets of genes. This work builds on previous efforts (MARGE/BART) by including the 
interrogation of TF/co-factor ChIP-seq profiles and refining how they are used to predict the most 
significant regulators. Although this work is somewhat incremental, for most part the method is well 
described and should be a useful tool for genomics researchers. 

Major Comments: 

One important section missing from this manuscript is a more complete description of what Lisa provides 
as results and a discussion of how to interpret them. This is important for how readers will use and 
interpret the information given by Lisa. It seems the primary output of Lisa is a list of TRs and p-values 
(i.e. visualized in Fig. 4). Most of the results in the manuscript stress that Lisa works because the expected 
CR appears near the 'top' of the results. What other TRs appear significant for typical experiments? Fig. 3 
attempts to address this by commenting that significant TRs often include master TFs found in the cell 
types (or related cell types) from which the gene lists were derived. Are there other trends a user should 
be aware of? Are there certain types of experiments for which Lisa performs worse than others? For 
example, in the list of experiments analyzed in Fig. 5 to evaluate performance, if other factors were 
ranked above the expected TR, what were they? Is there an explanation/reason for it, and if so, could this 
be problematic for analyzing certain types of data? 

Related to the above comment: Due to the selection of RP based on H3K27ac and DNase, TR profiles 
generated in the same or related cell types as the 'selected' H3K27ac/DNase experiments would be 
expected to gravitate toward the top of the results. This is not a problem per se, since they are more likely 
to be important, but it is somewhat a trivial result. It would be interesting to see how Lisa scores the TRs 
from the same cell type relative to one another. For example, when analyzing E2 regulated genes in MCF-
7 cells, I would imagine Lisa would predict ERa, FoxA1, etc. are significant - but how does Lisa prioritize 
these (and other TRs) from MCF7 cells relative to one another? Can it discriminate TRs that drive key 
aspects of gene regulation versus TRs responsible for general cell lineage specification or simply 
accumulate in regions of open chromatin? 

The authors make several claims/observations about how Lisa doesn't need profiles (TR or 
H3K27ac/DNase) from the systems being studied to make inferences about key TRs (i.e. they comment 
on how analyzing NR3C1 activation in A549 cells identifies NR3C1 from a Hela experiment). It would 
be nice to test this explicitly at both the H3K27ac/DNase and TR level so that users know how well this 
can be expected to work for their systems. For example, if analyzing MCF7 estrogen regulated genes, 
what would happen if you remove all of the H3K27ac/DNase breast cancer samples from the analysis 
such that Lisa will need to use other profiles? Or instead, what if the breast cancer TR profiles (i.e. 
TFs/co-factors) are removed - how well will Lisa perform if only TRs from other cell types are used? (or 
what if both K27ac/DNase and TRs for breast cancer cells are removed and the prediction must be made 
using data only from other cell types). In general, it is important to understand how holes in database 
coverage impact the Lisa's results. 

Minor comments: 



Related to the comment above about database coverage, the authors include a nice control addressing how 
their model predicts factors based on DNA motifs instead of using TR profiles. First, it is unclear now the 
authors deal with TF motifs vs. TF motif families in their reporting/scoring of accuracy - since many TFs 
bind essentially the same motif within their family, scoring the accuracy of this step could be trickier and 
may require special consideration (not really explained at all in the methods or addressed in the 
manuscript). Second, it may be interesting to compare the motif version to a result where the TRs for the 
cell type of interest are withheld - comparing how well motif inference based on sequence compares to 
TF inference based on TR profiles from other cell types. 

In the discussion, the authors comment on direct vs. indirect binding of TFs based on motifs, but don't 
really offer a direct assessment of how that information may (or may not) be that useful. Is it possible to 
segregate TR profiles for TFs based on peaks with or without the predicted motif to see how these 
different sets of sites perform in their model? 

The introduction could use a couple statements about the challenges in modeling changes in gene 
expression based on chromatin/TFs profiles. The idea of using K27ac/DNase and creating an additive 
model with exponential decay etc. to describing gene regulation and the pros and cons of this approach 
(or alternatives) are not really discussed. Given this is one of the most important assumptions that goes 
into this work it would be nice to address this. 

RP (regulatory potential) could be added to the list of abbreviations since it's a crucial aspect of the 
models described. 

The comparison between LISA, BART and MARGE is mentioned in the conclusion but not available or 
displayed in this manuscript. This would be nice to include (I realize Fig. 5 may contain a version of this, 
but it would be nice to show this comparison more explicitly)

Reviewer 3
Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes. No additional statistical review is recommended. 

Were you able to directly test the methods? No. 

Comments to author:

In this manuscript, Qin et al describe a method called Lisa to 'identify' (more like predict) transcriptional 

regulators (TRS) of a query gene set (differentially expressed or co-expressed) using a precompiled 

collection of publicly available data on chromatin accessibility (H3K27ac ChIP-Seq and DNase-Seq) and 

TR binding sites (inferred from ChIP-Seq peaks and/or motif hits based on PWMs from TRANSFAC and 

JASPAR databases), which the authors have compiled in their cistrome data browser (Zheng et al., NAR 

2019 & Mei et al., NAR 2017). Lisa, which can be broken down into four basic steps, is quite 

straightforward, focusing on the +/-5 Kb region immediately up and downstream of gene promoters. 

The first step involves selection of a background (control) gene set for the query set of genes. This is done 

by selecting 3000 genes by proportionally sampling non-query genes with different promoter activities 

(based on H3K4me3 and H3K27ac signals, associated with active gene promoters) and TADs. The 

authors state that "there is no GO enrichment in the background gene set." It is not clear how they ensure 

this unless they repeatedly select a background gene set and run GO enrichment analysis until the selected 

set of background genes are not enriched for any specific GO term (the authors should clarify this point). 



Using a strategy similar to the one the authors employed in their previous method MARGE-express (ref. 

27; Wang et al., 2016 Genome Research), they use logistic regression to select an optimum sample set for 

H3K27ac ChIP-Seq and DNase-Seq samples; as in their previous paper, they settle on ten for their sample 

size (small enough size to capture the information). 

The second step involves computation of regulatory potential of chromatin profile (chrom-RP) using the 

ten H3K27ac and DNAse-Seq datasets identified in step one, again using the strategy the authors used 

previously in another of their methods called MARGE-potential (ref. 27; Wang et al., 2016 Genome 

Research paper). Lisa then goes on to use these chromatin signals to train a L1-regularized logistic 

regression model that discriminates the query gene set from background gene set, and uses the weighted 

sum of chrom-RP to arrive at what is called a model regulatory potential (model-RP). 

