
SOFTWARE

Additional file 1: Sequre supplementary notes
Full list of author information is

available at the end of the article

1 A short, practical guide to Sequre
We illustrate the usage of Sequre by implementing a secure version of PlassClass [61],

a binary classification tool for distinguishing whether a sequence originates from a

plasmid sequence or a chromosomal segment. It is based on a binary classification

with k-mer counts as feature variables. This example describes how to securely

perform the training of the classification model in an MPC environment. Secure

evaluation of the trained model on private data for inference can be achieved in a

similar manner.

1.1 Data pre-processing and secret sharing

Each data owner prepares the private data to be securely shared with the comput-

ing parties. PlassClass begins by counting the number of k-mers (for a predefined k)

over a given set of chromosomal and plasmid sequences. These counts will be used as

the classifier features. Each data owner can execute this step locally, as it does not

require any coordination with other parties. Because Sequre inherits all the func-

tionalities of the Seq language for high-performance bioinformatics pipelines [20],

we can use such functionality to quickly implement the k-mer counting in only 10

lines of code as follows:

Code 1 PlassClass preprocessing

1 features = zeros(len(labels), 2 ** 10).to_int () # k-mer length is 5
2

3 def update(label_idx , kmer):
4 features[label_idx][int(min(kmer , ~kmer).as_int ())] += 1
5

6 for fasta_path , label in zip(fastas , labels):
7 for seq in seqs(FASTA(fasta_path , fai=False)):
8 for kmer in seq.kmers[Kmer [5]](1):
9 update(label , kmer)

10 print("Data preprocessing done!")

Note that the original implementation of PlassClass required more than 150 lines

of Python code.

Once the classifier features are constructed, we can proceed with secret sharing—

the process of dividing the private data among the untrusted computing parties

without disclosing any private information to each party. We do so by calling Se-

qure’s secret sharing routine:

Code 2 Secret sharing

1 from sequre import secret_share
2 secret_share(features , labels)

Page 2 of 27

Sequre’s secret sharing protocol defaults to additive secret sharing [7], which

means that one needs to add all shares together to reveal the underlying data.

Each data owner executes the secret sharing routine locally to construct the shares.

The constructed shares are then distributed to the computing parties via secure

channels.

Finally, each client compiles and runs the secret sharing procedure as follows:

Code 3 Client compile and run instruction

1 $ sequre client.seq
2

3 Setting up Sequre ...
4 Compiling client.seq ...
5 Field size: 170141183460469231731687303715884105727
6 Ring size: 170141183460469231731687303715884105728
7

8 Data preprocessing done!
9 Connected at 127.0.0.1:9090!

10 Connected at 127.0.0.1:9091!
11 Connected at 127.0.0.1:9092!
12 Secret sharing done!

1.2 Configuring the network

Sequre defaults to a localhost address. However, each owner (or a client) can re-

configure network addresses for the MPC computing parties and the MPC trusted

dealer within dsl/settings.seq file in Sequre’s main directory. Note that this step

requires all data holders to agree on the same configuration—Sequre terminates the

execution if a mismatch is found between the configurations.

Also, we will assume that the servers used by computing parties are properly

deployed and configured (the specifics of deployment are discussed at the end of

this section). The following code listing shows an example configuration for a local

network of two computing parties running on the same machine:

Code 4 dsl/settings.seq—Network configuration

1 # IPs
2 TRUSTED_DEALER = ’127.0.0.1 ’ # Trusted dealer / Auxiliary party
3 COMPUTING_PARTIES = [
4 ’127.0.0.1 ’, # 1st computing party
5 ’127.0.0.1 ’ # 2nd computing party
6]

1.3 Secure training

Once the data is secretly shared, we can initialize secure training. We will use a

linear support vector machine (SVM) classifier for binary classification of sequences.

For simplicity, we will optimize regularized hinge loss via the stochastic gradient

descent algorithm for our linear SVM. The secure implementation of this procedure

in Sequre does not differ much from the straightforward linear SVM pseudocode

(see Section 4 for details):

Page 3 of 27

Code 5 Linear SVM training

1 from sequre import dot , zeros_like
2

3 mpc , (features , labels) = pool_shares ()
4

5 @sequre
6 def lsvm(mpc , X, Y, eta , epochs , l2):
7 w = zeros_like(X[0]) + 1
8 b = zeros_like(Y[0]) + 1
9

10 for i in range(epochs):
11 for feature_vector , label in zip(X, Y):
12 z = dot(mpc , feature_vector , w) - b
13 # Backward pass
14 grad_b = label * ((1 - z * label) > 0)
15 grad_w = w * l2 * 2 - feature_vector * grad_b
16 w = w - grad_w * eta
17 b = b - grad_b * eta
18

19 return w, b

In the above code, note how the lsvm procedure is decorated by a @sequre deco-

rator. This decorator signals to the compiler that the code within the function needs

to be executed in an MPC environment. Specifically, it needs to be executed using

a fixed set of protocols provided by the mpc instance (the first argument of the lsvm

procedure) that contains the instantiated MPC environment. This environment uses

the same settings that data holders used during the secure sharing.

The training procedure can be used as follows:

Code 6 PlassClass training in Sequre

1 from sequre import pool_shares
2 mpc , (features , labels) = pool_shares ()
3

4 print("Training the linear SVM.")
5

6 weights = lsvm(
7 mpc , features , labels.flatten (),
8 eta =0.01 , epochs =10, l2=0.01
9)

10 print(f"First 10 weights at CP{mpc.pid}: {weights [:10]. print(mpc)}")
11 mpc.done()

This code will gather the secretly shared data, instantiate the MPC environment

(line 2), train a binary classification model on the private data (line 6), reveal the

trained weights to the end-users (line 10), and finally notify the data holders and

the end-users that the training is complete (line 11).

Note that the above binary classification routine is actually a part of Sequre’s

standard library and can be easily used in any pipeline through a simple import

statement.

1.4 Complete MPC implementation of PlassClass

Here are the final 42 lines of code for our secure MPC version of PlassClass: 15 lines

of code for the secret sharing (client.seq) program and 27 lines for the training

(server.seq). Note that the same pipeline would be hundreds of lines of code long

if MPC-related optimizations had to be done by hand, even if the multiplication

and comparison procedures were provided by Sequre’s standard library. Finally,

Page 4 of 27

note the original non-secure PlassClass implementation includes over 300 lines of

code in Python.

Code 7 client.seq

1 from bio import seqs , Kmer , FASTA
2 from sequre import secret_share , zeros
3

4 features = zeros(len(labels), 2 ** 10).to_int () # k-mer length is 5
5

6 def update(label_idx , kmer):
7 features[label_idx][int(min(kmer , ~kmer).as_int ())] += 1
8

9 for fasta_path , label in zip(fastas , labels):
10 for seq in seqs(FASTA(fasta_path , fai=False)):
11 for kmer in seq.kmers[Kmer [5]](1):
12 update(label , kmer)
13 print("Data preprocessing done!")
14

15 secret_share(features , [labels])

Code 8 server.seq

1 from sequre import sequre , pool_shares
2 from sequre import dot , zeros_like
3

4 mpc , (features , labels) = pool_shares ()
5

6 @sequre
7 def lsvm(mpc , X, Y, eta , epochs , l2):
8 w = zeros_like(X[0]) + 1
9 b = zeros_like(Y[0]) + 1

10

11 for i in range(epochs):
12 for feature_vector , label in zip(X, Y):
13 z = dot(mpc , feature_vector , w) - b
14 # Backward pass
15 grad_b = label * ((1 - z * label) > 0)
16 grad_w = w * l2 * 2 - feature_vector * grad_b
17 w = w - grad_w * eta
18 b = b - grad_b * eta
19

20 return w, b
21

22 print("Training the linear SVM.")
23

24 weights , bias = lsvm(mpc , features , labels.flatten (),
25 eta =0.01 , epochs =10, l2 =0.01)
26 print(f"First 10 weights at CP{mpc.pid}: {weights [:10]. print(mpc)}")
27 mpc.done()

1.5 Deployment

So far, we have covered the client’s perspective of deploying the secure pipeline (i.e.,

configuring the network, secret sharing and pipeline execution).

Currently Sequre assumes that the participating computing parties are deployed

and accessible on the network. The secure pipeline (server.seq in our example)

needs to be sent to the computing parties for execution after the code review is

completed (expected to be performed by the data owner or a third-party responsible

for ensuring security compliance). Users can choose between compiling the source

Page 5 of 27

code privately ahead-of-time and deploying the executable(s) to the servers, or

deploying the source code to the servers and using just-in-time compilation for

execution. We follow the latter approach in the example bellow. The exact method

of deploying the code to the servers is currently left to the users.

