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Security of homomorphic encryption and RLWE. Most widely-used homomorphic encryption
schemes [6,5,12,9], including the BGV scheme we employed, rely on the hardness of a mathematical
problem called the Ring Learning with Errors (RLWE) problem, i.e., the ring version of Learning with
Errors (LWE) problem. The hardness of the LWE problem has served as a common assumption due
to its quantum reduction to a hard lattice problem proposed by Regev [21] and its robustness against
various attacks [4,3]. Later, Lyubashevsky et al. [19] introduced the RLWE problem and demonstrated its
reduction to the worst-case lattice problems over ideal lattices. Compared to LWE-based cryptographic
schemes, RLWE-based schemes are more efficient, especially for power-of-2 cyclotomic rings [22].

To delve deeper into the RLWE problem, we introduce the following notation: the m-th cyclotomic
polynomial Φm(X) of degree n, an integer-coefficient polynomial ring R = Z[X]/Φm(X), a modulus Q

and the quotient ring RQ = R/QR, an error distribution χ, and ← for a uniform sampling.
Given a secret s ∈ RQ, the hardness of RLWE guarantees that the following two distributions in

RQ ×RQ are (computationally) indistinguishable under appropriately chosen parameters:

Ds = {(a, b) : a← RQ, e← χ, b = as+ e},Drand = {(a, b) : a, b← RQ}.

As such, the secret s is masked using a pair of elements, which are indistinguishable from two uniform
elements. To achieve the desired λ-bit security in RLWE-based HE schemes, parameters (m, Q) need to
be chosen such that the best-known LWE attacks require at least 2λ operations. Concrete parameters
are generally estimated following [2], which are also standardized in the white paper [1].

Experimental setup and HE parameters. We benchmarked SQUiD on an n2-standard-64 Google
Cloud instance with an Intel Xeon Gold 6268 @ 2.8 GHz processor and 256 GB of memory. For all our
benchmarking, we employed parameters with 128-bits of security according to the LWE-estimator from
HElib [16,2]. See our list of parameters in Table S1.

Parameter SQUiD
m 99,928
t 99,929
n 49,960
log Q 967
λ 128
Slot size (ℓ) 49,960
Max # of patients 2 billion
Minimum server memory (GB) 60

Table S1: Table showing the HE parameters for SQUiD where m is the dimension of the cyclotomic ring, t
is the plaintext modulus, n is the polynomial degree, logQ is the bit length of the ciphertext modulus, λ is the
security parameter, slot size is the maximum number of patients that can be stored in a single ciphertext for a
single attribute, Max # of patients is the maximum number of patients that can be stored in the database, and
Minimum server memory gives a recommendation for the memory requirement of the server to run SQUiD.

API parameters for queries. Count : Our simplest query counts the number of patients who pass a
filter. This filter can be either conjunctive (And) or disjunctive (Or) and consist of only equality causes.
For example in Fig. 4A, we have the query “COUNT WHERE SNP2 == 1 AND sex = 1” which will count



Query Parameters Description

Count
Filter: array of pairs of
strings and ints
Conjunctive: boolean

Filter is [("rs7903146",2),("T2D",1)]
Conjunctive is true

Returns the number of patients in the
database that have both alleles of the rs7903146
SNP and T2D.

MAF

Filter: array of pairs of
strings and ints
Conjunctive: boolean
Target SNP: string

Filter is [("T2D",1)]
Conjunctive is true
Target SNP is "rs7903146"

Returns the MAF for the rs7903146 SNP of patients
in the database that have T2D.

PRS PRS: array of pairs of
strings and ints

Parameters are [("rs12562034", 4),
("rs11240779", 10), ("rs4970383", -4)]

Returns the PRS score for each patient by
summing up the multiplication of the rs12562034
SNP by 4, the rs11240779 SNP by 10, and the
rs4970383 SNP by -4.