The third step involves computation of regulatory potential of ChIP-Seq peaks (peak-RP) of TRs, very 

similar to the way they compute chrom-RP (ref. 27). 

In the last step, the authors look for cistromes that produce higher peak-RP values for the query gene set 

than for the background gene set (one-sided Wilcoxon rank-sum test is used as the test statistic). TRs with 

the most significant p-values are considered to be the candidate TRs of the query gene set. And, each of 

the candidate TR is evaluated by estimating the effect deleting each TR cistrome has on the chromatin 

landscape model. This is done by setting DNase-Seq and H3K27ac ChIP-Seq signal to zero within 1 Kb 

regions containing TR peaks and evaluating the predicted effect on the model-RP. The difference between 

the model scores before and after ISD (delta-RP) is used to assess the impact the 'deleted' TR cistrome is 

predicted to have on the query and background gene sets, followed by ranking of the candidate TRs. 

The authors go on to show Lisa's utility through case studies on a few gene sets (from KD/KO or 

overexpression experiments) and make the case that they are able to recover the TR (KD/KO/OE) that can 

best explain the gene sets. Lisa's performance using TR ChIP-Seq peaks or TF motifs was systematically 

evaluated by applying Lisa on 100+ differentially expressed gene sets of >50 mouse and human studies. 

Lisa was applied separately on up- and down-regulated genes in each experiment, and the prediction 

performance for TF ChIP-Seq data-based method is better compared to TF motif-based method. Finally, 

Lisa is compared to two other methods iCisTarget and Enricher, and Lisa is shown to do well against the 

two. 

While there is no doubt that Lisa would be a nice addition to the set of available tools for 

predicting/inferring transcription regulators, methodologically I do not see any novel in particular other 

than recycling of their previously published strategies. Specifically, while the strategies used in the first 

three steps are conceptually no different from the authors' previous methods, the last step is a variation of 

their MARGE-potential (ref. 27). Whereas MARGE-potential, which does not use TR ChIP-Seq datasets, 

computes the regulatory potential of cis-regulatory environment surrounding the TSS, Lisa by way using 

TR ChIP-Seq datasets is able to predict TRs. In some ways, Lisa is nothing more than a reincarnation of 

MARGE, which the authors correctly acknowledge as "the second descendent of MARGE". 

Major points: 

1. The peak-RP model the authors use assumes that the effect a TF binding site has on the expression of a 



gene decays exponentially with genomic distance between the TF binding site and TSS. A hallmark of 

cis-regulatory elements (enhancers) that has been repeatedly demonstrated is that that they are relatively 

insensitive to distance or position relation to their target genes (Shlyueva et al., 2014). And, proximity of 

a TF binding site to a gene has been shown to be a poor predictor of target genes. Given these facts, I 

wonder how reasonable the authors assumption is given that it may not have any basis. Given that we 

now have Hi-C type of maps for many cell types, wouldn't using such information be better for predicting 

TRs? 

2. I appreciate the authors' sentiment that ChIP-Seq data accurately characterize genome-wide TF binding 

sites, but what the authors fail to take into account or acknowledge is that not all TF binding sites are 

functional. Numerous studies have shown that hundreds if not thousands of genes, with a TF binding site 

(ChIP-Seq) at their promoter, exhibit no change in expression when the TF is knocked out/down or over-

expressed. Given this, assuming that all ChIP-Seq peaks, and thus inferred TF binding sites, are 

functional may not be the way to go. 

3. The authors also seem to make the assumption that all TRs are activators of gene expression, which we 

all know is not true. Many TFs have been shown to both activate and repress gene expression. And, there 

are several chromatin regulators that are negative regulators of gene expression. This assumption and 

associated bias may be why the authors find that (lines 242-251): "In over-expression studies, the 

prediction performance of all methods tended to be better for the up-regulated gene sets, than for the 

down-regulated gene ones. The reverse is evident [true] for the knock-out and knock-down studies for w 

hich the prediction performances are better for the down-regulated gene sets (Fig. 5b,c). This suggest that 

most of the TFs included in the study have a predominant activating role in the regulation of their target 

genes." 

4. Also, recently research has shown that transcription at enhancers located within genes can also repress 

the expression of their host gene. How would this affect the proposed model? 

5. Lines 100-104 & 365-366: Not sure if one-sided Wilcoxon rank sum test is appropriate here because it 

assumes that TRs are activators and that the computational deletion of TF cistrome is expected to reduce 

the model score. Two-sided Wilcoxon rank sum test should be used instead. 

6. Line 201: "Lisa analysis of the up-regulated genes in a BCL6 knockout experiment in a DLBCL cell 

line ranked BCL6 first (Fig. 4b)." Explain how BCL6 is an up-regulated gene in a BCL6 knockout 

experiment. Shouldn't BCL6 be down-regulated in a BCL6 knockout experiment? 

7. Lisa does well on query gene sets (Fig. 4) that are more cell type-specific and/or targets of cell type-

specific TRs. The authors should test Lisa on more difficult query gene sets, which are targets of generic 

TRs that are ubiquitously expressed. This would widen the method's appeal to those who study basic 

biological processes (that are not just associated with development, organ/tissue, or diseases in particular). 

Minor Points: 

1. I recommend using 'predict' instead of 'identify' in the abstract (line 21) and in the main text. 



2. Line 59-60: "ChIP-Seq data availability is limited and many cistromes have not been produced for 

important TFs in many cell types (ENCODE consortion paper, 2012)". This statement was probably true 

back in 2012, but given the explosion of ChIP-Seq datasets, the authors may want to tone it down. 

Availability of antibodies with greater specificity is the limiting factor to ChIP-Seq data availability these 

days, which should be rightfully acknowledged.   

3. Line 67, [promoters of] actively transcribed genes 

4. Lines 163-169 of the section "Demonstration of Lisa on a Gata6 knockdown study": Statements 

containing 'small delta-RP', 'little difference', 'most signficant p-values' all need to be backed up p-values 

(which is missing).  And, results from the analyses should be provided as a supplementary table so 

readers can evaluate the performance of Lisa 

5. The data used to generate Fig. 3 heatmaps should be provided as supplementary (excel/data) tables 

6. While the main text says 'BCL6 knockout,' figure 4b title says "BCL6 KD": which one is it?



Inferring transcriptional regulators through integrative modeling 
of public chromatin accessibility and ChIP-seq data 
Qian Qin; Jingyu Fan; Rongbin Zheng; Shenglin Mei; Changxin Wan; Qiu Wu; 
Hanfei Sun; Jing Zhang; Myles Brown; Clifford Meyer; X. Shirley Liu 
 
GBIO-D-19-00911: Response to Reviewers’ Comments 
 
We thank the reviewers for their time and effort in reviewing this manuscript and 
believe that their commentary has enabled us to substantially improve the 
revised version. Below we provide a point by point response to each of the 
reviewers’ comments. The reviewers’ comments are in black regular font 
followed by our responses in blue italics. 
 