Once the code is deployed, each computing party independently executes it. Upon

detecting the secure codeblocks (e.g., import sequre or a @sequre decorator), the

compiler will prepend the necessary MPC setup procedures to the codebase. This

will allow servers to set up secure communication channels between each other as

well as the pseudo-random generators needed for reducing the network bandwidth

upon the execution. Finally, after the environment setup, secure computing will

commence. The output on each computing node should roughly resemble the fol-

lowing output:

Code 9 Plassclass training—output of the first computing party

1 $ sequre server.seq 1
2

3 Setting up Sequre ...
4 Compiling server.seq ...
5 Field size: 170141183460469231731687303715884105727
6 Ring size: 170141183460469231731687303715884105728
7

8 Connected at 127.0.0.1:9001
9 Listening at 0.0.0.0:9003

10 Listening at 0.0.0.0:9091
11 Initialized MPC at CP1
12

13 Training the linear SVM.
14 Epoch: 1/10
15 Epoch: 2/10
16 Epoch: 3/10
17 Epoch: 4/10
18 Epoch: 5/10
19 Epoch: 6/10
20 Epoch: 7/10
21 Epoch: 8/10
22 Epoch: 9/10
23 Epoch: 10/10
24 First 10 weights at CP1:
25 [-7.62409 , 5.62368 , -1.00295, 0.983992 , 9.47111 , 4.6789 , 6.42332 ,

4.0334 , 1.43668 , 0.998597]

2 Secure multiparty computation primer
Secure multiparty computation (MPC) is a cryptographic framework that enables

private computation over private data owned by multiple parties without disclosing

the data to each other. There are different types of MPC frameworks depending

on the desired security model and the computational paradigm. These frameworks

involve coordination among multiple collaborating parties including data holders,

end-users supplying the analysis pipeline, and computing parties (CP s) who execute

the computation in a secure distributed manner. Note that there may be overlapping

roles, e.g. data holders can also be end-users and computing parties.

Sequre adopts an efficient MPC framework based on additive secret sharing in the

style of SPDZ [62]. Other alternatives include Shamir’s polynomial secret sharing

and garbled circuits [63, 7]. Each scheme addresses slightly different use cases and

Page 6 of 27

also different security guarantees for some. In the following, we will give a general

description of MPC based on Sequre’s framework.

The data holders initiate the computation by secret sharing the data with the

computing parties. Specifically, each data holder splits each of their private data

value x into n shares [x]1, [x]2, . . . [x]n, where n is the number of computing parties,

such that x =
∑n

i=1[x]i (modulo a predetermined modulus). Then the data holder

shares each [x]i with CPi respectively for i = {1, . . . , n}. These shares satisfy the

key property that each share individually is indistinguishable from a uniformly

random number, thus hiding the underlying secret. Here we adopt the notations

from Cho et al. [9], where [x]i denotes the secret share of x accessible only by CPi

(see Section 4). Computing parties will then execute an interactive protocol in which

they perform calculations over the respective secret-shared data, also exchanging

messages with other parties to facilitate computation over the underlying private

data. Subroutines defined for individual operations (e.g. multiplication) provide

theoretical guarantees that the messages exchanged during the computation do not

reveal any information about any party’s private data. Once the computation is

complete, the result is revealed by combining the final shares and made available

to the end-users.

The above additive secret sharing scheme maintains the two invariants: (i) no

computing party can infer any information about the private data that they do not

already have access to; and (ii) the shares are constrained to have a sum (modular

addition) equal to the secret value they collectively represent. Because of this con-

strained data representation, performing computation over the private data (which

are not directly accessible), e.g. multiplying two secret numbers, requires the use

of special operations which typically require the parties to interact and exchange

messages (see Section 4 for details). Note that in Sequre, we adopt an efficient

server-aided model of MPC, which means that one computing party plays the role

of a trusted dealer who does not receive any private data (even secret shares) and

only generates correlated random numbers in a preprocessing step to be shared with

other computing parties in order to facilitate the main protocol. While this weakens

the security model by requiring the trusted dealer not to collude with any other

party, the resulting performance gain is significant, which Sequre prioritizes.

The security of a MPC framework is typically expressed in terms of the power

of the anticipated adversary (e.g. a rogue computing party). Common models in-

clude honest-but-curious and malicious adversaries. An honest-but-curious party

will faithfully follow the computational protocol as given, but may attempt to per-

form additional analysis based on the observed data during the protocol to infer

information about the private data. A malicious party is additionally allowed to

deviate from the prescribed computational protocol, potentially sending fabricated

information in order to extract private information. Based on the type of adversary

addressed by the chosen security model, MPC operations need to be revised ac-

cordingly to provide adequate protection. In general, stronger schemes that guard

against malicious parties tend to be more computationally expensive. Sequre adopts

the honest-but-curious security model.

Some MPC frameworks support only a limited number of computing parties (e.g.

garbled circuits are for two parties). Frameworks that can be instantiated with more

Page 7 of 27

computing parties arguably offer stronger security since compromising privacy based

on secret shared data typically requires compromising all (or the majority of) the

computing parties.

Another aspect worth noting is that additive secret sharing-based frameworks

can be instantiated with different types of finite algebraic structure for the modular

arithmetic required. Two popular choices are a finite field (integers modulo a prime;

Zp) or a ring of integers with a power-of-two modulus (Z2k). Fractional numbers are

commonly represented using fixed-point numbers, incurring some level of precision

loss, which can be controlled with the choice of modulus size. Recently, Z2k rings

are becoming more widely adopted due to their superior performance on modern

computer architectures leveraging native integer operations. However, Z2k rings

support a more limited set of operations as modular inverse generally does not

exist, which some operations require. Developing efficient MPC protocols based

on different secret sharing schemes and security assumptions is an active area of

research.

2.1 Related work

The first comprehensive survey on MPC frameworks [21] measured the expres-

siveness, accessibility, level of security, and functionality of 11 different frame-

works [64, 65, 66, 67, 73, 45, 42, 68, 43, 69, 70] across three simple applications.

Today, there are more than 23 available MPC frameworks [64, 65, 66, 67, 46, 45, 42,

68, 43, 69, 70, 38, 39, 40, 41, 44, 19, 71, 72, 73, 74, 75, 76], each offering a different

MPC flavour regarding accessibility, security, functionality, or performance.

While the lack of generality, standardization, and reliability is a crucial obstacle to

their wide-use adoption [6, 21], the following frameworks come close and are as such

closest to Sequre in terms of design and features are MPyC [38] and MP-SPDZ [46];

details and comparisons are available in Section 3.4.

Other related work includes the frameworks evaluated in Section 4 [19, 42, 77].

Lastly, we should mention various applications that use MPC in practice [78, 79, 80],

especially those within the field of biomedicine [15, 8, 16, 14, 9, 10, 23, 11, 12, 13].

3 Experiment details
A typical secret-sharing-based MPC pipeline currently consists of three general

stages: (i) data holders prepare the data locally and share it with computing parties

over secure channels, (ii) computing parties combine the data from data holders and

execute the desired pipeline on top of it in a secure manner, and (iii) results are

broadcasted back to the end-users and data holders either publicly or privately,

where they are reconstructed locally after pooling the outputs from all computing

parties. Computation in the first and third stages is local and private, while the

second stage is executed in a distributed manner over multiple computing parties.

Sequre adds support for the online distributed computing of a second stage. For

local (offline) computing, it internally shifts to Seq [20] for bioinformatics-specific

computation and the general-purpose tasks.

Our benchmarks measure the following aspects for each application: (i) expres-

siveness as the number of lines needed for implementation (lines of code, LOC)

with all the comments, logging, line breaks, and blank lines removed, (ii) network

Page 8 of 27

utilization as the number of bytes exchanged between the computing parties dur-

ing the execution, and (iii) runtime as the number of seconds needed for execu-

tion. The offline pre-processing and secret-sharing is excluded from the total run-

time in all experiments. Where possible, we also keep track of the network-related

and MPC-speficific parameters, such as the number of Beaver partitions (see Sec-

tion 4.2.3), which measure the effectiveness of our network-related compile-time

optimizations. Furthermore, as mentioned in previous chapter, secret-sharing-based

MPC paradigms operate within a finite algebraic structure such as Galois field or

Z2k ring. The size of the algebraic structure directly impacts the performance and

security of the deployed protocols as the larger fields or rings increase the security

at the cost of the performance (see Section 4.3.5). Sequre defaults to 128-bit long

structures.

For each application, we ran Sequre in two modes: one with the optimizations

disabled (see Section 4 for their overview), and the other with the optimizations

enabled. To ensure fairness, all benchmarks were also conducted in a single-threaded

mode and, where possible, coerced to use the same security constraints. Finally,

the benchmarks were executed in two network environments: on a single machine,

with the network latency reduced to a minimum, and within a local-area network.

(Section 5).

3.1 Secure Genome-Wide Association Study (GWAS)

Our implementation of GWAS pipeline is a reimplementation of the existing state-

of-the-art Secure-GWAS pipeline [9].

In population stratification analysis, a specific randomized principal compo-

nent analysis (PCA) is employed for better performance [9]. It utilizes several

secure MPC variants of linear algebra routines, such as QR factorization and

eigendecomposition—all of which are fully reimplemented in Sequre and individ-

ually benchmarked (see Table S1). The specifics on the randomized PCA and the

Cochran-Armitage trend test employed in third step are available in Cho et al. [9]

(protocols 32 and 33 in the Supplementary Note 9).