Similarity
Target patient: ciphertext
Threshold: int
Disease column: string

Target patient is MO8v3J7kJt (Encrypted)
Threshold is 10
Disease column is T2D

Returns the number of patients with and
without T2D who are similar to the target patient
by a threshold of 10 using a L2 similarity score.

Table S2: List of parameters for the count, MAF, PRS, and similarity queries with examples.

the number of female patients where the second SNP is 1. We compute this query by first computing a
predicate for each patient if they pass the filter. Since homomorphic encryption only supports addition
and multiplication, we compute the filter consisting of AND gates, OR gates, and equality function using
polynomial approximations. The domain of the inputs to all these functions is limited to (0,1,2) for SNPs
and (0,1) for all other variables in our database. Thus, the degree of these polynomials is small which
keeps SQUiD performant.

MAF : Our minor allele frequency (MAF) query computes the MAF of a target SNP on a filtered
cohort of patients filtered using a similar filtering technique from the count query. Our MAF queries
return two values, the allele count and the number of filtered patients times two. The researcher has to
finalize the MAF computation by dividing the returned allele count by the returned number of filtered
patients times two. We move the division operation to the research because division is an expensive
operation to perform homomorphically.

PRS : Our polygenic risk score (PRS) query computes a PRS given a set of SNPs and a set of effect
sizes. A PRS score is calculated with a linear combination of the SNP and the effect sizes which we
can naturally compute using homomorphic encryption. The effect sizes, which are often represented as
floating point numbers, are scaled to integers within SQUiD as SQUiD only supports integer inputs. The
resulting scores are scaled down accordingly.

Similarity : The similarity query counts the number of patients with and without a disease from a
cohort consisting of patients similar to the target query patient. This target patient is encrypted with the
data owner’s public key before it is sent to the cloud to protect the target patient data. To compute the
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similarity query, we first compute a similarity cohort by scoring the similarity of the target patient with
every patient in the database. We score patients based on their squared Euclidean distance (squared L2

distance) from the target patient. If these scores are beneath a predetermined threshold, the patient is
considered similar to the target patient and added to the similarity cohort. Next, we count the number
of patients with and without a disease in this cohort.

The BGV scheme. Brakerski-Gentry-Vaikuntanathan (BGV) [6] is a well-known lattice-based homo-
morphic encryption scheme that allows for computations over encrypted data. Its lattice-based structure
further provides reasonable quantum resistance. Realizing computations as sequences of additions and
multiplications, BGV provides a large computation capacity with reasonable parameter choices. Fur-
thermore, it supports computations in a SIMD manner, which significantly enhances the amortized
performance.

Below we describe the basic procedures in BGV, the realization of public key-switching and its noise
control. Mathematical and cryptographic notations are listed in Table S3.

Mathematical Basics:
t plaintext modulus
Q ciphertext modulus
Z set of integers
Zt the ring of integers modulo t, i.e., Zt = Z/tZ
ZQ the ring of integers modulo Q, i.e., ZQ = Z/QZ
X variable of polynomial
R the cyclotomic ring Z[X]/

(
Φm (X)

)
where Φm (X) is the m-th cyclotomic polynomial. The

degree of Φm (X) is n = ϕ (m), where ϕ(·) denotes the Euler totient function.
Rt Zt[X]/Φm (X)
RQ ZQ[X]/Φm (X)
HE Parameters:
χter uniform ternary distribution with coefficients from {−1, 0, 1}
χerr error distribution of scheme, typically a discrete Gaussian distribution unless specified oth-

erwise

Table S3: Notations of BGV homomorphic encryption scheme

Key generation, encryption and decryption Sample the secret key sk from χter, and the public
key is computed as follows

pk =
(
[a · sk + te]Q ,−a

)
∈ R2

Q,

where a← uQ and e← χerr. Anyone can see the public key, but this leaks no information on the secret
key sk, as guaranteed by the hardness of the ring learning-with-errors (RLWE) problem.