Reviewer #1: Qin and colleagues report a new method, Lisa, that predicts 
transcriptional regulators of query gene sets versus a background gene set 
based on inferred regulatory importance derived from H3K27ac ChIP-seq and 
DNase-seq data. Lisa is an extension of previous efforts from the group, that 
used inferred regulatory importance from peaks. The strategy seems promising 
overall and is of general interest to the community. However, there are some 
clarifications and demonstrations needed, which I list below. 
 
We appreciate the reviewer for seeing the promise and interest of Lisa to the 
community. We have found Lisa to be invaluable to several ongoing research 
projects in the lab, to identify transcription regulators (TRs) involved in resistance 
to cancer immune therapy, prostate cancer metastasis, cancer drug treatment 
response, single cell clusters, and E3 ubiquitin ligase substrates.  
 
* The introduction and the first sections (including the section on identification of 
sample clusters) would really benefit from a rewrite to make the overall approach 
and rationale more comprehensible. 
 
We have revised the description of Lisa and the schematic representation in 
Figure 1 to explain the approach and rationale more clearly. 
 
* In particular, I lack a schematic overview and text of the Lisa approach that 
guides the reader through the rationale of the method, and how this compares to 
Peak-RP. 
 
In the revision we have included a schematic in Figure 1, which shows the roles 
of the Peak-RP and in silico deletion models.  
 
* There are several aspects of the Lisa approach that is not justified or, if justified 
elsewhere, not cited. These include the normalization approach and the 
assumptions of the decay model and additivity of multiple binding sites. How do 
these assumptions affect the final results? Can additivity be justified for all loci? 
How does that fit with models of regulatory redundancy? The authors need to 



motivate these choices or discuss the potential impact these design choices may 
have. 
 
In the revision we have included a section to motivate the approach and describe 
the assumptions of our model. While it is true that there can be redundancy of 
regulation where multiple TR binding sites regulate the same gene, some TR 
binding sites appear to not regulate nearby genes. As this is not well understood, 
system specific data is needed to probe the details of this phenomenon. With the 
available data and current understanding of gene regulation we cannot justify a 
model that more complex than an additive one. We have also discussed the 
difference between a quantitative model that can be used to predict TRs given 
differential gene sets and the scientific literature of findings on gene regulation 
that are mostly based on few genes in few cell types. While these studies are 
important for understanding the mechanisms of transcriptional regulation, many 
observations cannot be included in a general quantitative model because the 
data needed to model these effects is not available on a genome-wide scale 
across a large variety of cell types and conditions. The main factor limiting the 
power of our method, however, is the availability of TR binding data. 
 
* My biggest concern with the approach is the sparsity of available data. The 
authors indeed point out that improvement and new insights will lead from new 
available data. However, a demonstration of the influence of data availability is 
lacking. How are results affected if data would be reduced to even more sparsity 
for certain samples? 
 
While it is true TRs ChIP-seq data is sparse, data available in related cell types 
can still be informative. This is one of the motivations for the ENCODE project, 
and ENCODE data has been widely used by the research community to model 
gene regulation in many other cell types, conditions, and disease (e.g. GWAS) 
settings. We carried out an analysis of data availability for the Estrogen and 
Glucocorticoid Receptors (ER and GR), which are well represented in several 
cell types (see Table R1). In this analysis, we show that in the absence of GR 
ChIP-seq data in MCF7 Lisa can still identify GR as the key regulator of GR 
activation in breast (MCF7), by using GR ChIP-seq in lung (A549). In the 
analysis of estrogen (E2) stimulated genes in breast (MCF7), when all ER ChIP-
seq data in breast cell lines or tissues are excluded from the analysis, Lisa is still 
able to identify ER, although with slightly worse rank, using ER ChIP-seq data 
from the VCaP prostate cancer cell line. Lisa will increase in accuracy as data 
from individual labs as well as consortia such as ENCODE continue to generate 
more experimental or imputed data. We have included this analysis in the revised 
manuscript.  
 
Reviewer #2: Review: 
 
The authors describe Lisa, an analysis framework that takes a set of regulated 
genes from a user and then interrogates a database of DNase/ChIP-seq 



experiments to identify key regulators likely to play a role in regulating the given 
genes. Lisa works by first selecting a limited set of H3K27ac and DNase 
experiments from the Cistrome DB that contain 'regulatory potentials' that 
discriminate the input genes relative to a set of background genes, then performs 
an in silico perturbation of these profiles using ChIP-seq profiles for TFs and 
other co-factors from Cistrome DB to identify which factors are predicted to 
influence the H3K27ac/DNase patterns the most in the vicinity of target genes 
(based on their RP model). To validate their model, the authors analyze a 
compendium of knockdown/out and overexpression experiments for specific 
regulators with the expectation that the perturbed factor should be recovered by 
Lisa. They also compare how well Lisa identifies the correct 
factor compared to the performance of i-CisTarget and Enricher. 
 
This work attempts to address a pressing need in the field of gene regulation by 
attempting to leverage the incredible amount of chromatin profiling information 
available (i.e. Cistrome DB) to make accurate predictions about which 
transcription factors or other regulators are likely to play roles in regulating 
specific sets of genes. This work builds on previous efforts (MARGE/BART) by 
including the interrogation of TF/co-factor ChIP-seq profiles and refining how they 
are used to predict the most significant regulators. Although this work is 
somewhat incremental, for most part the method is well described and should be 
a useful tool for genomics researchers. 
 
We thank the reviewer for appreciating the potential value Lisa brings to the 
research community. We ourselves are using Lisa extensively to identify 
transcription regulators (TRs) involved in resistance to cancer immune therapy, 
prostate cancer metastasis, cancer drug treatment response, single cell clusters, 
and E3 ubiquitin ligase substrates. Lisa contains significant conceptual advances 
as well as practical improvements in gene regulation analysis that are completely 
absent from MARGE and BART. MARGE does not make any prediction of the 
TRs that regulate a gene set. BART was developed independently by Dr. Zang’s 
group at the University of Virginia and uses a different approach to identify TRs. 
While BART analysis is based on an enrichment analysis of MARGE-predicted 
putative enhancers, Lisa uses a different, chromatin landscape model, and in 
silico deletion approach to analyze the likely effects of TRs on gene expression. 
As such, Lisa is a far more accurate predictor of regulatory TRs than BART (Fig 
R1). In addition, a significant amount of software engineering and implementation 
effort made Lisa into a resource truly useful to the community (lisa.cistrome.org). 
  



