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1  Fundamentals of semiconductor metal oxide (SMO) gas sensors 

1.1  Common detected gases 

As hazardous substances or markers, many common gases need to be detectable in a timely manner by gas 
sensors. Such gases include CO (Naganaboina and Singh, 2021; Nami-Ana et al., 2021), NH3 (Zhang Y et al., 
2020; Wang D et al., 2021), NO2 (Wang Z et al., 2017; Geng et al., 2021), H2S (Kim DH et al., 2020; Chang et 
al., 2021), H2 (Kim SM et al., 2018; Meng et al., 2022), ethanol (Ma et al., 2019; Sharma et al., 2021), HCHO 
(formaldehyde) (van den Broek et al., 2019; Jo et al., 2021), toluene (Ueda et al., 2020; Liu et al., 2022), acetone 
(Zhou T et al., 2021; Cai et al., 2022), xylene (Guo M et al., 2022; Li Y et al., 2022), n-butanol (Bai et al., 2019; 
Wang X et al., 2020; Guo W et al., 2022; Tian et al., 2022), trimethylamine (Chen Y et al., 2022; Li X et al., 
2022), triethylamine (Yang L et al., 2022; Zhang S et al., 2023), and 3‑hydroxy-2-butanone (Yang XY et al., 
2022). Acetone can be used as a marker for disease pre-diagnosis of diabetic patients by detecting the acetone 
concentration in exhaled breath (Cho et al., 2021). It is vital to have a low acetone detection limit for gas sensors 
in the exhaled gas. For example, Hanh et al. (2021) prepared an acetone gas sensor based on Pt-Zn2SnO4 hollow 
octahedrals for exhaled-breath analysis in diabetes diagnosis. This sensor is of practical and scientific interest 
with an ultra-low detection limit of 1.276 ppb (1 ppb=1×10−9). Yuan et al. (2020) synthesized novel CeO2-WO3 
nanowires by hydrothermal and thermal decomposition processes for a micro-electromechanical system-based 
acetone gas sensor. The sensor has a response value of 1.3 to 500 ppb acetone and shows potential for use in 
screening exhaled breath for diabetes diagnosis. NO2 is a hazardous gas with a pungent smell, and can cause 
serious harm to the environment and human health. Higher NO2 concentrations adversely affect the respiratory 
tract including the throat, trachea, and lungs. Xie et al. (2021) designed a NO2 gas sensor based on 
NiO-modified macroporous In2O3 thin film. The NO2 sensor shows a high response value of 532.23 to 10 ppm 
NO2 at 145 ℃. Wang Y et al. (2021) synthesized a polyoxometalate-modified Cu2ZnSnS4 nanoparticle based 
NO2 sensor by a hydrothermal method, which shows excellent selectivity and long-term stability for NO2. H2S 
gas is produced in industrial production. It can damage human tissues, such as the nervous system and cardi-
ovascular system. Qiao et al. (2020) prepared a H2S sensor based on Mo-doped BiVO4 polyhedrons with a fast 
response (8 s) by a two-step hydrothermal reaction and calcination. Wang C et al. (2020) designed a Co2SnO4- 
based H2S sensor. The sensor has excellent reproducibility, outstanding selectivity, and a low detection limit, 
and can be used for monitoring halitosis disease. Ethanol is a widely prevalent organic solvent. Its detection is 
frequently used in breath analyzers, fermentation industries, food quality monitoring, and chemical industry 
biomedical and chemical process monitoring. Raghu et al. (2019) prepared carbon-doped anatase TiO2 nano-
particles. This material can be used to create efficient ethanol sensors that operate at lower temperatures and 
have lower noise-to-signal ratios. Jiang et al. (2022) successfully synthesized ZnO hierarchical nanostructures 
self-assembled by a mesoporous nanosheet based ethanol sensor. The sensor responds clearly to 500 ppb eth-
anol, indicating a low ethanol detection limit. To sum up, gas sensors have strong application potential and 
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practical significance for gas detection. As a colorless and harmful gaseous organic amine, trimethylamine 
(TMA) is hazardous to the human skin, eyes, and respiratory tract. Chen W et al. (2018) designed a GO/Cu2O 
nanocomposite TMA sensor that can detect TMA gas at less than 5 ppm. A sensor based on SnS/SnS2 prepared 
by Zhou Q et al. (2022) shows good reversible selectivity and long-term stability, enabling the detection of 
TMA gas for industrial environment monitoring. Triethylamine (TEA) is a toxic and flammable gas that at 
concentrations of more than 10 ppm can have adverse effects on human health. A TEA sensor based on 
Zn2SnO4/SnO2/ZnO and fabricated by a simple hydrothermal process has low cost and excellent performance 
(Sun et al., 2023). A TEA sensor with a typical hollow microfibrous structure designed by Zou et al. (2017) and 
manufactured using a sustainable biomass method results in an excellent response to TEA gas. 