With the public key, anyone can generate a ciphertext for a plaintext m by computing

ct = Encpk(m) =
(
[[m]t + u · pk0 + te0]Q , [u · pk1 + te1]Q

)
,

where u← χter and e0, e1 ← χerr. Due to the randomness in encryption, ciphertexts of the same plaintext
m are always not identical, reflecting the IND-CPA security which avoids the search pattern leakage.

A message m and its ciphertext (ct0, ct1) are related via

ct0 + ct1 · sk = [m]t + tv (mod Q),

where v = u · e+ e1 · sk + e0 is the noise term.
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Only those knowing the secret key sk will be able to decrypt. Decrypting a ciphertext ct = (ct0, ct1)

is to calculate
[ct0 + ct1 · sk (mod Q)]t ,

and it decrypts to the correct message m if the noise term v is lower than ⌊Q/t⌋.

Public key-switching The key-switching technique is used to switch the secret key of a given cipher-
text without decryption. Given a ciphertext ct that encrypts a message m under secret key sk, the goal
is to obtain a new ciphertext that encrypts the same message m under another secret key sk∗.

To compute this, the algorithm requires an additional ciphertext that encrypts the secret key sk under
sk∗, which is called the key-switching key ksk(sk→sk∗). In the BGV scheme, this key is derived from sk∗,
but we use an alternative derivation with pk∗, the corresponding public key of sk∗, as follows:

ksk =
(
[sk + u∗ · pk∗0 + te∗0]Q , [u∗ · pk∗1 + te∗1]Q

)
∈ R2

Q,

where pk∗ = (pk∗0, pk∗1), u∗ ← χkey and e∗0, e
∗
1 ← χerr. In other words, ksk is just Encpk∗(sk), i.e. the

encryption of sk under pk∗.

With ksk and (ct0, ct1) which decrypt to m under sk, we can construct (ct∗0, ct
∗
1) which also decrypt

m but under sk∗. Precisely, we construct

(ct∗0, ct
∗
1) =

(
[ct0 + ct1 · ksk0]Q , [ct1 · ksk1]Q

)
.

Therefore,

ct∗0 + ct∗1 · sk
∗ = ct0 + ct1 ·Encpk∗(sk)0 + ct1 ·Encpk∗(sk)1 · sk∗

= ct0 + ct1 · (Encpk∗(sk)0 + ·Encpk∗(sk)1 · sk∗)

= ct0 + ct1 · (sk + tv∗)

= m+ t(v + ct1 · v∗) mod Q,

where v∗ = u∗ · e∗ + e∗1 · sk
∗ + e∗0, verifying (ct∗0, ct

∗
1) which also decrypts m but under sk∗.

Reducing noise during public key-switching The public key-switching above has noise component
ct1 · v∗, whose size can be further reduced by two methods: coefficient digit decomposition [7], and a
temporary enlargement of ciphertext modulus [14]. We combine the two methods in an approach similar
to the Section 4.3 of [15], where the ciphertext modulus Q =

∏l
j=1 Dj is decomposed into l coprime and

odd digits, and an expansion factor P , which is odd and coprime to Q, is introduced.

As such, the key-switching key ksk(sk→sk∗) is no longer a ciphertext with two components, but a
matrix of dimension 2× l. For 1 ≤ j ≤ l, the j-th column of this matrix is Encpk∗(PĎjsk) with respect
to an enlarged ciphertext modulus PQ, where Ďj stands for the product D1 · · ·Dj−1.

Storage costs of ciphertexts and public key-switching keys The size of a ciphertext is dependent
on the HE parameters used. With the parameters used in SQUiD, a ciphertext is a pair of polynomials
of degree n = 49, 960 with ciphertext modulus Q ≈ 967 bits. The theoretical minimum storage would be

12 MB ≈ 2 polynomials per ciphertext

× 49,961 coefficients per polynomial

× 967 bits per coefficient.
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In practice, we measured the storage of a single ciphertext to be 13 MB.