 
Figure R1. Comparison of Lisa prediction performance with available TR prediction methods. Although Lisa 
and BART are related to MARGE, Lisa is far more accurate. (a) Prediction of up-regulated genes in TR 
over-expression experiments. (b) Prediction of down-regulated genes in TR knock-down/out experiments. 

 
Major Comments: 
 
One important section missing from this manuscript is a more complete 
description of what Lisa provides as results and a discussion of how to interpret 
them. This is important for how readers will use and interpret the information 
given by Lisa. It seems the primary output of Lisa is a list of TRs and p-values 
(i.e. visualized in Fig. 4). Most of the results in the manuscript stress that Lisa 
works because the expected CR appears near the 'top' of the results. What other 
TRs appear significant for typical experiments?  
 
We have added a section describing the Lisa web site (lisa.cistrome.org) features 
and results. As results differ between gene sets, we show some different 
scenarios in the manuscript. To help users to further understand the specific 
association between the Lisa identified factors with their gene sets, we provide 
the Lisa analysis results on a large number of benchmarking gene sets: 
http://lisa.cistrome.org/new_gallery/new_gallery.html			
 
Fig. 3 attempts to address this by commenting that significant TRs often include 
master TFs found in the cell types (or related cell types) from which the gene lists 
were derived. Are there other trends a user should be aware of? Are there 
certain types of experiments for which Lisa performs worse than others? For 
example, in the list of experiments analyzed in Fig. 5 to evaluate performance, if 
other factors were ranked above the expected TR, what were they? 
Is there an explanation/reason for it, and if so, could this be problematic for 
analyzing certain types of data? 
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The reviewer raises interesting and important questions. Several factors are 
likely to determine Lisa’s performance. These include the specific perturbation 
condition for the differential gene expression data, the quality of the gene 
expression data, the availability and quality of the DNase-seq and H3K27ac and 
TR ChIP-seq data sets, and the degree to which binding is dependent on a DNA 
sequence motif. In some TR perturbation experiments there might be some TRs 
that have stronger effects on expression than the perturbed TR, which might be 
why Lisa ranked these higher than the presumed target TR. The perturbation of a 
TR may also trigger stress, immune or cell cycle responses that are not directly 
related to the initial perturbation. In the Lisa analysis of up-regulated genes after 
24 hours of estradiol stimulation (GSE26834), E2F4 is the top ranked TR, 
followed by ESR1. Estrogen is known to stimulate proliferation of breast cancer 
cells via a pathway involving E2F4, a key regulator of the G1/S cell cycle 
checkpoint (Carroll et al, JBC, 2000). In this case, Lisa appears to be correctly 
detecting a secondary response to the initial TR perturbation. We discuss these 
points in the revised manuscript.  
 
Related to the above comment: Due to the selection of RP based on H3K27ac 
and DNase, TR profiles generated in the same or related cell types as the 
'selected' H3K27ac/DNase experiments would be expected to gravitate toward 
the top of the results. This is not a problem per se, since they are more likely to 
be important, but it is somewhat a trivial result. 
 
When available, the expected chromatin profiles are often the most important 
components of the Lisa chromatin model, although this is not always the case. 
The Lisa in silico deletion method emphasizes the cis-elements that are likely to 
be important in the regulation of the gene set while deemphasizing the ones that 
are less important. The less important ones can be regions that are active in 
many cell types. This quantification is best done using a model that considers 
large numbers of samples. In other words, the model defines a contrast between 
chromatin profiles where background estimation is important in addition to 
foreground estimation. We have clarified this point in the revised manuscript. 
 
It would be interesting to see how Lisa scores the TRs from the same cell type 
relative to one another. For example, when analyzing E2 regulated genes in 
MCF-7 cells, I would imagine Lisa would predict ERa, FoxA1, etc. are significant 
- but how does Lisa prioritize these (and other TRs) from MCF7 cells relative to 
one another?  
 
Lisa predicts TRs that tend to bind in regions with relevant chromatin model 
properties close to the regulated genes. The top ranked TRs are not necessarily 
from the same cell type, although this is often the case. In the example of the ER 
activation in MCF7 cells (GSE26834), E2F4 samples from B-lymphocyte and 
retinal pigment cells are ranked higher than ER. We provide the complete results 
of the benchmark gene sets on the Lisa web site lisa.cistrome.org, to allow 
users to see details of each ChIP-seq data set. In cases where there are several 



ChIP-seq data sets for the same TR in the same cell type investigators can even 
inspect details of specific experiments. 
 
Can it discriminate TRs that drive key aspects of gene regulation versus TRs 
responsible for general cell lineage specification or simply accumulate in regions 
of open chromatin? 
 
Lisa can discriminate TRs for general vs specific gene regulation, which is 
achieved through the user-provided differential expression gene sets. Lisa input 
gene sets can be derived from different perturbation experiments ranging from 
targeted TR perturbation to drug treatments and developmental studies, and in 
each of these cases the nature of the key driver TRs might be different. In some 
studies, it may be important to understand the pioneer TFs while in others the 
pioneers are of little interest. To add flexibility to Lisa we therefore allow users to 
define their own background gene sets that can be defined to better frame their 
question.  
 
The authors make several claims/observations about how Lisa doesn't need 
profiles (TR or H3K27ac/DNase) from the systems being studied to make 
inferences about key TRs (i.e. they comment on how analyzing NR3C1 activation 
in A549 cells identifies NR3C1 from a Hela experiment). It would be nice to test 
this explicitly at both the H3K27ac/DNase and TR level so that users know how 
well this can be expected to work for their systems. For example, if analyzing 
MCF7 estrogen regulated genes, what would happen if you remove all of the 
H3K27ac/DNase breast cancer samples from the analysis such that Lisa will 
need to use other profiles? Or instead, what if the breast cancer TR profiles (i.e. 
TFs/co-factors) are removed - how well will Lisa perform if only TRs from other 
cell types are used? (or what if both K27ac/DNase and TRs for breast cancer 
cells are removed and the prediction must be made using data only from other 
cell types). In general, it is important to understand how holes 
in database coverage impact the Lisa's results. 
 