1.2  Performance parameters of SMO gas sensors 

The performance parameters of gas sensors are important indexes to measure the sensing performance. 
Standard characteristic parameters include response, response/recovery time, selectivity, optimal operating 
temperature, repeatability, stability, and detection limit. According to the different properties of the gas and 
semiconductor to be measured, the response has different definitions. For example, when n-type semiconduc-
tors are exposed to reductive gas, the response is defined as the ratio of Ra (resistance of the sensor in air) to Rg 
(resistance of the sensor in the target gas). The response/recovery time is another important parameter of sensing 
performance, defined as the time required for the sensor to reach 90% of the total resistance change when the 
target gases are adsorbed/desorbed. Selectivity is defined as the sensor having a much higher response to a 
specific gas than to other gases being measured, and directly reflects the anti-interference ability of sensors in 
detection. The optimum operating temperature is the operating temperature when the gas sensitivity perfor-
mance of the sensor reaches the optimum. The detection limit is the lowest effective gas concentration that a gas 
sensor can detect. Repeatability and stability indicate the detection stability of the gas sensor in a short time and 
a long time, respectively. 

1.3  Profile of SMO gas sensors and sensing mechanisms 

SMO gas sensors are devices that can detect various gases by turning their characteristics into measurable 
and effective electrical signals. The sensors can detect a wide variety of gases and have performance parameters, 
such as response, selectivity, and detection limit. They are simple and convenient to manipulate and can be used 
for qualitative and quantitative detection of gases. 

Understanding the SMO sensing mechanism is crucial for designing efficacious semiconductor gas sensor 
nanomaterials. Oxidation and reduction reactions of gas on the semiconductor surface will lead to a change in 
the resistance value of the sensitive element. If the dissociation energy of the adsorbed gas molecules is higher 
than the semiconductor work function, the adsorbed gas will capture the electrons of the material and form the 
anion adsorber, namely the oxidizing gas; or if the energy is lower than the work function, the adsorbed gas will 
release the electrons to the material and form the cation adsorber, namely the reducing gas. For example, oxygen 
molecules are adsorbed on the surface when n-type semiconductors are exposed to ambient air. Then, the 
electrons will flow from n-type semiconductor to the oxygen molecules, forming surface-absorbed oxygen 
species (O2− (ads), O− (ads), O2

− (ads)) and electron depleted regions. Thus, the resistance of the device is re-
lated to the content of the oxygen in the air. Next, the n-type semiconductor will be exposed to reductive gas. 
Immediately, the reductive gas molecules will readily react with adsorbed oxygen species, and the electrons will 
transfer from the gas to the conduction band, resulting in decreasing resistance (Fig. S1a). Therefore, the type 
and concentration of adsorbed gas can be measured on the basis of the resistance changes (Wang G et al., 2019b; 
Mnethu et al., 2020).  

The process of gas sensing by a semiconductor device involves three main factors (Fig. S1b), including the 
transducer function, receptor function, and utility factor of the sensing body. Strategies such as doping (Zhao Q 
et al., 2015; Song et al., 2021), loading (Kondalkar et al., 2019; Ueda et al., 2021), and compositing (Li S et al., 
2019; Zhou Y et al., 2021) usually are used to improve the transducer function. Carrier (electron or hole)  
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mobility can be enhanced by forming a Schottky junction, p–n heterojunction, or other junction systems. To 
enhance the receptor function, we can optimize the surface adsorption or reaction of the target gas by increasing 
the specific reaction (Zhang F et al., 2010; He et al., 2021), improving the catalytic effect (Hyodo et al., 2019; 
Zhao S et al., 2019), and adding a molecular sieve (Jo et al., 2021; Luo et al., 2021). The macroscopical ex-
pression of the utility factor includes the structure, morphology, and specific surface area (Chen R et al., 2020; 
Lee et al., 2020; Ng et al., 2020), which can be efficiently improved by template-assisted synthesis methods. 