We cumulatively benchmarked a set of four linear algebra routines employed in

Secure-GWAS: (i) QR factorization, (ii) tridiagonalization, (iii) eigendecomposi-

tion, and (iv) orthonormal basis calculation on top of randomly generated matrix

M ∈ R50×50. Other costly MPC arithmetic routines, such as secure householder

transformation and fixed-point square root and division, are used as the building

blocks for the benchmarked routines, and are thus benchmarked implicitly.

Table S1 shows the expressiveness, runtime, and network utilization of Sequre-

GWAS and Secure-GWAS (C/C++) implementations across the four methods. The

reimplementation of all four methods resulted in 66 lines of Sequre code—6× fewer

than the original C/C++ codebase. Further, Sequre did 1.36× fewer Beaver parti-

tions, which resulted in 1.20× reduced network bandwidth and, consequentially, the

overall runtime improvement, as Sequre is 1.34× faster than the C/C++ on a Galois

field. Note, however, that the further improvements can be made by switching from

Galois field to Z2k rings. In that case, we achieve 1.6× speedups over the C/C++

version. The majority of performance increases in this case come from the utiliza-

tion of the more efficient modulus operator (either through our own implementation

or an implementation from [81]).

Page 9 of 27

Table S1 Expressiveness, runtime, and network statistics for the original Secure-GWAS (C/C++)
implementation (bottom), together with its linear algebra subroutines (top), and their Sequre
reimplementations. GWAS was ran on top of a lung cancer dataset reduced to 3,000 individuals and
30,000 SNPs [9]. Sequre is presented with and without the compile-time optimizations enabled (i.e.
network, pattern-matching, matrix and modulus optimizations). Runtime is given in the hh:mm:ss
format. Bandwith is expressed in megabytes (MB).

Runtime Network

LOC On field On ring Bandwidth Beaver partitions

L
in
.
a
lg
. C/C++ 395 0:00:59 N/A 455 1.31 mil.

Sequre (w/o opt) 66 0:01:20 0:00:57 499 1.97 mil.
Sequre (w/ opt) 66 0:00:44 0:00:37 378 0.96 mil.

G
W
A
S C/C++ 1,142 3:21:08 N/A 10,254 2.41 mil.

Sequre (w/o opt) 117 7:09:02 2:26:07 151,309 3.61 mil.
Sequre (w/ opt) 117 2:02:22 0:53:43 9,887 2.34 mil.

Table S2 Runtimes (hh:mm::ss) and speed-up of Sequre over C/C++
baseline measured on top of a lung cancer dataset for different number of
individuals and SNPs. Note that the speed-up is preserved as the dataset
size increases.

Indiv. SNPs Secure-GWAS Sequre-GWAS Speed-up

1,000
10,000 0:20:16 0:05:07 3.95×
20,000 0:40:20 0:10:13 3.93×
30,000 1:00:42 0:14:54 4.07×

2,000
10,000 0:40:20 0:09:48 4.11×
20,000 1:14:52 0:19:41 3.80×

3,000 10,000 0:55:49 14:45 3.78×

GWAS was benchmarked on top of a genotype matrix of 3,000 individuals and

30,000 SNPs with the top five principal components being selected in the popu-

lation stratification analysis and ten covariates added to it before the trend test.

In the original codebase, the Beaver partitions were reused manually where possi-

ble. Despite that, Sequre version needed 70,225 fewer Beaver partitions than the

original codebase. As a result, the total network consumption was reduced by 4%.

S
ec

ur
e-

G
W

A
S

 (g
re

en
) a

nd
 S

eq
ur

e-
G

W
A

S
 (b

lu
e)

as
so

ci
at

io
ns

Plaintext/offline GWAS associations

Fig S1 Accuracy comparison of Secure-GWAS
(C++; green) and Sequre-GWAS (Sequre; blue)
against the offline GWAS implementation
(diagonal). The error mean is 9.3 × 10−4 for

Secure-GWAS and 8.5 × 10−4 for
Sequre-GWAS.

The overall speedup (3.7×) when com-

pared to the original implementation is

primarily due to Sequre’s modulus and

matrix optimizations (Section 4.3.4),

and shifting to Z2k ring instead of

the Galois field. Also, some portions

of the pipeline, such as the Cochran-

Armitage test, benefited more than the

rest from these optimizations: the net-

work utilization was reduced 28 times,

while the runtime was reduced 2×
when compared to the non-optimized

counterpart. The runtime improve-

ment is projected to be more pro-

nounced in the wide-area network se-

tups because our local test environ-

ments had low network latency. Fi-

nally, the overall accuracy of Sequre-GWAS is preserved or even marginally im-

proved when compared against the original C++ implementation (Figure S2). More

Page 10 of 27

0

0.1

0.2

0.1

0.2

SN
P

1

SN
P

15
,0

00

SN
P

30
,0

00

SN
P

22
,5

00

SN
P

7,
50

0

S
ec

ur
e-

G
W

A
S

 (g
re

en
) a

nd

S
eq

ur
e-

G
W

A
S

 (b
lu

e)
 a

ss
oc

ia
tio

ns

Fig S2 GWAS accuracy comparison between Secure-GWAS (C++; green) and Sequre-GWAS
(Sequre; blue) on lung cancer dataset for 30,000 SNPs. Associations accuracy (χ2 value on
y-axis) was preserved in Sequre-GWAS. The two set of results are presented in a mirrored fashion.

precisely, when compared to the offline GWAS implementation (Figure S1), the er-

ror mean (i.e., the mean of the difference in accuracy over all points) is 8.5×10−4 for

Sequre-GWAS—a marginal improvement over the 9.3×10−4 that the original C++

implementation achieves. These marginal improvements are observable regardless

of the MPC settings used: a Sequre version on rings with 20-bit field precision (the-

oretically, the least “accurate” mode as compared to the original implementation)

achieves better accuracy (8.8×10−4) than the “ideal” 30-bit C++ version on Galois

fields (9.2× 10−4).

3.2 Secure Drug-Target Interaction (DTI) Prediction

The drug-target interactions (DTI) inference is a binary classification problem that

infers whether there is an interaction between a compound and a protein or not for

a given set of compounds and proteins.

We used Sequre to reimplement a solution by Hie et al. [10], which employs

a neural network for training and inference and uses a binary encoding of the

chemical compounds and proteins as features. The simplified molecular-input line-

entry system (SMILES) representation of the chemical compounds from STITCH

and DrugBank datasets was converted to an extended connectivity fingerprint

with diameter 4 (ECFP4) via JChem Base (version 17.28.0, 2017, ChemAxon,

http://www.chemaxon.com) to obtain a binary feature vector from {0, 1}1024 for

each compound [10]. Similarly, each protein was encoded as a one-hot binary vector

corresponding to its Pfam family. There are 5,879 unique Pfam families for the pro-

tein identifiers in the STITCH dataset and 1,129 in the DrugBank dataset, yielding

the feature vectors of the same respective lengths. The two representations cannot

be combined (i.e. one and only one representation is leveraged as a protein feature

in our use case). Then, the corresponding feature vectors of each drug-target pair

were concatenated and fed into an inference model: a neural network with config-

urable number of layers and neurons. Rectified linear units (ReLUs) were used as

activation functions and a hinge loss was used as a target loss function. Finally,

a mini-batch gradient descent was employed over a predefined number of epochs

(further details are available in the supplementary notes of Hie et al. [10]).

Page 11 of 27

Our test case used the protein identifiers from the STITCH dataset, resulting

in input feature vectors from {0, 1}6,903. It also employed a neural network with

one hidden layer of a hundred neurons with a zero dropout and 50 epochs of mini-

batch gradient descent. We compared the original C/C++ implementation with our

Sequre reimplementation, as well as the SyMPC/PySyft reimplementation of the

same pipeline [19]. Table S3 shows the improvements of the Sequre version when

compared to the C/C++ baseline and SyMPC/PySyft. As can be observed, the

improvement trends and the breakdown of the improvement factors are similar to

those observed in Sequre-GWAS in the previous subsection.

Table S3 Expressiveness, runtime, and network statistics for the drug-target inference (DTI)
implementations in C/C++, PySyft, and Sequre. Sequre is presented with and without the
compile-time optimizations enabled (i.e. network, pattern-matching, matrix and modulus
optimizations). Runtime is given in the hh:mm:ss format. Bandwith is expressed in megabytes (MB).

Runtime Network

LOC On field On ring Bandwidth Beaver part. Accuracy

C/C++ 274 0:09:18 N/A 3,436 1.04 mil. 0.90± 0.05
SyMPC/PySyft 117 N/A 0:04:40 1,816 N/A 0.90± 0.05
Sequre (w/o opt) 117 0:10:54 0:02:46 2,846 1.04 mil. 0.90± 0.05
Sequre (w/ opt) 117 0:03:59 0:02:16 2,651 1.04 mil. 0.90± 0.05

We observed that SyMPC/PySyfy has better network utilization than Sequre

(Table S3). This is due to the fact that SyMPC uses 64-bit data types for MPC

operations as compared to Sequre’s default of 128 bits that are twice as large.