We thank the reviewer for this helpful suggestion to understand the impact of 
data coverage on prediction accuracy. We have carried out the suggested 
analyses and included the results in the revised manuscript. In particular, we 
tested Lisa’s performance on three up-regulated gene sets: (1) Glucocorticoid 
Receptor (GR) activated genes in breast cancer (MCF7), (2) Glucocorticoid 
Receptor (GR) activated genes in lung cancer (A549), and (3) Estrogen Receptor 
(ER) activated genes in MCF7. In these analyses (Supplementary Table), we 
assessed the effect of removing all relevant cell line specific (MCF7 or A549), 
H3K27ac ChIP-seq and DNase-seq data, or cell line specific TR ChIP-seq data 
(ER or GR). We also removed cell line specific TR ChIP-seq data together with 
H3K27ac ChIP-seq and DNase-seq data. We repeated the same analysis 
removing similar data, on the basis of tissue (breast and lung) instead of on the 
basis of cell line (MCF7 and A549). When MCF7 ER ChIP-seq are excluded, an 
ER sample from another breast cancer cell line (H3396) predicts the importance 



of ER (rank 6) as a regulator of the estrogen activated gene set. When all ER 
breast ChIP-seq samples are excluded, Lisa can still identify ER (rank 18) from 
ER ChIP-seq in the VCaP prostate cancer cell line. For the GR activated gene 
set in MCF7, when GR ChIP-seq data is unavailable in MCF7, Lisa can identify 
GR as a key regulator (rank 2) using GR ChIP-seq from lung (A549). For the GR 
activated gene set in lung, Lisa identified GR as the key regulator (rank 1) using 
GR ChIP-seq data from breast (MDA-MB-231). 
 

Gene set H3K27ac and 
DNase data 

All TR ChIP-seq 
included 

Cell line target 
TR data excluded  

Cell type target TR 
data excluded 

ER activation in 
MCF7 

All data 1 (MCF7, breast) 6 (H3396, breast) 18 (VCaP, prostate) 

 Breast 
excluded 

1 (MCF7, breast) 6 (H3396, breast) 18 (VCaP, prostate) 

GR activation in 
MCF7 

All data 2 (A549, lung) 2 (A549, lung) 2 (A549, lung) 

 Breast 
excluded 

2 (A549, lung) 2 (A549, lung) 2 (A549, lung) 

GR activation in 
A549 

All data 1 (A549, lung) 1 (MDA-MB-231, 
breast) 

1 (MDA-MB-231, 
breast) 

 Lung excluded 1 (A549, lung) 1 (MDA-MB-231, 
breast) 

1 (MDA-MB-231, 
breast) 

Table R1. Analysis of Lisa predictions using data which does not match the specific cell type. 
 
Minor comments: 
 
Related to the comment above about database coverage, the authors include a 
nice control addressing how their model predicts factors based on DNA motifs 
instead of using TR profiles. First, it is unclear now the authors deal with TF 
motifs vs. TF motif families in their reporting/scoring of accuracy - since many 
TFs bind essentially the same motif within their family, scoring the accuracy of 
this step could be trickier and may require special consideration (not really 
explained at all in the methods or addressed in the manuscript). Second, it may 
be interesting to compare the motif version to a result where the TRs for the cell 
type of interest are withheld - comparing how well motif inference based on 
sequence compares to TF inference based on TR profiles from other cell types.  
 
Lisa currently does not take TF motif families into consideration, the statistical 
tests were taken independently for each motif position weight matrix (pwm) and 
deduplicated by the TR name associated with the (pwm). The detailed 
information of each motif is listed in Supplementary Table 1. Although TR ChIP-
seq data appear to be more informative than motifs, meaningful quantification of 
motif based binding site imputation versus ChIP-seq is challenging for several 
reasons. First, some TRs bind in cell type specific ways whereas others have a 
more constant binding pattern, so the utility of TR binding data will be dependent 
on the nature of the TR. Second, the utility of ChIP-seq data in a different cell 
type will depend on the quality of the data and how related the cell types are. 
Third, the binding of some TRs, such as pioneer TFs, is more dependent on 
motifs than others, especially cofactors. Finally, this analysis could only answer 
how well our current motif approach would work, not what the full potential of 



motif-based methods is. Machine learning methods for TR binding site 
imputation, such as those proposed in a recent ENCODE-DREAM challenge (Li 
et al, Genome Research, 2019), can make much better predictions than more 
naïve methods, but these methods have yet to be deployed on a large scale in 
practical applications. In the revised manuscript, we have added more details to 
the discussion of this issue.  
 
In the discussion, the authors comment on direct vs. indirect binding of TFs 
based on motifs, but don't really offer a direct assessment of how that information 
may (or may not) be that useful. Is it possible to segregate TR profiles for TFs 
based on peaks with or without the predicted motif to see how these different 
sets of sites perform in their model? 
 
 In the manuscript we noted that the 
motif-based analyses tend to be more 
predictive in one direction of response 
than the other, while ChIP-seq based 
analyses tend to be able to predict 
well in both directions. We carried out 
analyses of several TF data sets, 
including GR activation in A549 cells 
(Fig. R2), to characterize this 
phenomenon, finding that direct 
binding sites do tend to behave 
differently from indirect ones. We have 
included these analyses in the revised 
manuscript. 
 
The introduction could use a couple statements about the challenges in modeling 
changes in gene expression based on chromatin/TFs profiles. The idea of using 
K27ac/DNase and creating an additive model with exponential decay etc. to 
describing gene regulation and the pros and cons of this approach (or 
alternatives) are not really discussed. Given this is one of the most important 
assumptions that goes into this work it would be nice to address this. 
 
We have discussed more of the model assumptions and considerations in the 
introduction.  
 
RP (regulatory potential) could be added to the list of abbreviations since it's a 
crucial aspect of the models described. 
 
We have added RP to the list of abbreviations. 
 
The comparison between LISA, BART and MARGE is mentioned in the 
conclusion but not available or displayed in this manuscript. This would be nice to 
include (I realize Fig. 5 may contain a version of this, but it would be nice to show 

 
Figure R2. Comparison of direct binding sites (GR 
peaks with motif) with indirect binding sites (GR 
peaks without motif). The direct sites are more 
predictive of GR activated genes than of GR 
repressed genes. 
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this comparison more explicitly) 
 
We did not report a comparison with BART in the original submission because 
the BART web server was too slow to run all the test data. Recently BART has 
been updated to run faster. Our analysis shows Lisa to perform much better than 
BART (Fig. R1) and we have included this result in the revision. MARGE does 
not implement the TR prediction function so we cannot compare Lisa to MARGE, 
only to BART. 
 