 

 
Fig. S1  Sensing mechanism: (a) schematic model of the reducing gas sensing mechanism of an n-type semiconductor; (b) 
schematic of the three main factors affecting gas sensing by a semiconductor device 

 
 
2  Some main points in template-assisted synthesis  

2.1  Categories of templates  

In this review, we divided templates into two categories according to their source. One category requires a 
complex synthesis procedure, whereas the other is widely available and inexpensive. For example, carbon 
spheres and metal organic framework (MOF) templates need complicated synthesis methods, making them 
expensive. Their homogeneous morphology improves their competitiveness. On the other hand, some biomass 
templates are widely available, have a low cost, and require only simple treatment before use, attracting the 
interest of researchers. However, the irregular form and structure of biomass templates limits their gas sensing 
ability. Exploring the vastness of nature for high-performance and low-cost templates is thus the unwavering 
focus of our research.  

2.2  Selection of synthesis methods 

The choice of synthesis method is equally crucial in the template-assisted synthesis process. The electro-
spinning method (Sanger et al., 2018; Shin et al., 2021), deposition method (Sabri et al., 2018; Luong et al., 
2021), hydrothermal method (Lai et al., 2018; Zheng et al., 2021), and dipping method (Li C et al., 2019; Teng 
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et al., 2020) are some of the most popular methods for preparing nanomaterials using a template-assisted syn-
thesis process. We have loosely categorized the methods based on how materials of various dimensions are 
prepared. Electrostatic spinning is commonly used to make one-dimensional (1D) nanomaterials, whereas to 
make two-dimensional (2D) nanomaterials, a deposition process is often used. A dipping method can be used to 
make three-dimensional (3D) nanomaterials with simple components, while a hydrothermal method can be used 
when a sophisticated reaction process is required. Other synthesis methods such as the sol–gel method (Feng et 
al., 2021) and the spin coating method (Kwon et al., 2019), are also used to synthetize nanomaterials. A flexible 
technique selection is a requirement for a successful experiment.  

In the process of template synthesis, we frequently use a hard or soft template. A hard template typically 
uses the inner or outer surface of the material as the framework, and the material is obtained by removing the 
framework. For example, Li W et al. (2015) fabricated a nanostructured polyaniline-based aromatic organic 
compound sensor using a single-walled carbon nanotube as a hard template. The structure of this material is 
extremely stable. Cao et al. (2020) used orange peel as a template and successfully prepared FeYO3 micro-
spheres. The template was removed by necessary calcination, and the material inherited the original shape of the 
template. At a working temperature of 330 ℃, the sensor showed good sensing performance and distinct se-
lectivity. Surfactant-based soft templates are micelles or inverse micelles. Ren et al. (2022) used block co-
polymers as a soft template and prepared a Si-WO3-based gas sensor with a high specific surface area and 
abundant surface adsorbed oxygen species. The sensor exhibits excellent acetone sensing performance with a 
high response and selectivity. They also used block copolymers as a template to construct an unconventional 
Si-doped tungsten oxide nanowire array interweaved into 3D mesoporous superstructures with a large specific 
surface area. The Si-doped WO3-based sensor exhibited excellent sensing performance to ethanol at 100 ℃ 
(Ren et al., 2021).  

In contrast to these template methods, the self-template method is a concept that eliminates the need for a 
removal step and uses the precursor as a template for the synthesis of a porous catalytic structure (Wang G et al., 
2018; Shen et al., 2021; Feng et al., 2022c; Hu et al., 2022). Recently, the self-template method has been used to 
prepare an increasing number of mesoporous materials with desirable composition and nanoarchitecture by 
transforming inorganic–organic hybrids at elevated temperatures under different atmospheric conditions. This 
synthesis strategy is a cost-effective and efficient method for preparing mesoporous metal oxide materials. 
Using the self-template method, Chen Y et al. (2022) developed a gas detecting material that can detect the 
freshness of seafood. In their research, metal-polyphenol hybrids were used as a precursor to prepare meso-
porous Au-ZnO nanospheres. Based on the self-template method, Au species were evenly distributed on the 
mesoporous ZnO framework, significantly improving the sensing performance of the constituents. The de-
veloped gas sensor could also be used to monitor the spoilage process of fish. Using plant polyphenol as a ligand, 
Feng et al. (2022b) prepared a self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature 
detection of hazardous TEA. These nanospheres have a large pore size (5.1 nm) and a high specific surface area 
(86.5–105.2 m2/g). The mesoporous Au-SnO2 nanospheres have good selectivity and repeatability, a low de-
tection limit (0.11 ppm) and a low working temperature (50 ℃). 