However, 64-bit data types offer lower statistical security. Also, despite using slower

datatypes (both in terms of CPU and network use), Sequre is still nearly two times

faster than SyMPC. In terms of accuracy—calculated as the sum of true positive

and true negative results divided by the total number of test cases—we observed

the same trends in each framework. Depending on the initial random weights, the

accuracy in each framework varied from 0.85 to 0.95. Finally, we would like to note

that we were unable to run any version of SyMPC or PySyft in a full network (LAN)

setup; all versions at the time of writing offer only a proof-of-concept setup that

can only be run on a single machine.

3.3 Secure Metagenomic Binning

Metagenomic binning is the classification of the present microbiomes in a sequenced

sample. This is different from taxonomic profiling [34], which measures the relative

abundance of microbiomes in metagenome sample, and for which a secure solution

already exists [82]. We used Sequre to, for the first time, implement secure variants

of two existing classification pipelines: Ganon [22] and Opal [23].

Ganon uses k-mer index in the form of an interleaved Bloom filter (IBF) [35] for

read classification. For each read, its k-mers are queried against the index, and the

read is assigned to the bin with the highest count of matching k-mers. Reads with the

insufficient matches are filtered out via the k-mer counting (q-gram) lemma [83]. As

the index is public during the inference, index building is done through the original

offline algorithm.

An IBF is a matrix whose columns correspond to the Bloom filters for each avail-

able bin. That is, the i-th row of an IBF corresponds to the vector of i-th entries

of the available Bloom filters. This design allows more efficient joint queries of the

Page 12 of 27

index as follows. For querying a k-mer t, for each available hash function hi Ganon

computes its hash ti = hi(t) and obtains the ti-th row of the IBF matrix. Then

it performs an element-wise logical and between the obtained rows to get the final

result—the bit-vector in which a non-zero value at position j means that t belongs

to a j-th bin in the index. Our secure implementation follows the same procedure

with minor differences over the original implementation. First, the IBF is encoded

as a list of integers, such that j-th element of the i-th row in the original IBF cor-

responds to the j-th bit of the i-th integer in the new IBF. The hashes hi(t) are

computed for each k-mer t in offline fashion and then secretly shared between the

computing nodes. This enables us to query the encoded IBF directly via an oblivious

array getter (Section 4.2) in order to access the secretly shared value of IBF[hi(t)]

for each secretly shared hash value. Finally, to compute the bit-wise logical and

between the IBF[hi(t)], we use the secure bit-decomposition protocol [87]—a part

of the Sequre standard library—together with the secure element-wise multiplica-

tion of the bit-decomposed values. The result is a secretly shared bit-vector that

contains the same information as its offline counterpart, i.e. the list of bins that

contain the target k-mer.

We evaluated Sequre-Ganon on the sample dataset from Opal [23] that contains

10 bacterial metagenomes. We built an index from these metagenomes. This dataset

also comes with 10,000 microbiome labeled reads of length 65 that can be used for

evaluation classification. The size of each Bloom filter in the index was 4,801,571

with the “technical number” of bins equal to 64 (note that the actual number

of bins—10 in our case—differs from the technical number; see [22] for details).

The k-mer size k was set to 19, and the number of hash functions in the Bloom

filter was 4. Expressiveness, runtime, network and accuracy details are provided in

Table S4. Note that secret-sharing the input data takes additional 47 hours in a

näıve implementation of Ganon that we use at the moment.

The second pipeline—Opal [23]—encodes reads as a features through Gallager

encoding [37] and uses support vector machine (SVM) classifier from the Vowpal-

Wabbit library [84] for training and classification. Since the exact reimplementation

of Vowpal-Wabbit and its various parameters is outside of the scope of this work,

and since the performance of different classification algorithms is orthogonal to the

problem itself, we instead used a stochastic gradient descent based binary classifi-

cation with hinge loss and L2 regularizer—built in 13 lines of code—as a variant

of a linear SVM. We also modified Opal to use the same binary classification algo-

rithm for fair comparison. For the sake of completeness, we also provide detailed

comparisons with the original Vowpal-Wabbit implementation in Table S4. It is

important to note that, unlike Ganon, Opal trains the classification model from the

reads themselves, and not from the reference genomes. Thus, different coverage of

the training set yields different classification model. Thus we evaluated Sequre-Opal

with two training sets: 0.1×-deep and 15×-deep training sets simulated from the 10

reference metagenomes without error.

Table S4 shows the improvements of Sequre-based implementations over the their

non-optimized counterparts. For the reference, the performance and accuracy of the

original non-secure implementations is also provided. In case of Sequre-Ganon, the

accuracy remains the same as the algorithms are identical between the non-secure

Page 13 of 27

and secure implementation. The accuracy is measured as the percentage of correct

matches within the test set. The same holds for Sequre-Opal when compared to

the Opal with linear SVM. However, when compared to Opal that uses Vowpal-

Wabbit for classification, the accuracy varies and is either 3× better or 1.4× worse,

depending on the training depth of coverage. (We also note that adjusting the

Vowpal-Wabbit’s hyperparameters also produces changes of the same magnitude in

the Opal’s performance; thus, the question of “the best” model for the purposes of

Opal classification needs further study.)

Table S4 Expressiveness, runtime, network and accuracy stats for secure metagenomic binning
implementations on top of 10 microbiomes. Opal was evaluated in two offline setups: the one based
on Vowpal Wabbit (VWabbit) and the other based on custom Python implementation of linear SVM
(PythonSVM). Ganon’s offline implementation was done is Seq language. Sequre is presented with
and without the compile-time optimizations enabled (i.e. network, pattern-matching, matrix and
modulus optimizations). Runtime is given in hh:mm:ss format. Online bandwith is expressed in MB.
Beaver partitions are expressed in millions.

LOC Runtime (s) Bandwidth Beaver part. Accuracy

O
p
a
l[
1
] VWabbit 264 0:00:09 N/A N/A 0.102

PythonSVM 150 0:00:04 N/A N/A 0.316
Sequre (w/o opt) 113 0:01:16 370 2.68 0.316
Sequre (w/ opt) 113 0:01:08 229 1.93 0.316

O
p
a
l[
2
] VWabbit 264 0:09:07 N/A N/A 0.760

PythonSVM 150 0:09:44 N/A N/A 0.540
Sequre (w/o opt) 113 3:36:46 55,035 402.22 0.540
Sequre (w/ opt) 113 3:07:05 33,941 290.49 0.540

G
a
n
o
n Seq-lang 80 0:00:07 N/A N/A 0.872

Sequre (w/o opt) 80 42:30:18 96,141 55.88 0.872
Sequre (w/ opt) 80 18:29:23 81,186 55.72 0.872

[a]Opal with 0.1× coverage simulated reads from 10 microbiomes.
[b]Opal with 15× coverage simulated reads from 10 microbiomes.

3.4 Sequre and other MPC frameworks

We provide a cross-comparison between Sequre and ten mature MPC frameworks

included in the recent survey of existing MPC compilers and frameworks [21] (note

that, while there are more available frameworks available, most of them are still in

the early prototype stage and cannot be successfully run in practice [6, 21]). The

following benchmarks were adopted from this survey [21] (Table 3.4) and slightly

altered for better scalability:

• mult3: a simple multiplication and addition of three numbers;

• innerprod: an inner product between two vectors containing 100,000 ele-

ments; and

• xtabs: a cross table aggregation (joining the two tables by key attributes and

computing the sum of the values).

Each evaluated framework offers some novelty concerning the security, expressive-

ness or performance. Four of these frameworks involved operate in different MPC

setups (e.g., garbled circuits) than Sequre, while the other six operate in the same

(i.e., an honest-but-curious security model based on additive secret sharing scheme)

or less secure MPC setups (e.g., an honest-majority replicated secret sharing with

pseudo-random zero sharing) [46, 85]. The secret-sharing type frameworks can op-

erate in different setups, either using 128-bit or 64-bit long integers, or operating

within Zp field or Z2k ring. Thus we evaluated Sequre in the 128-bit setup, where it

Page 14 of 27

was still faster than the 64-bit setups used by the other frameworks (see Table 3.4).