Reviewer #3: In this manuscript, Qin et al describe a method called Lisa to 
'identify' (more like predict) transcriptional regulators (TRS) of a query gene set 
(differentially expressed or co-expressed) using a precompiled collection of 
publicly available data on chromatin accessibility (H3K27ac ChIP-Seq and 
DNase-Seq) and TR binding sites (inferred from ChIP-Seq peaks and/or motif 
hits based on PWMs from TRANSFAC and JASPAR databases), which the 
authors have compiled in their cistrome data browser (Zheng et al., NAR 2019 & 
Mei et al., NAR 2017). Lisa, which can be broken down into four basic steps, is 
quite straightforward, focusing on the +/-5 Kb region immediately up and 
downstream of gene promoters. 
 
Lisa does not focus on a +/-5kb region, instead it uses a regulatory potential 
model that considers binding up to 100kb from the transcription start site (TSS), 
weighted as a function of genomic distance from the TSS. We have revised the 
description of Lisa and Figure 1 to explain the method more clearly. 
 
The first step involves selection of a background (control) gene set for the query 
set of genes. This is done by selecting 3000 genes by proportionally sampling 
non-query genes with different promoter activities (based on H3K4me3 and 
H3K27ac signals, associated with active gene promoters) and TADs. The 
authors state that "there is no GO enrichment in the background gene set." It is 
not clear how they ensure this unless they repeatedly select a background gene 
set and run GO enrichment analysis until the selected set of background genes 
are not enriched for any specific GO term (the authors should clarify this point).  
 
A randomly selected set of 3000 background genes, if correctly implemented, is 
not expected to be enriched in any GO term.  
 
Using a strategy similar to the one the authors employed in their previous method 
MARGE-express (ref. 27; Wang et al., 2016 Genome Research), they use 
logistic regression to select an optimum sample set for H3K27ac ChIP-Seq and 
DNase-Seq samples; as in their previous paper, they settle on ten for their 
sample size (small enough size to capture the information).  
 
The second step involves computation of regulatory potential of chromatin profile 
(chrom-RP) using the ten H3K27ac and DNAse-Seq datasets identified in step 
one, again using the strategy the authors used previously in another of their 



methods called MARGE-potential (ref. 27; Wang et al., 2016 Genome Research 
paper). Lisa then goes on to use these chromatin signals to train a L1-regularized 
logistic regression model that discriminates the query gene set from background 
gene set, and uses the weighted sum of chrom-RP to arrive at what is called a 
model regulatory potential (model-RP).  
 
The third step involves computation of regulatory potential of ChIP-Seq peaks 
(peak-RP) of TRs, very similar to the way they compute chrom-RP (ref. 27).  
In the last step, the authors look for cistromes that produce higher peak-RP 
values for the query gene set than for the background gene set (one-sided 
Wilcoxon rank-sum test is used as the test statistic). TRs with the most significant 
p-values are considered to be the candidate TRs of the query gene set. And, 
each of the candidate TR is evaluated by estimating the effect deleting each TR 
cistrome has on the chromatin landscape model. This is done by setting DNase-
Seq and H3K27ac ChIP-Seq signal to zero within 1 Kb regions containing TR 
peaks and evaluating the predicted effect on the model-RP. The difference 
between the model scores before and after ISD (delta-RP) is used to assess the 
impact the 'deleted' TR cistrome is predicted to have on the query and 
background gene sets, followed by ranking of the candidate TRs. 
 
Lisa calculates three measures of association between a TR and the gene set 
based on H3K27ac delta-RP, DNase-seq delta-RP, and peak-RP. The results 
are integrated using the Cauchy Combination test. We have clarified this process 
in the revised manuscript.   
 
The authors go on to show Lisa's utility through case studies on a few gene sets 
(from KD/KO or overexpression experiments) and make the case that they are 
able to recover the TR (KD/KO/OE) that can best explain the gene sets. Lisa's 
performance using TR ChIP-Seq peaks or TF motifs was systematically 
evaluated by applying Lisa on 100+ differentially expressed gene sets of >50 
mouse and human studies. Lisa was applied separately on up- and down-
regulated genes in each experiment, and the prediction performance for TF 
ChIP-Seq data-based method is better compared to TF motif-based method.  
Finally, Lisa is compared to two other methods iCisTarget and Enricher, and Lisa 
is shown to do well against the two.  
 
While there is no doubt that Lisa would be a nice addition to the set of available 
tools for predicting/inferring transcription regulators, methodologically I do not 
see any novel in particular other than recycling of their previously published 
strategies. Specifically, while the strategies used in the first three steps are 
conceptually no different from the authors' previous methods, the last step is a 
variation of their MARGE-potential (ref. 27). 
 
Lisa is substantially different from MARGE and BART. In the schematic Figure 1c 
in the revised manuscript, the only part of Lisa that is similar to MARGE and 
BART relates to yellow circles 1 and 2 in the H3K27ac section. 



 
Whereas MARGE-potential, which does not use TR ChIP-Seq datasets, 
computes the regulatory potential of cis-regulatory environment surrounding the 
TSS, Lisa by way using TR ChIP-Seq datasets is able to predict TRs. In some 
ways, Lisa is nothing more than a reincarnation of MARGE, which the authors 
correctly acknowledge as "the second descendent of MARGE".  
 
The development of Lisa involved a significant amount of innovation and effort to 
produce a tool that would be useful for the research community. Our goal was to 
develop an effective system that can determine the TR regulators of a gene set, 
a function that MARGE did not perform at all. BART, makes this prediction yet we 
show that Lisa’s performance is far better than BART’s (Fig. R1), despite sharing 
some conceptual similarities. In addition, Lisa involves important original 
concepts. In particular, Lisa does not carry out a direct analysis of the genomic 
regions inferred by MARGE, which is BART’s strategy. Lisa probes chromatin 
profile models to test the relative effects different TRs have on gene expression. 
In the revision we have improved Figure 1 to clarify the description of the Lisa 
method. While TR ChIP-seq is scarce for most factors H3K27ac ChIP-seq and 
DNase-seq data are available in hundreds of cell types, and these data can help 
to determine where the enhancers and promoters are likely to be in the cell types 
relevant to the query gene set. The chromatin profile models discriminate the 
differentially expressed genes from the background on the basis of H3K27ac or 
DNase regulatory potentials, which are weighted sums of ChIP-seq or DNase-
seq reads. Lisa tests the effects of TRs by subtracting reads close to the TR 
binding sites and quantifying the effect of these local subtractions on the overall 
chromatin profile model. The difference in performance between Lisa and BART 
clearly demonstrates that what might seem to be minor methodological 
considerations are actually important.  
 
