
Isomorphism algorithm details

Y.Dufresne, L.Noe, V.Leclère, M.Pupin

The aim of this supplementary material is to explain in detail our method to
search for a residue into a polymer. We will distinguish the pattern of a molecule,
and the chains that can be used to search for this pattern. The pattern is the
whole residue (more generally the query graph) or any connected sub-graphs of
atoms composing this residue. A chain is a succession of growing sub-patterns
that generates a given pattern starting from a single atom (more generally a
node). So, a given pattern of length k named pk can be generated by several
chains c. In our algorithm, we construct chains by adding connected atoms one
by one, following the chemical bonds between successive atoms (more generally
the edges between nodes).

In the example of Figure 1, the proposed pattern is a−b−d and the possible
chains that can be used to search for the pattern are the following:

c = p1 → p2 → p3
cα = a → a−b → a−b−d
cβ = b → a−b → a−b−d
cγ = b → b−d → a−b−d
cδ = d → b−d → a−b−d

Note that only four chains are generated, as they are based on successive
connected sub-graphs that link neighbor nodes. The sub-pattern a−d is never
observed because a and d are not linked together.

Our goal is to determine from the set of chains of a given pattern, the one that
minimizes the search time. The search time first depends on the frequency of
the sub-patterns in the target polymer type and on the number of edges (more
generally the arity) that should be explored to find a given pattern. Indeed, the
more a sub-pattern is frequent, the more time is spent to find all its occurrences.
Once a sub-pattern is found, the remaining edges starting from a specific node of
this sub-pattern should be explored to continue the construction of the pattern,
according to a given growing chain.

For example in Figure 1, the node a has an arity of 3. So, the 3 edges starting
from a should be explored to find the next node prompted by the growing
chain. In the case of the chain cα, the sub-pattern a−b is constructed. Then,
two remaining edges must be explored from b to find d and construct the given
pattern a−b−d

1

Greedy algorithm

The greedy algorithm chooses the most selective node at each step of the chain
construction. First, the frequency of each node label is calculated by counting
every types of labels in the learning database. The most selective label, i.e. the
one with the lower number of occurrences, is the starting point for chains of
patterns containing this label. Then, its most selective neighbor is recursively
added to the growing chain. The goal is to constantly minimize the number of
initial solutions.

For example in Figure 1, the most selective node label is a with a 2/18
frequency, so the greedy algorithm will start to search for a and then re-
cursively determine its most selective neighbor. In this case, only one chain
among the four chains generated from the studied pattern starts with a, this is
cα = a→ a−b→ a−b−d. So, the greedy algorithm outputs the chain cα as the
most selective one.

But this chain selection is greedy: the selectivity is calculated for each node
independently of its links to other nodes. It does not guaranty to have the
most selective chain that takes into account the previous steps of the chain
construction.

Markovian chains

Markovian chains select the best succession of sub-patterns that constructs
the most selective chain. In other words, they allow to construct the chain that
minimizes the global search time. First, the time needed to find each possible
chain constructed from a given pattern is estimated. Then, the chain requiring
the minimal time is selected.

For a searched pattern pk of size k and a given chain c, the full estimated
time T spent to search for a succession of growing patterns p1, p2, . . . until pk is
given by:

T (c) = T (p0 → p1 → . . .→ pk) =

k∑
i=1

T (pi−1 → pi)

where T (pi−1 → pi) is the time spent extending the pi−1 pattern to the pi
pattern. It is to notice that p0 is here the empty pattern ε which is not searched.
The initial time T (p0 → p1) spent to search for p1 from the learning database
of polymers is proportional to N , where N is the full number of nodes in the
learning database.

By recursion, once the search for pi−1 gives npi−1 occurrences (which can,
in some cases, be exponentially >> N), the next search for pi will give npi
occurrences, and is of time :

∀i ≥ 2 T (pi−1 → pi) = npi−1 × api−1→pi × t

where api−1→pi is the remaining arity of the node from which we wish to extend
pi−1 into pi, and t the time to compute a comparison between two labels. The
time t can be maximized by a constant, so it can be withdrawn from the formulas

2

We introduce a filtering ability fi defined by

fpi−1→pi =
npi
npi−1

and when cumulated

npi = N ×
i∏

j=1

fpj−1→pj

Notice that fpj−1→pj is naturally bounded by the arity of the node extended
during the construction of pj from pj−1. Now we can introduce f in T (c)
calculation.