We also note that, except for ABY, each framework utilizes pseudo-random gener-

ators with shared seeds to reduce the communication rounds between computing

parties, just like Sequre. Additionally, Sequre employs a trusted dealer—a non-

colluding auxiliary party that generates and distributes correlated randomness via

secret sharing to be used in the main protocol (e.g., for the construction of Beaver

partitions). We found that other frameworks, excluding Jiff, do not employ such an

auxiliary party. However, a similar scheme is employed in Sharemind; it is based

on a three-party setting with at most one malicious party, and only 2 out of 3

parties provide private input data for the computation. Furthermore, several recent

frameworks (e.g., PySyft, AriaNN), though not included in the benchmark survey

reproduced in this analysis, adopt the setting with a trusted dealer for performance;

see our DTI prediction results for a comparison between Sequre and PySyft. Here

is the overview of the evaluated frameworks and their results:

ABY is a two-party MPC framework embedded in C/C++ with semi-honest com-

puting parties. It provides similar security guarantees as Sequre, and unlike Se-

qure, it supports garbled circuits and conversion between them and other secret

sharing protocols. ABY is considered faster, but also less expressive framework.

Compared to Sequre, ABY is up to 6× less expressive on average in the selected

benchmarks. It is also slower than Sequre: from 4× slower (xtabs) to 1,700×
slower (mult3).

EMP is a MPC framework based on garbled circuits and embedded in C/C++.

Sequre is roughly 6× more expressive on average. It is approximately 21× faster

in mult3 and 276× faster than EMP in innerprod. However, EMP is 5.5× faster

than Sequre in xtabs due to the more advanced implementation of oblivious data

structures.

Frigate is a C-like domain-specific language for MPC based on binary circuits.

Unfortunately, we were unable to successfully run the benchmarks with the

instructions provided by the survey. Nevertheless, Sequre needed on average

4× fewer lines of code for the three benchmarks.

Jiff is a secret sharing and honest-majority-based MPC framework implemented in

JavaScript for use in web applications. It required 4× more lines of code than

Sequre to implement the three benchmarks. Sequre was also 12× faster in mult3.

Unfortunately, the code in the survey was obsolete and could not be evaluated

for the last two benchmarks (innerprod and xtabs).

MP-SPDZ is an MPC framework focused on providing support for various MPC

variants. It comes with the a custom compiler framework akin to Sequre that in-

cludes a novel Python-like domain-specific language. The source code is compiled

to bytecode and executed on a custom virtual machine. However, the existing

compiler pipeline is still in a proof-of-concept shape. It is implemented in Python,

and it employs a set of static compile-time optimizations, such as loop unrolling

and software prefetching to reduce network latency. We benchmarked an honest-

majority non-malicious replicated secret sharing variant of MPC, optimized via

pseudo-random zero secret sharing [86], in MP-SPDZ—one of the fastest vari-

ants supported by MP-SPDZ. This variant also leverages the pseudo-random

generators to reduce the network communication on secret sharing. Computing

Page 15 of 27

on rings is relatively efficient in MP-SPDZ with the 2.5× speed-up over Sequre in

the xtabs. However, it is still up to 9× slower than Sequre in the first two (mult3

and innerprod) benchmarks, and 1.4× slower on field in the third benchmark,

despite using a weaker and generally faster MPC scheme.

MPyC is a Python library for MPC based on Shamir’s secret sharing with semi-

honest computing parties. Being a Python library, its syntax and semantic is

most similar to that of Sequre; however, it does not posses compile-time op-

timization capabilities. It has the same code complexity in mult3 and xtabs

benchmarks. Still, it required 2× more lines to implement the innerprod bench-

mark. Performance-wise, it was 9× and 14× slower in the mult3 and xtabs

benchmark respectively, and up to 250× slower when computing the inner prod-

uct in the innerprod benchmark.

Obliv-C is a garbled-circuits-based MPC with semi-honest computing parties em-

bedded in C. Sequre is up to 1000× faster in the mult3 and more than 1100×
faster in innerprod benchmarks. In xtabs, despite leveraging a dynamic pro-

gramming approach (unlike Sequre and other frameworks that use a straightfor-

ward brute-force algorithm), it was 2× slower than Sequre (and needed nearly

10× larger codebase for its implementation).

Oblivm is a garbled-circuits-based MPC with semi-honest computing parties em-

bedded in Java. Sequre was significantly faster: from 30× in xtabs and 1,600×
in mult3, to 32,900× in innerprod.

Picco is an MPC framework based on Shamir’s secret sharing with semi-honest

adversaries and implemented in C. While Picco was only 50% less expressive

than Sequre, we were unable to run the these benchmarks in practice.

Sharemind is an additive three-party MPC framework based on secret sharing

with semi-honest adversaries and an honest majority setup. Sharemind pro-

vides its custom domain-specific language for MPC operations. The full ver-

sion of the framework is not publicly available. However, prototyping the sim-

ple MPC programs is enabled through the use of their free SDK (https:

//sharemind-sdk.github.io/). It should be noted that Sharemind, like ABY

and Jiff, offers the security model and the MPC variant most similar to that

of Sequre. However, unlike Sequre, Sharemind supports only 64-bit Z2k rings.

Nevertheless, Sequre was faster in all three benchmarks (28× in mult3, 1.33×
in innerprod, and 50× faster in xtabs) while maintaining the same level of

expressiveness.

3.5 Local-area network environment

So far, all the benchmarks were evaluated in a simulated network environment (with

AF UNIX sockets) on a single machine. We also evaluated the four main applications

(GWAS, DTI, Opal, and Ganon) in a local-area network environment where the

role of each computing party was performed by a different machine.

4 Implementation details
4.1 Notation

The MPC notation in our work is adopted from Cho et al. [9]. While Sequre supports

an arbitrary number of computing parties (CP s) and data holders (SP s, also known

Page 16 of 27

Table S5 A cross-comparison between Sequre and ten state-of-the-art MPC frameworks. Frameworks
were benchmarked for expressiveness (in terms of lines of code (LOC)) and runtime over multiple
MPC setups. Some variants are not supported (marked with ⊥), while some could not be evaluated
(marked with N/B) for the provided code samples.

Runtime (ms)

Framework LOC 128bit Zp 128bit Z2k 64bit Zp 64bit Z2k GC[1]

m
u
l
t
3

ABY 20 ⊥ 170 ⊥ 170 ⊥
EMP 25 ⊥ ⊥ ⊥ ⊥ 2.1
Frigate[2] 19 ⊥ ⊥ ⊥ ⊥ N/B
Jiff 20 ⊥ ⊥ 1.2 ⊥ ⊥
MP-SPDZ 4 1.0 0.9 0.7 0.6 ⊥
MPyC 8 ⊥ ⊥ 0.9 ⊥ ⊥
Obliv-C 11 ⊥ ⊥ ⊥ ⊥ 100
Oblivm 10 ⊥ ⊥ ⊥ ⊥ 160
Picco[2] 6 N/B N/B N/B N/B ⊥
Sharemind 4 ⊥ ⊥ ⊥ 2.8 ⊥
Sequre 4 0.2 0.1 – – ⊥

i
n
n
e
r
p
r
o
d

ABY 30 ⊥ 520 ⊥ 900 ⊥
EMP 28 ⊥ ⊥ ⊥ ⊥ 4,700
Frigate[2] 18 ⊥ ⊥ ⊥ ⊥ N/B
Jiff[2] 20 ⊥ ⊥ N/B ⊥ ⊥
MP-SPDZ 7 78 45 77 44 ⊥
MPyC 7 ⊥ ⊥ 4,200 ⊥ ⊥
Obliv-C 13 ⊥ ⊥ ⊥ ⊥ 19,000
Oblivm 21 ⊥ ⊥ ⊥ ⊥ 560,000
Picco[2] 6 N/B N/B N/B N/B ⊥
Sharemind 4 ⊥ ⊥ ⊥ 20 ⊥
Sequre 4 24 17 – – ⊥

x
t
a
b
s

ABY 50 ⊥ 210 ⊥ 200 ⊥
EMP 25 ⊥ ⊥ ⊥ ⊥ 9
Frigate[2] 45 ⊥ ⊥ ⊥ ⊥ N/B
Jiff[2] 25 ⊥ ⊥ N/B ⊥ ⊥
MP-SPDZ 24 70 20 40 15 ⊥
MPyC 9 ⊥ ⊥ 700 ⊥ ⊥
Obliv-C[3] 140 ⊥ ⊥ ⊥ ⊥ 100
Oblivm 44 ⊥ ⊥ ⊥ ⊥ 1,500
Picco[2] 19 N/B N/B N/B N/B ⊥
Sharemind 15 ⊥ ⊥ ⊥ 2,500 ⊥
Sequre 9 50 95 – – ⊥

[a]GC: garbled circuits.
[b]Obsolete, or unable to run.
[c]Unlike other solutions that employ brute-force strategy, Obliv-C uses a dynamic programming
approach.

as study participants), we will here assume without the loss of generality to have

only three computing parties (CP0, CP1, and CP2), or to be more precise, two

standard computing parties (CP1, CP2) and an auxiliary computing party (CP0;

also known as trusted dealer). We will denote each party’s portions of the data with

the angled brackets: ⟨a, b, c, d⟩ means that a, b, c, and d are accessible by CP1, CP2,

CP0, and SP , respectively. We will adhere to a convention that ⟨a, b⟩ ≡ ⟨a, b,⊥,⊥⟩
and ⟨a, b, c⟩ ≡ ⟨a, b, c,⊥⟩, where ⊥ denotes an empty slot. Further, a pair of secret

shares ⟨x1, x2⟩ of x will be often shortened as [x]. Also, unless explicitly noted, each

line of pseudocode is executed on all computing parties in parallel. Lastly, unless

otherwise noted, each routine operates on top of an algebraic structure S, which

can interchangeably be the Galois field Zp or a finite Z2k ring.