Major points: 
 
1. The peak-RP model the authors use assumes that the effect a TF binding site 
has on the expression of a gene decays exponentially with genomic distance 
between the TF binding site and TSS. A hallmark of cis-regulatory elements 
(enhancers) that has been repeatedly demonstrated is that that they are 
relatively insensitive to distance or position relation to their target genes 
(Shlyueva et al., 2014).  And, proximity of a TF binding site to a gene has been 
shown to be a poor predictor of target genes.  
 
The regulatory potential model assumes that the influence of a TF decreases 
monotonically as a function of distance between the TSS and the TF binding site. 
In genomics studies distance thresholds are often used to associate ChIP-seq 
peaks with genes. A distance threshold approach would be the same as using a 
step decay function in which all peaks inside the threshold are as likely to 
contribute to the regulation of the gene. If the threshold were 100kb, a peak at 
the transcription start site would have the same regulatory effect as a peak 100kb 



from the TSS. We consider a smooth decay function to be a more reasonable 
model than a sharp distance cutoff. Physical laws describing the frequencies of 
interactions between components of a polymer or molecular interactions such as 
Van der Waals forces or dipole-dipole interactions are governed by smooth 
functions of distance. Distance is also important in models of physical processes 
such as gas diffusion or heat transfer. It can be clearly seen in Hi-C chromatin 
interaction data, that chromatin interaction frequency is highly correlated with 
genomic proximity. 
 
Regarding enhancers being “relatively insensitive to distance in relation to their 
target genes”, we would like to bring a historical perspective. When enhancers 
were discovered “the prevailing view at the time that eukaryotic genes were 
controlled by promoters with a local influence, limited to about 100bp from the 
initiation site” (from a historical perspective by Schaffner was, Biol. Chem., 2015). 
At the time, it was surprising that cis-regulatory elements could regulate genes 
across distances greater than 1kb: “these results meant nothing less than that 
the SV40 ‘enhancing’ DNA segment was able to boost transcription independent 
of its orientation and at distances of more than 1000 bp from a (related or 
unrelated) target promoter! And it even worked from a position downstream of 
the transcription unit. These properties were subsequently generally accepted as 
an enhancer definition” (Schaffner, Biol. Chem., 2015).  Clearly, enhancers can 
influence genes across distances far greater than 1kb, and they are not 
completely insensitive to distance. In fact, there is ample evidence, as 
exemplified below, showing that cis-elements near the transcription start site of a 
gene are more likely to regulated the gene than elements further away. We are 
not saying that there are no instances of more distal cis-elements having a 
greater regulatory influence than more proximal ones. This is a statement of 
probability, and the purpose of our regulatory potential model is quantify this 
probability.  
 

Consider, for example, a p300 ChIP-
seq study of tissue specific enhancers 
in which proximity to the regulated 
gene is shown to be a good predictor 
of the regulation of tissue specific 
genes (Visel et al, Nature, 2009, Fig 
5a). In this Figure, the blue bars are 
forebrain derived p300 peaks close to 
genes that are upregulated in 
forebrain, and the grey are random 
sites. The enrichment of tissue 

specific enhancers relative to tissue specific genes decays with distance and 
approaches random background at around 100kb. 
 

 
Visel et al, 2009 Fig 5a. p300 peaks are enriched 
near genes that are expressed in the same tissue. 



Or consider an analysis of GWAS catalogue 
variants that shows a strong relationship between 
eQTL density and genomic  
distance to the transcription start site of the 
regulated genes. This study found eQTL-target 
gene density to decrease with the distance 
between eQTLs and their cognate gene TSSs. 
This is strong evidence that enhancer regulation of 
genes follows a probabilistic function relative to the 
distance between enhancers and gene TSSs (Fig. 
2d, Gamazon et al, Nat. Genetics, 2018).  
 
Additivity of the influence of multiple binding sites 
is consistent with each of the binding sites 
influencing the gene independently. The 
development of models of synergistic or antagonistic effects between enhancers 
would require experimental data, such as combinatorial cis-element CRISPR 
knockouts, that is unavailable on a genome wide scale. Therefore, we use a 
model of the H3K27ac environment surrounding each gene and the in silico 
deletion approach to capture information about whether a TR binding site is likely 
to be of regulatory relevance. 
 
Given these facts, I wonder how reasonable the authors assumption is given that 
it may not have any basis. Given that we now have Hi-C type of maps for many 
cell types, wouldn't using such information be better for predicting TRs? 
 
The 4D Nucleome data portal currently reports a total of 12 human Hi-C and 17 
human in situ Hi-C data sets. If Hi-C data represents cell type and condition 
specific chromatin interactions, this small number does not seem to be a 
promising basis for a TR prediction system. Besides, the value of Hi-C data for 
enhancer inference is questionable as findings of several recent chromatin 
interaction papers suggest a rather limited role of stable chromatin loops in gene 
regulation (El Khattabi et al, 2019; Alexander et al, eLife, 2019; Benabdallah, 
Cell, 2019). The role of TADs in gene regulation has also been called into 
question (Ghavi-Helm, Nature Genetics, 2019). This quote from a review paper in 
Cell (Long et al. Cell, 2016) sums up the lack of census regarding the value of Hi-
C: “What is also becoming clear is that, while there are certainly well documented 
examples of enhancer-promoter loops, typical enhancer-promoter contacts are 
likely less stable and/or less frequent than structural loops mediated by CTCF 
that are readily detectable by Hi-C methods.” We have demonstrated an effective 
method for determining regulators without the use of Hi-C data that is limited in 
number and value. 
 
2. I appreciate the authors' sentiment that ChIP-Seq data accurately characterize 
genome-wide TF binding sites, but what the authors fail to take into account or 
acknowledge is that not all TF binding sites are functional. Numerous studies 

 

Gamazon et al, Nat. Genetics, 
2018 Fig 2d. 



have shown that hundreds if not thousands of genes, with a TF binding site 
(ChIP-Seq) at their promoter, exhibit no change in expression when the TF is 
knocked out/down or over-expressed. Given this, assuming that all ChIP-Seq 
peaks, and thus inferred TF binding sites, are functional may not be the way to 
go. 
 
We do not assume that all TR ChIP-seq peaks are functional but rather that each 
TR ChIP-seq peak has some probability of influencing nearby genes. It has been 
shown that the H3K27ac marked enhancer is indicative of active enhancers. The 
H3K27ac chromatin landscape modeling might help to discriminate between 
active enhancers and inactive ones. In the revision we clarify that not all TR 
binding sites are functional and that we take this into account in our model 
although with current data we cannot accurately predict which are functional and 
which are not. 
 