T (c) = T (p0 → p1) +

k∑
i=2

(
api−1→pi ×N ×

i−1∏
j=1

fpj−1→pj
)

T (c) = N +N

k∑
i=2

(
api−1→pi ×

i−1∏
j=1

fpj−1→pj
)

T (c) ∝N 1 +

k∑
i=2

(
api−1→pi ×

i−1∏
j=1

fpj−1→pj
)

For example in Figure 1, the estimated computational time T (cα) on the
previously mentioned chain cα is the following:

cα = ε → a → a−b → a−b−d
T (cα) = T (ε→ a) + T (a→ a−b) + T (a−b→ a−b−d)

∝N 1 + 3× 2
18 + (3− 1)× 2

18 ×
3
2

= 1 + 1
3 + 1

3 = 5
3

Note that cα is a possible chain to search for a−b−d, however not the best one.
In practice, we select the most selective chain for each pattern, applying the
following formula:

T (pk) = min∀c | c=p0 pk
(
T (c)

)
For example in Figure 1 , the most selective chain for the pattern a−b−d

is cδ (with T (cδ) = 14
9) because the extension of the sub-pattern b−d to the

pattern a−b−d has an estimated search time smaller than the extension of the
sub-pattern a−b, and the extension of the sub-pattern d has an estimated search
time smaller than the extension of the sub-pattern b.

Since the set of chains c = p0 pk used to search a pattern pk (or in more
general case, any set of patterns) can be represented by a Directed Acyclic
Graph (DAG), the dynamic programming aspect of the computation of T (pk) =
min∀c | c=p0 pk

(
T (c)

)
can be easily established. It has two consequences: (a)

only one optimal chain per pattern in the DAG must be kept, and the full set
of optimal chains for all patterns can itself be represented by a tree in a very
compact way ; (b) the pk pattern(s) and the optimal chain to find it(them)
efficiently can be set by a classical memory efficient approach computing the
pi patterns from the pi−1 already established optimal chains (for all i ∈ [1..k]),
with emphasis on removal of all non optimal chains.

3

Hybrid algorithm

We define two possible algorithms to choose the best chain of any sub-pattern
to minimize its search time. On the one hand, the greedy algorithm computes
rapidly (polynomial time) the best chains for each residue of the database but
can fall in local minima. On the other hand, the Markovian model computes,
at a slower rate (exponential time) the best chains because it finds global min-
ima, which means a guaranty of optimality for several critical residues. To take
advantage of both models, we implemented an hybrid solution using the Marko-
vian model on the m first extensions of the chain and finishing next extensions
with the greedy model. The Markovian model applied only on the first m steps
avoids critical exponential numbers of intermediate solutions.

Results

We tested the performances of our algorithm on the Norine dataset. We
measured only the search time for all the monomers on each polymer of the
database. We compared the search time for a random order, for the greedy
algorithm (Markovian with k = 1) and for several values of k in our Hybrid
Algorithm. We obtained an average execution time per polymer of 7.8 ms for
aed random order, 7 ms for the greedy algorithm and we reach a plateau for
k = 3 at 6.1 ms. So, the greedy algorithm reduces time by 10% in comparison to
a random order. Moreover, when k = 3, the hybrid algorithm reduces time by
20%, also in comparison to a random order. The isomorphism algorithm used for
SMARTS matching in CDK uses an ordering only for the very first atom search,
which is better than the random algorithm but worse than the greedy one. In
comparison with the CDK SMARTS algorithm, we improved the isomorphism
time from 10% up to 20%. The larger the number of monomers in the database
is, the more efficient the search is, compared to the loading and preprocessing
overheads (IO + SMILES parsing).

4

ba dPattern

Learning database d cdc

(1) Sub-patterns counts

ba

b d

ba db

a

d

2

4

3

3

1
1

(2) Sub-patterns filtration estimation

(3) Best chain searching strategy

c

cdba

c

c

dba

ab

b
d

ba

d b

total number of nodes
N = 18

compute the best search strategy
using a dynamic programming scheme

2/18

4/18

3/18

3/2

3/3

1/3

1/4

1/3

•1/1

18
nodes

ba db

a

d

ba

b d

d b a

cda

b

b

c

c

ba
d

ε
a

b

d

T∝1

T∝
1

T∝1

T∝1+1/2

T∝1+1/3

T∝1+1/2

T∝1+4/9

T∝13/9+1/9

T∝4/3+1/3

expected filtration fp p
i-1 i

counts pin

T(c) ∝N 1+∑a ∏f
i=2

k

j=1

i-1

pi-1 pi pj-1 pj

Determine filtration ability for any
sub-pattern search strategy

Compute sub-pattern counts on
the learning database

Vertex arity

3 3 2

ε

ε

Figure 1: Index creation using the Markovian method. This figure repre-
sents the full process to build a Markovian index. The gray rectangle contain an
example of learning database and, in blue, the pattern that we want to index.
(1) Counts of the sub-patterns in the learning database: computation of the
number of occurrences of each sub-pattern of a−b−d in the learning database.
(2) Estimation of the sub-patterns filtration: computation of the number of
occurrences of a sub-pattern over the counts for the previous sub-pattern. (3)
Selection of the best chain for the pattern: computation of the expected com-
puting time for each sub-pattern and selection of the faster chain at each step.
The selected paths in the Directed Acyclic Graph is highlighted in green.

5