Page 17 of 27

Table S6 Runtime and network stats for secure GWAS, secure DTI, secure Opal, and secure Ganon.
Sequre is presented with and without the compile-time optimizations enabled (i.e. network,
pattern-matching, matrix and modulus optimizations). Note that we were unable to set-up and run
SyMPC/PySyft on a LAN network. Runtime is given in hh:mm:ss format. Online bandwidth is
expressed in MB. Beaver partitions are expressed in millions.

Runtime Bandwidth Beaver partitions

G
W
A
S C/C++ 2:43:10 10,254 2.41

Sequre (w/o opt) 6:46:46 151,309 3.61
Sequre (w/ opt) 0:48:40 9,886 2.34

D
T
I

C/C++ 0:10:16 683 1.04
SyMPC (w/o opt) N/A N/A N/A
Sequre (w/o opt) 0:13:17 567 1.04
Sequre (w/ opt) 0:06:08 510 1.04

O
p
a
l Sequre (w/o opt) 19:26:40 55,035 402.21

Sequre (w/ opt) 15:54:22 33,941 290.49

G
a
n
. Sequre (w/o opt) 44:39:08 96,141 55.88

Sequre (w/ opt) 20:30:52 81,186 55.72

4.2 Sequre’s standard library

This section provides an overview of the MPC routines included in Sequre’s stan-

dard library. Most of the procedures are adopted from external sources such as Cho

et al. [9]; for more details, please consult the appropriate literature and the accom-

panying supplementary materials. For procedures that have been newly developed

for Sequre, like our variant of linear classifier, an MPC pseudocode of the procedure

together with the Sequre code listing is provided below.

Sequre’s standard library includes 24 algebraic protocols from Cho et al. [9]: se-

cret sharing and revealing routines, private and public addition and multiplication,

private fixed-point arithmetic, private division and square root calculation, private

exponentiation and polynomial evaluation, private and public bitwise operators, pri-

vate and public comparison operators, and private linear algebra routines (house-

holder transformation, QR decomposition, tridiagonalization, eigendecomposition

and orthonormal basis calculation). It also includes näıve oblivious array getter [36]

and oblivious dictionary with private indexing, private bit decomposition and bit-

wise addition [87]), and private linear support vector machine.

The implementation details for all procedures can be found in the referenced

sources. However, because the core concepts, such as basic secure arithmetic, are

necessary for understanding Sequre’s optimization procedures later on, we will pro-

vide a short overview below.

4.2.1 Revealing

The exact procedure for secretly sharing private data between the multiple com-

puting nodes is described in Section 2. The procedure for revealing the secretly

shared value in additive secret-sharing schemes follows the opposite steps: a value

is revealed by adding up the secretly shared values together. In other words,

x = [x]1 + [x]2.

4.2.2 Addition

Adding the two numbers in additive secret-sharing-based schemes is straightforward

procedure. Namely, for the sum of two secret-shared numbers [x] and [y] we just add

the respective shares together: [x+ y] = ⟨[x]1+[y]1, [x]2+[y]2⟩. Note that revealing

Page 18 of 27

the obtained shares reveals the value of x+y. However, when adding a public value

a to a secret-shared number it suffices to add it to one and only one of the shares:

[x] + a = ⟨[x]1 + a, [x]2⟩. For detailed MPC pseudocodes for the procedures above,

see protocols 3 and 4 in Cho et al. [9].

4.2.3 Multiplication and Beaver partitions

Multiplying a secret-shared number [x] with a public number a is straightforward in

an additive secret sharing scheme. Namely, to compute the shares of such product,

it suffices to multiply each share of x with the public number: [ax] = ⟨a[x]1, a[x]2⟩.
On the other hand, multiplying the two secret-shared values is not as easy. Note

that if the shares at each computing party are simply multiplied together we obtain

incorrect result: [x]1[y]1+[x]2[y]2 ̸= xy. This problem can be avoided by utilization

of the Beaver multiplication triplets [57]. In this method, in order to compute the

shares of a product [xy] we first sample and secretly share the three random numbers

a ∈ S, b ∈ S, and c = ab ∈ S and then reveal the value of x− a and y− b to finally

compute ⟨(x−a)(y− b)+(x−a)[b]+ (y− b)[a]+ [c]⟩. Revealing the last value yields

(x− a)(y − b) + (x− a)b+ (y − b)a+ ab which is equal to xy.

Sequre, however, implements an improved variant of Beaver triplets multiplication

that introduces a concept of Beaver partitions and leverages a trusted dealer CP0

and the streams of pseudo-random generators to reduce the online communication

between the computing parties. Specifically, Beaver partitions of a secret-shared

number [x] are defined as the values ⟨x − rx, x − rx⟩ and ⟨[rx]1, [rx]2, rx⟩, where
rx ∈ S is randomly sampled by a trusted dealer and secretly shared to the computing

parties. To multiply the two secret-shared numbers [x] and [y], it suffices to multiply

their Beaver partitions in a cross-over fashion: [xy] = (x − rx)[ry] + (y − ry)[rx] +

[rxry]+(x−rx)(y−ry), where (x−rx)(y−ry) is added publicly and rxry is computed

at CP0 and secretly shared to other computing parties. For details, see protocols 6

and 7, as well as supplementary notes 3 and 7, in Cho et al. [9].

4.2.4 Generalized polynomial evaluation

Sequre implements a generalized polynomial evaluation routine [9] for evaluating

the generalized polynomial form

Pm(x1, x2, . . . , xn) =

m∑
i=1

ci

n∏
j=1

x
pij

j , ci, xj , pij ∈ R

with the minimal number of the online communication rounds. For evaluating this

polynomial, it suffices to compute the Beaver partitions xj − rj , rj for each variable

xj only once and then compute the expansion of the polynomial terms x
pij

j =

((xj − rj) + rj)
pij offline—within each computing party—in order to evaluate the

polynomial. However, the expansion of the offline terms is exponential with respect

to the polynomial degree and can be impractical if the polynomial degree is too high.

In this case, a simple series of traditional multiplication routines often performs

better.

Sequre supports a generalized polynomial approach but hides it from the end-

user. It is only utilized within the network optimizations (Section 4.3.2) where the

infeasible expansion of the terms can be detected and avoided at a compile-time.

Page 19 of 27

4.2.5 Oblivious data structures

Data structures with secret indexing—also known as oblivious data structures—

enable secret indexing of the secret data, where both the data and the indices by

which the data is accessed are secretly shared. For example, the traditional secret-

shared array has its values shared between the computing parties, but the indexing

of the array is still public (i.e. we can still access the i-th element of a secretly shared

array [x] as [x][i] at each computing party). In an oblivious array, the index i is also

secretly shared, so there is a need to allow array access via the [i] at each party

(i.e. [x][[i]]). Sequre implements a näıve oblivious array getter [36]. Additionally, it

supports a private dictionary with secret indexing, where both the keys and values

of the dictionary can be private. It also extends a table lookup routine from Cho et

al. [9] to implement a secure getter for a private dictionary.

Algorithm 1 Oblivious dictionary construction

Input: D = {ki → vi}n1 : a public dictionary given as a key-value mapping

Output: [D] ∈ Sn: a private dictionary represented as a private array of Lagrange

coefficients
1: c1, c2, . . . , cn ← LagrangeInterpolation(D)
2: [D]← SecretShare(c1, c2, . . . , cn)

Algorithm 2 Oblivious dictionary getter

Input: [D] ∈ Sn: a private dictionary represented as a private array of Lagrange

coefficients

[k] ∈ S: a Secret-shared key to query the dictionary with

Output: [v] ∈ S: a secret-shared value that corresponds to k in D

1: [k2], . . . , [kn−1]← Powers([k], n− 1)
2: [v]← [D] · (1, [k], [k2], . . . , [kn−1])

Note that this approach makes the implementation of the dictionary setter diffi-

cult, because we have to re-construct the dictionary whenever a new key-value pair

is added to it.

4.2.6 Linear support vector machines (SVM)

The linear SVM from Section 1 is provided in Sequre’s standard library. As men-

tioned there, it is a binary classification algorithm that uses stochastic gradient

descent to minimize the regularized Hinge loss. To be more specific, we minimize

the loss l ∈ R for L : Rn → R such that

l = L(w, b) = λ∥w∥2 +max(0, 1− t(wT · x− b)))

where w ∈ Rn, x ∈ Rn, b ∈ R, and and t ∈ {0, 1} are respectively the regression

weights vector, input feature vector, the bias, and the truth value.

We need to minimize l with respect to w and b via stochastic gradient descent.