With the coefficient digit decomposition and modulus enlargement techniques, the ksk is a 2 × l

matrix of polynomials with enlarged ciphertext modulus PQ. In practice, we set l = 3 and PQ ≈ 1, 291

bits. Thus, the theoretical minimum storage of a ksk would be

48 MB ≈ 2× 3 polynomials per ksk

× 49,961 coefficients per polynomial

× 1,291 bits per coefficient.

In practice, we measured it to be 55 MB.

Homomorphic operations Adding two ciphertexts ct = (ct0, ct1) and ct′ = (ct′0, ct
′
1) that encrypt m

and m′ with a same key sk respectively gives

(ct0 + ct′0) + (ct1 + ct′1) · sk = [m+m′]t + t(v + v′ + u) (mod Q),

so the ciphertext ([ct0 + ct′0]Q, [ct1 + ct′1]Q) is an encryption of m + m′ (mod t) under almost additive
noise.
Multiplication of two ciphertexts is more complex, which involves taking the tensor product of two
ciphertexts as polynomial vectors to obtain (ct0ct′0, ct0ct

′
1 + ct1ct′0, ct1ct

′
1). One can check that

ct0ct′0 + (ct0ct′1 + ct1ct′0) · sk + ct1ct′1 · sk
2 = m ·m′ + tv0 (mod Q),

where v0 = m · v′ +m′ · v + v · v′.
Here, an additional step is needed for the term with sk2. If we consider (0, ct1ct′1) as a ciphertext with

secret key sk2, then performing the key switching procedure with the key ksksk2→sk gives a ciphertext
(ct′′0 , ct

′′
1). The noise control in this step is similar to the previous section. The final output of the

homomorphic multiplication is (ct0ct′0 + ct′′0 , ct0ct
′
1 + ct1ct′0 + ct′′1).

SIMD batching The BGV scheme supports homomorphic operations on multiple plaintext slots sim-
ultaneously. This follows from the fact that the cyclotomic polynomial Φm (X) of degree n splits modulo
t into ℓ irreducible factors of same degree n/ℓ, i.e., Φm (X) =

∏ℓ
i=1 Fi (X). Leveraging the Chinese

Remainder Theorem (CRT), the following ring isomorphism

Rt
∼=

ℓ∏
i=1

Zt[X]/
(
Fi (X)

)
is established, which enables the encoding of ℓ messages {z1 . . . , zℓ} ∈

∏ℓ
i=1 Zt[X]/

(
Fi (X)

)
into a single

plaintext in Rt. Typically, each of the ℓ messages is called a slot, and altogether they are regarded as a
length-l vector. Since computations over a ciphertext are performed on all packed values, BGV provides
efficient computations in an amortized manner.

Homomorphic rotation BGV supports an additional operation called rotation, which permutes plain-
text slots circularly. Specifically, let ct be an encryption of a plaintext vector z = (z1, z2, . . . , zℓ). Per-
forming a (right) rotation on ct by v results in a new ciphertext ctrot encrypting the plaintext vector
zrot = (zv+1, zv+2, . . . , zℓ, z1, . . . , zv) under the same secret key.

The homomorphic rotation consists of two key components: automorphism and key switching. We
refer interested readers to Section 3 of [15] for the general hypercube structures of rotations in BGV.
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Polynomial evaluation using the Paterson-Stockmeyer method Polynomial evaluations require
numerous binary operations including additions, scalar multiplications (where one operand is a constant),
and non-scalar multiplications. The Paterson-Stockmeyer method [20] uses fewer non-scalar multiplica-
tions, such that a degree-d polynomial is evaluated using O(

√
d) non-scalar multiplications.

