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Proof S1 Proof of Theorem 1

We first give one necessary lemma before proving Theorem 1, and also provide the proof of this lemma
after the proof of Theorem 1.
Lemma S1 Under the same conditions as in Theorem 1, we have
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where I' = 2LFs + + S5 62
Proof The proof is provided later in this section.

Next, with Lemma S1 and decaying learning rate 7,, = 'erin’ we prove that E {Hw(”) — W, HQ} < 'hl:n by
induction, where
al' B?
— 1 —w,|? :
v max{(7+ ) |lwo — w.||”, = 1}

First, it holds for n = 1 by the definition of v. Then, assuming that it holds for some n > 1, it follows
from Lemma S1 that
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By the definition of v, we have al’3% — (3 — 1)v < 0. Then, it follows that
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Specifically, we choose 8 = % and vy = % —1. Using max{z,y} < z+y, we have v < % |wo — w, |+
42‘{ . Therefore, we have
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Then, by the L-smoothness of F'(w), it holds that

E [F (w("))} — F(w,) < gE Mw(") — w,
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It follows that

We complete the proof of Theorem 1 by setting n = N.
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Proof Proof of Lemma S1 is as follows
Notice that w1 = w(™ — Zk 1 ( )) Then we have
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where a) = w®) —w. ~% S o and ax = % TIL, (0 () ~of”). DuetoEa [0 ()] = o

we have Eg[(a1, as)] = 0, which leads to
2
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Next, we first obtain the upper bounds of A; and As; taking these bounds into Eq. (S1), then we find
the connection between Hw("‘H) — W, HQ and Hw(”) — W, HQ after some proper manipulations.
1. Bound of ||a1||*: To bound ||a||?, we break ||ay||* as
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By the p-strong convexity of Fj(w), it follows that
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Hence, B> can be bounded by
2

le

K
. ™)) — w‘w_*
283 ()= i () = i <

] \/— Hg(n) holds, it

2. Bound of ||a2H Since g( Vs are independent and Eg {HQ (g,(cn)> gk

follows that
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With these bounds at hand, and taking expectation of Eq. (S1) over the stochastic quantizer Q and

stochastic gradient at round n, we have
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Recall that a = qilg + 1. From Assumption 3, we have
(S3)
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Substituting inequality (S3) into inequality (S2) yields

E [meﬂ) _ w*m < (1 o) [0 — [+ Q%;i (Fetwn) — B (w))
& ICHLECD

It follows that

e ] <t

After rearranging C + Cs, we have
Ci + Cy = 20, (L — 1) (F (w<">) - F(w*)) + 2aLy?Fy,

where Fs = F(w,) — + Z,}::l Fp.
It can be verified that 7, < 2+, and from F(w™) > F(w,), we have

C; < 2aLn721F5.

Taking the total expectation of Eq. (S1) yields
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which completes the proof.

Proof S2 Proof of Lemma 1

If T,°"P 4+ Tgom™ < Ty, Vk € [K], Tq can be reduced until k € [K] satisfies T}, *""? +T¢°™™ = Ty4. Denote
K ={k € [K)|T{™™ + Tgom™ < Ta} and K = {k € [K]|T;°™ + Tgo™™ = Ty}. Obviously, K + K = [K].
Since TF°™™ is an decreasing function of by, we can enforce T}, ™" + To™™ = Ty by decreasing by, for all
k € K. Then, K = @ and K = [K]. In this case, if 21}::1 br < By, we can properly increase each by, without
violating T}.°™P + Tgom™ = Ty, k € [K], until 215:1 by = By, and T4 will decrease as well.
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Table S1 Simulation parameters

Parameter

Value

Number of edge devices (K)

Transmit power of edge devices (pg)

CPU frequency (fx)

Number of CPU cycles for one batch (v)

Variance of shadow fading (072])

Noise power spectral density (No)

Total bandwidth (Bp)
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Fig. S1 Optimality gap (a) and test accuracy (b) in simulation 1
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Fig. S2 Optimality gap (a) and test accuracy (b) in simulation 2