Thus we need to iteratively translate w and b by a predefined step size η ∈ R in

the negative direction of a gradient of L(w, b) as follows:

wk+1 = wk − η∇wk
L(wk, b)

Page 20 of 27

bk+1 = bk − η∇bkL(wk, b)

where w0 and b0 can be picked at random. Note that

∇wL(w, b) = 2λw − t ·
[
(1− t(wT · x− b)) > 0

]
· x

∇bL(w, b) = t ·
[
(1− t(wT · x− b)) > 0

]
.

The pseudocode for the described procedure is provided in Algorithm 3. The

secure MPC variant of the same algorithm is provided in Algorithm 4.

Algorithm 3 Linear SVM training

Input:

features ∈ Rm×n: features matrix

labels ∈ Rm: list of labels

eta(η) ∈ R: step size

epochs ∈ Z: number of epochs

lambda(λ) ∈ R: L2 regularization factor

Output:

w ∈ Rn and b ∈ R: a weights vector and a bias that minimize the Hinge loss of the

classifier output
1: w← (1, 1, . . . 1) ∈ Rn

2: b← 1
3: for i ∈ 0, epochs do
4: for x ∈ features ∧ t ∈ labels do
5: y ← w · x− b
6: w← w · (1− 2λη) + η · t · ((1− t · y) > 0) · x
7: b← b− η · t · ((1− t · y) > 0)
8: end for
9: end for

The Sequre source code does not differ much from Algorithm 3:

Code 10 Linear SVM training in Sequre

1 from sequre import dot , zeros_like
2

3 mpc , (features , labels) = pool_shares ()
4

5 @sequre
6 def lsvm(mpc , X, Y, eta , epochs , l2):
7 w = zeros_like(X[0]) + 1
8 b = zeros_like(Y[0]) + 1
9

10 for i in range(epochs):
11 for feature_vector , label in zip(X, Y):
12 z = dot(mpc , feature_vector , w) - b
13 # Backward pass
14 grad_b = label * ((1 - z * label) > 0)
15 grad_w = w * l2 * 2 - feature_vector * grad_b
16 w = w - grad_w * eta
17 b = b - grad_b * eta
18

19 return w, b

The inference can be done in a single forward pass as follows:

Page 21 of 27

Algorithm 4 Linear SVM training in MPC

Input:

[features] ∈ Zm×n
p - secret shared features matrix

[labels] ∈ Zm
p - secret shared list of labels

eta ∈ Zp - public step size

epochs ∈ Z - public number of epochs

lambda ∈ Zp - L2 regularization factor

Output:

[w] ∈ Zn
p and [b] ∈ Zp - secret shared weights vector and a bias that minimize the

Hinge loss of the classifier output
1: [w]← secret share((1, 1, . . . , 1))
2: [b]← secret share(1)

3: for i ∈ 0, epochs do
4: for [x] ∈ [features] ∧ [t] ∈ [labels] do
5: [y]← beaver dot product([w], [x])
6: [y]← truncate([y])− b
7: [c]← η · [t]
8: [c]← truncate([c])
9: [c1]← (1− y)
10: [s]← is positive(c1)
11: [c]← [c] · [s]
12: [v]← beaver multiply([x], [c])
13: [v]← truncate([v])
14: [w]← [w] · (1− 2λη) + [v]
15: [b]← [b]− [c]
16: end for
17: end for

Code 11 Linear SVM inference in Sequre

1 from sequre import dot
2

3 @sequre
4 def lsvm_predict(mpc , x, w, b):
5 return dot(mpc , x, w) - b

4.2.7 Shared tensor and supported operations

Sequre operates on top of tensors of arbitrary dimension. The SharedTensor class

that implements them stores the secret additive share and auxiliary data, such as

Beaver partitions, as n-dimensional arrays at each computing party. Furthermore,

the compile-time optimizations apply only to SharedTensor expressions. Table S7

presents all secure operations supported for SharedTensor operands.

Additionally, secure protocols that are enabled on top of arbitrary n-dimensional

arrays but not yet added to the SharedTensor are presented in Table S8. Note that

calling these protocols manually on top of a SharedTensor is seamless as they can

be called directly on top of the share attribute of the class.

4.3 Compiler optimizations

4.3.1 Beaver caching optimization

As mentioned in Section 4.2.3, our variant of secure multiplication [x][y] necessitates

obtaining Beaver partitions (x − r1, [r1]) and (y − r2, [r2]) beforehand. Note that

the parts of Beaver partitions are known to all computing parties, while the actual

Page 22 of 27

Table S7 Supported SharedTesor operations in Sequre. x and y are shared tensors. Some operations
are supported only for 2-dimensional (matrices) or 1-dimensional (vectors) shared tensors.

Secure operation Example usage

Element-wise addition / subtraction x + y; x - y
Element-wise multiplication x * y
Element-wise exponentiation x ** c (c is a constant)
Element-wise division x / y
Element-wise comparisons x == y; x != y; x > y; x < y; x >= y; x <= y

Element-wise equare root sqrt(x)
Dot product / Matrix multiplication dot(x, y); matmul(x, y)
Element-wise absolute value abs(x)
Max/min element (vector only) max(x); min(x)
Argmax/argmin element (vector only) argmax(x); argmin(x)

Householder transformation (matrix only) householder(x)
QR factorization (matrix only) qr fact square(x)
Tridiagonalization (matrix only) tridiag(x)
Eigen decomposition (matrix only) eigen decomp(x)
Orthonormal basis (matrix only) orthonormal basis(x)

Element-wise bit decomposition bit decomposition(x, . . .)
Element-wise bit-wise addition bit add(x, y)

Table S8 Additional Sequre operations supported on top of raw n-dimensional arrays but not the
shared tensors.

Secure operation Method path

Oblivious getter sequre.collections.oblivious get
Polynomial evaluation sequre.polynomial.evaluate poly

values of x and y remain hidden as [r1] ∈ S and [r2] ∈ S are randomly generated

and secret-shared between the parties.

It suffices to compute the Beaver partitions only once for each unique secret

share (i.e., a variable) and intermediate product within an arithmetic expression—

regardless of the number of the occurrences of each variable—and then reuse the

partitions in the subsequent multiplications. This simple approach yields a non-

marginal network performance improvement [9]. However, the optimal reuse strat-

egy requires MPC designers need to carefully inspect the code and manually parti-

tion each variable before reusing the partitions throughout the codebase. The man-

ual inspection often fails to uncover every reuse opportunity within the codebase

due to the cumbersome and convoluted nature of MPC routines. Sequre automates

this process by statically analyzing the binary expression tree of each arithmetic

expression within each independent code block, and by extracting all multiplication

operators from these expression. The variables within expressions are partitioned

upstream immediately after their instantiating. Each partitioned variable will then

carry its partitions throughout expressions during the runtime, and will either prop-

agate them to the result in case it is used for addition, or utilize them in case of

multiplication. Partitions will be invalidated if a new value is assigned to the par-

titioned variable (e.g., a = 5 will invalidate all partitions of the variable a), and

the variable will be re-partitioned if it is utilized as a multiplicative factor in the

subsequent expressions. Note that a similar functionality could have been achieved

by just partitioning and caching each variable’s partition immediately before each

multiplication. However, such simple strategy would fail to optimize the following

edge case:

Page 23 of 27

Code 12 Beaver caching edge case

1 ...
2 a = b * c
3 # a should be immediately partitioned here
4 d = a + 1
5 e = a + 2
6 # Partitioning e and d here could have been avoided
7 # if a was partitioned immediately after it was instantiated above
8 f = e * d
9 ...

10 x = m * n
11 # However , x should not be partitioned here as it would be unnecessary
12 return x

Constructing the binary expression tree and its subsequent static compile-time

analysis is implemented a Seq’s Intermediate Representation (IR) [47] pass in over

500 lines of code. The propagation and utilization of partitions during runtime is

implemented directly in Seq.

4.3.2 Polynomial optimization

Generalized polynomial evaluation (Section 4.2.4) securely evaluates the polynomi-

als of the form

Pm(x1, x2, . . . , xn) =

m∑
i=1

ci

n∏
j=1

x
pij

j , ci, xj , pij ∈ R (1)

with the minimal network overhead. This procedure only calculates the Beaver

partitions of the polynomial variables by partitioning each variable only once per

polynomial evaluation. No intermediate product requires further partitioning. The

polynomial terms are expanded and computed offline, and as such require no addi-

tional communication between the computing parties.

To capitalize on this, Sequre will track and transform the series of arithmetic

expressions in each code block into their polynomial form and then utilize the

polynomial evaluation routine from the standard library to evaluate them. Akin

to the Beaver caching analysis, Sequre constructs a binary expression tree on top

of a series of expressions in a block and recursively expands its multiplication and

exponentiation nodes (Figure S3) to reach the form of generic polynomial in (1). The

polynomial coefficients and exponents are then parsed from the expanded binary

expression tree and passed to the polynomial evaluation method.