In the homomorphic evaluation of polynomials, non-scalar multiplications are translated to ciphertext-
ciphertext multiplications, whose evaluation costs are much more expensive than the other two. According
to the benchmark in [13], it is around 160× and 15× the cost of homomorphic evaluations of additions
and scalar multiplications, respectively. Therefore, the Paterson-Stockmeyer method has been widely
used for polynomial evaluations in homomorphic encryption [8,10,11,17].

Below we follow [11] to sketch the evaluation of a degree-d polynomial f(x) =
∑d

i=0 aix
i using

the Paterson-Stockmeyer method. Assume there exist integers L and H such that d = LH − 1 and
L ≈

√
2(B + 1). Then the polynomial can be rewritten into

f(x) =

H−1∑
i=0

(

L−1∑
j=0

aiL+j · xj) · xiL.

Therefore, the "low powers" {x, x2, . . . , xL−1} can be computed with L − 2 non-scalar multiplications,
whose linear combinations give the inner sum. The "high powers" {xL, x2L, . . . , x(H−1)L} are then
computed with H − 1 non-scalar multiplications, whose subsequent products with the inner sum require
another H − 1 non-scalar multiplications. In total, the procedure requires

L− 2 + 2(H − 1) = L+ 2H − 4

non-scalar multiplications, which is minimal and achieves O(
√
B) when L ≈

√
2(B + 1).

Comparison of SQUiD’s MAF Calculation with Existing Methods In the MAF protocol by
Kim and Lauter [18], the MAF for SNP j is computed as follows:

MAF(j) =
min(mj , 2r −mj)

2r
with mj =

r∑
i=1

mi,j ,

where r represents the number of patients in the database, and mi,j denotes the genotype of patient i

at SNP j.

In SQUiD, a cohort is initially created before the MAF computation. The membership of the cohort is
defined by a predicate vector p, which is 1 for patients in the cohort and 0 otherwise. The key distinction
in the MAF computation between SQUiD and [18] lies in the need for multiplication of each mi,j term
within the summation by the corresponding predicate, ensuring the inclusion of only those patients who
are part of the cohort. Additionally, the total number of patients r in the denominator is a constant in
[18], but in SQUID it varies for different cohort sizes and needs to be computed as the sum of predicates.
All other parts of the MAF computation are the same in both SQUiD and [18]. That is, a SQUiD MAF
query without a filter has the same computation and result as [18]. Furthermore, in both SQUiD and
[18], the division and minimum operations are executed in plaintext. In summary, the total runtime and
accuracy of the SQUiD MAF calculation and that of [18] are expected to be exactly the same.

Continuous phenotype values. SQUiD supports continuous phenotype values such as weight, blood
pressure, heart rate, etc. However, as SQUiD exclusively processes integer data inputs, these values need
to be discretized into integers by scaling the values. This discretization occurs during the data encryption
by the data owner before transmitting it to the cloud. Once in the cloud, SQUiD effectively filters these
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now integer values for counting and MAF queries using range filters. Range filters are set by an upper
and lower bound and are computed using the same comparisons thresholds from the similarity query.

We benchmarked the range query performance in Additional file 1: Fig S12. We found that it took
approximately 51 minutes to compute a count query with a range filter on 49,960 patients and 58 minutes
to compute a MAF query with the same parameters.
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Fig. S1: The runtime for key-switching key generation and key-switching by the number of digits used in the
decomposition (l). Digit decomposition is a technique to reduce the error growth in ciphertexts. The more we
decompose the ciphertext and key-switching key, the more secure our system becomes and the less error growth the
ciphertext experiences [15]. We set l = 3, as is commonly chosen. It takes 1.5 seconds to generate a key-switching
key when the digits are decomposed into three parts.