2.3  Selection of the calcination temperature 

In addition to the complex synthesis process, the remaining details should not be ignored. The choice of 
appropriate parameters for the calcination process is very important in the template-assisted synthesis method. 
Calcination will affect the morphology and crystalline phase of the final product. To obtain good sensing ma-
terials, multiple experiments are required to determine an appropriate temperature. However, there is some 
regularity to follow. For example, the calcination temperature is usually 400–500 ℃ when a SiO2 template is 
used (Kwon et al., 2019; Li C et al., 2019; Gao et al., 2020; Feng et al., 2021), 500–700 ℃ when an MOF 
template is used (Koo et al., 2018; Lai et al., 2018; Li H et al., 2020), and 350–550 ℃ when a polystyrene sphere 
template is used (Li C et al., 2019; Yi et al., 2019; Fei et al., 2020; Hung et al., 2020; Park et al., 2020). For other 
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templates such as plant tissues or absorbent cotton, the calcination temperature is usually above 500 ℃ (Zhang 
X et al., 2017; Sabri et al., 2018; Na et al., 2019; Teng et al., 2020; Zeng et al., 2020). 

 
 

3  3D materials prepared using plant polyphenols as a template 
 
Plant polyphenols are a common source of biomass that has low cost, no toxicity, potent metal chelation, 

and good adhesive properties toward a variety of substrates (Chen Z et al., 2013; Qin et al., 2021). These 
amorphous coordination polymers might substitute as a precursor to prepare a uniform porous structure material, 
which could be used as a template for tailoring the structure and creating SMO sensors. Studies of gas sensors 
based on semiconductor materials generated using plant polyphenols as a template are summarized in Table S1. 

 
Table S1  Summary of nanomaterials for gas sensing using plant polyphenols as a template  

Sensing material Gas Temperature Concentration/Response τres (s) Reference 

SnO2 Ethanol 250 ℃ 50 ppm/18.9 4 Feng et al. (2021) 

Au-In2O3 Triethylamine RT 10 ppm/54.9 101 Feng et al. (2022a) 

Au-SnO2 Triethylamine 50 ℃ 5 ppm/5.16 37 Feng et al. (2022b) 

Au-ZnO Trimethylamine 250 ℃ 10 ppm/52.6 12 Chen Y et al. (2022) 

ZnO-Au Ethanol 200 ℃ 50 ppm/159 9 Lei et al. (2021) 

ZnO Ethanol 250 ℃ 50 ppm/4.5 100 Wang G et al. (2018)

RT: room temperature; τres: response time. 1 ppm=1×10−6 

 
For example, tannic acid (TA) is a natural abundant polyphenol extracted from plant tissues (Wang G et al., 

2019a; Lei et al., 2021;Feng et al., 2022a). Feng et al. (2021) used TA formaldehyde polymer as a template to 
prepare an ethanol sensor based on a nanoporous tin polyphenol formaldehyde polymer. The scanning electron 
microscope (SEM) image shows that the spherical morphology of SnO2 is well-preserved after calcination  
(Fig. S2a). As shown in the transmission electron microscope (TEM) image (Fig. S2b), SnO2 nanocrystals with 
a diameter of around 5–10 nm make up the mesoporous structure. The material has a uniform and porous 
structure with a large specific surface area of 185.6 m2/g, ensuring good sensing performance. Fig. S2c shows 
the excellent response and repeatability of the sensor. Sometimes, adjusting the configurational distribution of 
catalysts can change the selectivity of a sensor. Again, using tannic acid as a template, Wang G et al. (2018) 
demonstrated a self-template strategy for the preparation of mesoporous SMO material by thermal decompo-
sition of metal-phenolic coordination polymers. By altering the metal species, the mesoporous metal oxide 
spheres had either a solid or hollow inner structure. This material-based gas sensor can be used as a sensing 
platform for highly sensitive and selective detection of volatile organic compounds and biomolecules. 

 
 

 
Fig. S2  Sample characterization: scanning electron microscope (SEM) (a) and transmission electron microscope (TEM) (b) 
images of mesoporous SnO2 spheres; (c) response curves measured for different concentrations of ethanol (1 to 100 ppm) 
at 250 ℃  
Reproduced from Feng et al. (2021), Copyright 2021, with permission from Elsevier. 1 ppm=1×10−6 
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