3. The authors also seem to make the assumption that all TRs are activators of 
gene expression, which we all know is not true. Many TFs have been shown to 
both activate and repress gene expression. And, there are several chromatin 
regulators that are negative regulators of gene expression. This assumption and 
associated bias may be why the authors find that (lines 242-251): "In over-
expression studies, the prediction performance of all methods tended to be better 
for the up-regulated gene sets, than for the down-regulated gene ones. The 
reverse is evident [true] for the knock-out and knock-down studies for which the 
prediction performances are better for the down-regulated gene sets (Fig. 5b,c). 
This suggest that most of the TFs included in the study have a predominant 
activating role in the regulation of their target genes."  
 
Lisa does not assume that all TRs are activators. The method analyzes the 
association between gene sets and TR ChIP-seq peaks and the signs of the 
coefficients in the chrom-RP model can be negative or positive. If the query gene 
set is up-regulated in response to the inhibition of a predominantly repressive TR, 
as in the case of BCL6, Lisa could identify such a TR, as it does in the case of 
BCL6. What we observed in Lisa’s analysis of differential gene expression data is 
that the directionality of effect for many TFs appears to be more consistent with 
an activating effect. 
 
4. Also, recently research has shown that transcription at enhancers located 
within genes can also repress the expression of their host gene. How would this 
affect the proposed model?  
 
It is an interesting observation that transcription from internal enhancers can 
have an attenuating effect on a host gene’s transcription. Transcription can 
indeed be regulated by several mechanisms involving premature transcriptional 
termination (reviewed in Kamieniarz-Gdula and Proudfoot, Trends in Genetics, 
2019). It is unclear if these and other mechanisms generalize to all TRs, and if 
accounting for these effects could improve the accuracy of TR prediction. These 



effects might vary between different TRs and the estimation of these effects 
might be inaccurate with currently available data. In the revision we discuss 
some of the ways in which additional data might improve Lisa’s accuracy. 
 
5. Lines 100-104 & 365-366: Not sure if one-sided Wilcoxon rank sum test is 
appropriate here because it assumes that TRs are activators and that the 
computational deletion of TF cistrome is expected to reduce the model score. 
Two-sided Wilcoxon rank sum test should be used instead.  
 
Lisa constructs H3K27ac ChIP-seq and DNase-seq based chromatin models 
which discriminate between the query gene set and the background genes. In the 
in silico deletion step, the assumption is that ‘in silico deletion’ of the regulatory 
TR binding sites will have the effect of weakening the discriminatory power of the 
model. Deleting the key regulatory elements ought to decrease the power of the 
model, not increase it. Therefore, the one-sided test is appropriate. We have 
clarified this point in the revision. 
 
6. Line 201: "Lisa analysis of the up-regulated genes in a BCL6 knockout 
experiment in a DLBCL cell line ranked BCL6 first (Fig. 4b)." Explain how BCL6 
is an up-regulated gene in a BCL6 knockout experiment. Shouldn't BCL6 be 
down-regulated in a BCL6 knockout experiment?  
 
Both up-regulated and down-regulated genes were identified from an experiment 
involving the knockdown of BCL6 in the DLBCL cell line. The Lisa analysis of the 
up-regulated genes after BCL6 knockdown predicts BCL6 to be the most 
important TR. We predict BCL6 to be the regulator of the up-regulated gene set; 
we do not predict the BCL6 gene itself to be up-regulated. It would make sense 
for BCL6 to be predicted as a regulator of the up-regulated genes if BCL6 had a 
repressive function, which seems to be the case (see the review by Bunting and 
Melnick, Curr. Opinion in Immunology, 2013).  Lisa’s prediction is therefore 
consistent with the repressive function of BCL6. We have clarified this issue in 
the revision. 
 
7. Lisa does well on query gene sets (Fig. 4) that are more cell type-specific 
and/or targets of cell type-specific TRs. The authors should test Lisa on more 
difficult query gene sets, which are targets of generic TRs that are ubiquitously 
expressed. This would widen the method's appeal to those who study basic 
biological processes (that are not just associated with development, organ/tissue, 
or diseases in particular). 
 
In the submitted manuscript, we show that Lisa can perform well for several 
broadly expressed TRs, including MYC, ERG and EZH2. We have added some 
discussion about factors that might influence Lisa’s TR prediction accuracy. 
 
Minor Points: 
 



1. I recommend using 'predict' instead of 'identify' in the abstract (line 21) and in 
the main text. 
 
We have changed ‘identify’ to ‘predict’ in the abstract. 
 
2. Line 59-60: "ChIP-Seq data availability is limited and many cistromes have not 
been produced for important TFs in many cell types (ENCODE consortion paper, 
2012)". This statement was probably true back in 2012, but given the explosion 
of ChIP-Seq datasets, the authors may want to tone it down. Availability of 
antibodies with greater specificity is the limiting factor to ChIP-Seq data 
availability these days, which should be rightfully acknowledged.  
 
Following the reviewer’s comments, we have revised this sentence to: “ChIP-seq 
data availability, in terms of covered TRs and cell types, even with large 
contributions from projects such as ENCODE, is still sparse due to the limited 
availability of specific antibodies.” 
 
3. Line 67, [promoters of] actively transcribed genes 
 
We have corrected this sentence. 
 
4. Lines 163-169 of the section "Demonstration of Lisa on a Gata6 knockdown 
study": Statements containing 'small delta-RP', 'little difference', 'most signficant 
p-values' all need to be backed up p-values (which is missing).  And, results from 
the analyses should be provided as a supplementary table so readers can 
evaluate the performance of Lisa  
 
We have reworded the revision to make quantitative statements more objective. 
Results of all the analyses we showed in the manuscript, including p-values, are 
available on the lisa web site:  
http://lisa.cistrome.org/new_gallery/new_gallery.html.  
 
5. The data used to generate Fig. 3 heatmaps should be provided as 
supplementary (excel/data) tables 
 
The data used to produce heatmaps is available from the Cistrome DB. In 
Supplementary Table 1 we have provided references to the particular data sets 
used to produce this heatmap. 
 
6. While the main text says 'BCL6 knockout,' figure 4b title says "BCL6 KD": 
which one is it? 
	
We have corrected the main text in line 201 to “BCL6 knockdown”.	
 



Second round of review

Reviewer 2

The authors did an admirable job address concerns raised during the first review and have adequately 

addressed the major concerns raised. Additional tests of data coverage and overall accuracy of the method 

are welcome additions. While the new schematic in Fig. 1 is a little hard to digest at first glance, I think it 

does a pretty good job encapsulating the major points of the method as well as could be expected.