Fig. S2: The additional storage space for the public key-switching key store (with l = 3) by the number of
authorized researchers in the store. Since each key-switching key is a single ciphertext, the storage required remains
minimal at approximately 55 gigabytes (GB) for 1,000 researchers.
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Fig. S3: The time to encrypt databases with various SNP sets by the number of patients in the database. We
measured the setup time by encrypting the various databases using 60 threads running simultaneously. We com-
pared the setup of SQUiD for the ClinVar SNP set to the setup time of an unpacked HE solution (blue) for
the ClinVar SNP set. The ClinVar (Unpacked) line was extrapolated for databases that took more than a day to
generate.
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Fig. S4: The unpacked and packed query performance for the count, MAF, PRS, and similarity queries on
databases with varying numbers of patients (ranging from 1 patient to 49,960 patients with 1,024 SNPs). The
similarity and PRS queries were tested with 1,024 effect sizes and SNPs, respectively, and the count and MAF
queries were tested with 2 filters.
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Fig. S5: The query time for SQUiD without HE and plaintext. SQUiD without HE implements the queries from
SQUiD by translating HE library functionalities to their plaintext counterparts and then using these functionalities
in the same way as SQUiD. We ran the count and MAF queries with 2 filters, the PRS query with 1,024 effect
SNPs (k), and the similarity query with 1,024 SNPs.

Fig. S6: The time to perform count, MAF, PRS and similarity queries on databases with an increasing number
of patients. The count and MAF queries were run with 2 filters. The PRS query had 1,024 effect SNPs, and the
similarity query had 1,024 SNPs. Each query was executed in parallel with 50 threads.
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Fig. S7: The time to perform a count query with 2 filters, MAF query with 2 filters, PRS with 1,024 effect SNPs,
and a similarity queries with 1,024 SNPs on databases with increasing number of SNPs.

Fig. S8: The communication cost for all queries by the number of features in the query or the number of patients
in the database. We benchmark our communication cost by measuring the end-to-end communication of a single
query. Each query needs one communication round thus the total communication is the cost of receiving a query
from a client and sending back the computation result. We separated the communication performance into two
plots because the scaling for our queries depend on different factors. (A) We show the communication costs of the
count, MAF, and similarity queries by the number of features (filters for the count and MAF query, and SNPs
for the similarity query). (B) We show the communication of the PRS query by the number of patients in the
database.
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Fig. S9: The communication cost for all queries and a plaintext solutions by the number of patients in the
database. The plaintext database keeps the data encrypted at rest, packing 16 one byte SNPs into a single encrypted
128-bit AES block. When the database receives a query, it sends the encrypted data necessary to compute the query.
Thus, the client has to decrypt and compute the query themselves. We benchmarked for all four types of queries
with 16 filters for the count and MAF queries, 1,024 effect SNPs for the PRS query, and the 1,024 SNPs for
the similarity query. Compared to SQUiD, the plaintext communication always scales linearly with the number
of patients while this is only true for SQUiD for PRS queries (since a PRS score for each patient needs to be
returned).
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Fig. S10: Screenshot of SQUiD command line interface (CLI). (A) Welcome help message about showing core
SQUiD functionalities. (B) setConfig call sets the address, port, and API key used to communicate with the
server for all successive calls. (C) getContext call that pulls the context from the server to ensure the encryption
schemes are synced locally and on the server. (DC genKeys call creates a public and private key for the user.
(E) authorize call sends the public key to the server for authorization. The server generates a key-switching key
which will be used to re-encrypt all query results sent back to the user to be encrypted under the user’s public key.
(F) count query call which counts the number of patients in the database with a first SNP that has value 1. (G)
failed query call that shows what parameters should be supplied for a correct query call. (H) MAF query call that
has the correct parameters.
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Fig. S11: The runtime of the L2 similarity score computation for SQUiD and [23] (Salem et al., 2019) for 100
SNPs and 1,000 SNPs. For score computation with fewer than 20,000 patients, [23] exhibits faster performance
for both 100 and 1,000 SNPs. However, as the patient dataset scales up, SQUiD consistently outperforms [23],
demonstrating its superior efficiency in handling larger datasets.

Fig. S12: The query time for the count and MAF query with a range filter by the number of patients in the
database. Each query only had one range filter.
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