Binary expression tree analysis, transformation, parsing, and scaffolding for the

polynomial evaluation method are done at the compile-time and implemented as a

Seq IR pass [47] in over 800 lines of C/C++ code. Secure polynomial evaluation,

as a part of Sequre’s standard library, is then executed at runtime.

While this optimization minimizes the number of Beaver partitions and reduces

the bandwidth to a theoretical minimum, the expansion of the polynomial terms can

still be expensive. Hence, for the expressions that produce large polynomial degrees,

the overall approach will be infeasible both at compile-time (due to the expansion

of the terms) and runtime (where another series of terms expansion that stems from

Beaver partitions is required; Supplementary Note 3 in Cho et al. [9]). To avoid this

problem, Sequre will calculate the size and the degree of the eventual polynomial

Page 24 of 27

(a)

(b)

Fig S3 Binary expression tree term expansion for (a) multiplication and (b) exponentiation. The
two transformations will be applied to the nodes recursively until the structure of the tree reaches
the shape of generalized polynomial (1).

first and then decide whether to proceed with the polynomial optimization or the

Beaver caching optimization above. It is important to note that the polynomial

optimization is not just another variant of Beaver caching optimization—instead,

these two optimizations are mutually exclusive. Currently, the choice between the

two optimizations is decided by the predefined threshold for the degree of the poly-

nomial. This threshold is currently hardcoded to 5 and was experimentally chosen

based on observing the network latency and runtimes under different values.

4.3.3 Pattern matching optimization

The specific nature of MPC operations allows ample opportunities for algebraic op-

eration optimizations, such as division and square root optimizations. For example,

calculating a square root in an MPC environment produces its multiplicative inverse

as a by-product. So instead of invoking the two expensive protocols (division and

square root) to securely compute [a]/
√

[b] where [a], [b] ∈ S are secret shares of a ∈ R
and b ∈ R, it is more efficient to multiply the dividend by the multiplicative inverse

of the square root (i.e., [a] ·
√

[b]
−1

). Similarly, division by a public number can

be replaced by multiplication (see Code 4.3.3). Sequre implements an intermediate

representation pass that identifies such patterns and replaces them with the more

efficient counterparts.

Code 13 Pattern-matching transformations

Page 25 of 27

1 a = b / sqrt(c)
2 # Transformed to:
3 ... a = b * sqrt_inverse(c)
4

5 a = fixed_point_share / 3.4
6 # Transformed to:
7 ... a = fixed_point_share * to_fixed_point (1 / 3.4)
8 ... a = truncate(a)
9

10 a = non_fixed_point_share * 3.4
11 # Transformed to:
12 ... a = to_fixed_point(non_fixed_point_number) * to_fixed_point (3.4)
13 ... # There is no need for truncation
14

15 a = fixed_point_share * 3
16 # No transformations needed.

Operating on top of the finite fields or rings allows only integer arithmetic. For

that reason, non-integers are usually converted to a fixed-point [88] or a floating-

point [89] representation. Conversion between the integer and non-integer types

is usually manually implemented in today’s secure MPC protocols. For example,

multiplying two fixed-point numbers mandates utilizing a secure truncation protocol

to cut the fractional part in half. If, however, one of the factors is not a fixed-point

number, then the truncation must not be employed. Sequre uses the fixed-point

representation of non-integers, and defaults to 20 bits reserved for the fractional

part, 40 bits for the whole fixed-point numebr, and 60 bits for the statistical security.

Also, Sequre handles the casting between the types and the automatic truncation

of products implicitly as it is done in general-purpose languages such as C or C++.

4.3.4 Matrix arithmetic optimizations

If all matrix operands are diagonal during the element-wise matrix operations, Se-

qure provides a special class SharedTensor that can optimize these operations by

computing the values only over the diagonals.

Sequre also employs a vectorized Strassen algorithm [90] for multiplying large

matrices when the size of a matrix exceeds 250,000 elements. Strassen’s algorithm is

a recursive divide-and-conquer paradigm and, in Sequre, the matrix products in the

leaves of the recursion are multiplied via LLVM’s vectorized matrix multiplication

instruction. For matrices that contain fewer elements, a straightforward matrix

multiplication algorithm is employed, with the latter operand being transposed to

maximize the utilization of lower levels of CPU cache.

4.3.5 Multiple algebraic structures

Enabling the MPC protocols to operate on top of Z2k rings instead of Galois fields is

a common practice today because the rings are generally faster on modern computer

architectures [56]. Sequre supports running most of its standard library routines in

both algebraic structures (see Figure S4).

However, some MPC protocols such as fixed-point value comparisons, division,

and square root calculation—all operating on top of the fixed-point values—

exclusively work with finite Galois fields in Sequre. Hence, when operating on top

of a Z2k ring, Sequre needs to internally switch to a finite Galois field when calling

such procedures. This switch is not free, because the difference between the sizes of

the two algebraic structures is publicly subtracted from the input and then publicly

Page 26 of 27

Fig S4 Finite Galois fields and Z2k rings support in Sequre.

added to the output of each procedure. If the sum of secret shares does not overflow

the predefined size of the algebraic structure, the switch will change the accuracy of

the procedure. The change in accuracy is equal to τ = (p− r)/2f , where p, r, and

f are the size of a field, ring and the fractional portion of the fixed-point number,

respectively. Sequre’s default fixed-point arithmetic setup evaluates this value to

τ = 1/220. Note that the comparison between the two fixed point values a and b

will yield incorrect results on Z2k rings if the difference between a and b is within

the (0, τ] half-range. Finally, the size of f is configurable in Sequre, which can co-

erce τ to be arbitrarily small and hence minimize the practical chance of the error.

Hence, setting the size of the finite field to be as similar as possible to the size of

the ring, and increasing the fractional part of the fixed-point numbers—something

that Sequre does by default—is needed for the improved accuracy (note that the

sizes of the field and the ring must differ since the only case where Zp is equivalent

to Z2k is when p = 2k = 2—a value too impractical for arithmetic-circuits based

MPC setups). Note that the procedures that are sensitive to any errors (e.g., ta-

ble lookup that underpins the Sequre’s implementation of oblivious dictionaries, or

bitwise operations) operate only on finite fields in Sequre.

5 Benchmark and hardware setup
For benchmarking secure GWAS, secure DTI inference, and secure metagenomic

binning, we used the test-case scenarios and benchmark configurations from [9], [10],

and [23] respectively. For comparing Sequre against other frameworks, we adopted

benchmarks from [21]: mult3 for a series of secure multiplications, innerprod for in-

ner product between two private vectors, and xtabs for a cross-tabular aggregation

of oblivious arrays. The first two benchmarks were slightly adapted for scalability

by extending a series of multiplications into a series of additions and multiplication

and by setting the vectors’ length in the second benchmark to be 100, 000 instead

of the original 10.

For the sake of precise measurements, all benchmarks were executed on a single

machine where each party (computing or collaborating node) was run as a separate

Page 27 of 27

process. Network communication was established through inter-process communi-

cation sockets (AF UNIX). Additionally, GWAS, DTI, Opal, and Ganon where eval-

uated on a local-area network with a different machine for each computing party.

Single-machine results for GWAS were evaluated on Intel® Xeon® Platinum 8260

CPU at 2.40 GHz with 192 logical cores and 1 TB of RAM. All the other bench-

marks, including the local-area network runs, were evaluated on multiple Intel®

Core™ i7-8700 CPU at 3.20 GHz with 12 logical cores and 60 GB of RAM.

Table S9 List of tools, versions, and datasets used in each application (Secure-GWAS, Secure-DTI,
Ganon, Opal) and MPC frameworks benchmarked against Sequre. GWAS lung cancer dataset was
sampled into first 3,000 individuals and 30,000 SNPs. For tools that do not use a versioning scheme,
the shortened commit hash of the version used is included.

Tool Version Dataset

G
W
A
S Clang 14.0.0

Lung cancer dataset (accession: phs000716.v1.p1)GMP 6.2.1
NTL 10.3.0

D
T
I

Clang 14.0.0

Reduced STITCH dataset: https://bit.ly/3AuhaPn

GMP 6.2.1
NTL 10.3.0
Python 3.8.11
Syft 0.5.3
SyMPC 0.5.0

O
p
a
l Python 3.6.13

Opal dataset: http://giant.csail.mit.edu/opal/data.tar.bz2
VowpalWabbit 8.11.0

G
a
n
o
n Seq 0.10.1

Opal dataset: http://giant.csail.mit.edu/opal/data.tar.bz2Clang 14.0.0
SeqAn 3.1.0

M
P
C

fr
a
m
ew

or
k
s

ABY 08baa85

N/A

EMP 0.2.3
Frigate 4ef001b
Jiff 8ea565d
MP-SPDZ 0.1.5
MPyC 0.8
SyMPC 0.5.0
Obliv-C 2bacf04
Oblivm 50ed0fb
Picco ee85c91
Sharemind 2017.12
Sequre 0.0.1

Lastly, Table S9 enlists all the tools, versions and the links to datasets used for

benchmarks.

