Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn

Supplementary materials for

Shanshan ZHENG, Shuai LIU, Licheng WANG, 2024. Event-triggered distributed optimization for model-free multiagent systems. Front Inform Technol Electron Eng, 25(2):214-224. https://doi.org/10.1631/FITEE.2300568

Proof S1 Proof of Theorem 1

The following proof is composed of two steps. First, we shall certify the boundedness of the estimate of the pseudo-partial-derivative (PPD) matrix $\hat{\mathcal{U}}_i(h)$.

Step 1: boundedness of $\hat{\mathbf{U}}_i(h)$

Define

$$\hat{\mathbf{U}}_{i}(h) \triangleq \begin{bmatrix}
\hat{\omega}_{i,11}(h) & \hat{\omega}_{i,12}(h) & \cdots & \hat{\omega}_{i,1n}(h) \\
\hat{\omega}_{i,21}(h) & \hat{\omega}_{i,22}(h) & \cdots & \hat{\omega}_{i,2n}(h) \\
\vdots & \vdots & & \vdots \\
\hat{\omega}_{i,n1}(h) & \hat{\omega}_{i,n2}(h) & \cdots & \hat{\omega}_{i,nn}(h)
\end{bmatrix},$$
(S1)

which can also be rewritten as

$$\hat{\mathbf{U}}_{i}(h) \triangleq \begin{bmatrix} \hat{\mathbf{U}}_{i,1}(h) \\ \hat{\mathbf{U}}_{i,2}(h) \\ \vdots \\ \hat{\mathbf{U}}_{i,n}(h) \end{bmatrix},$$
(S2)

where $\hat{\mathbf{U}}_{i,j}(h) \triangleq \begin{bmatrix} \hat{\varpi}_{i,j1}(h) & \hat{\varpi}_{i,j2}(h) & \dots & \hat{\varpi}_{i,jn}(h) \end{bmatrix}$. Then, at the triggering instant $h = h_s^i$, one has

$$\hat{\mathcal{U}}_i(h_s^i - 1) = \hat{\mathcal{U}}_i(h - 1), u_i(h_s^i - 1) = u_i(h - 1). \tag{S3}$$

The updating algorithm (16) is reformulated as

$$\hat{\mathcal{U}}_{i,j}(h) = \hat{\mathcal{U}}_{i,j}(h-1) + \frac{\gamma(\Delta y_{i,j}(h) - \hat{\mathcal{U}}_{i,j}(h-1)\Delta u_i(h-1))\Delta u_i^{\mathrm{T}}(h-1)}{\nu + \|\Delta u_i(h-1)\|^2},$$
(S4)

where $\Delta y_{i,j}(h) = \mho_{i,j}(h-1)\Delta u_i(h-1)$. Defining the estimation error $\tilde{U}_{i,j} = \mho_{i,j}(h) - \hat{U}_{i,j}(h)$ and combining with Lemma 1 and algorithm (16), we arrive at

$$\tilde{\mathcal{U}}_{i,j}(h) = \tilde{\mathcal{U}}_{i,j}(h-1) + \mathcal{U}_{i,j}(h) - \mathcal{U}_{i,j}(h-1) - \frac{\gamma \tilde{\mathcal{U}}_{i,j}(h-1)\Delta u_i(h-1)\Delta u_i^{\mathrm{T}}(h-1)}{\nu + \|\Delta u_i(h-1)\|^2}.$$
 (S5)

It is inferred from the fact that $\|\mho_i(h)\| \leq m$ in Lemma 1, and we can obtain $\|\mho_i(h) - \mho_i(h-1)\| \leq 2m$. Applying the basic inequality yields

$$\|\tilde{\mathfrak{V}}_{i,j}(h)\| \leq \|\tilde{\mathfrak{V}}_{i,j}(h) - \tilde{\mathfrak{V}}_{i,j}(h-1)\| + \|\tilde{\tilde{\mathfrak{V}}}_{i,j}(h-1) - \frac{\gamma \tilde{\tilde{\mathfrak{V}}}_{i,j}(h-1)\Delta u_i(h-1)\Delta u_i^{\mathrm{T}}(h-1)}{\nu + \|\Delta u_i(h-1)\|^2} \|$$

$$\leq \|\tilde{\tilde{\mathfrak{V}}}_{i,j}(h-1) - \frac{\gamma \tilde{\tilde{\mathfrak{V}}}_{i,j}(h-1)\Delta u_i(h-1)\Delta u_i^{\mathrm{T}}(h-1)}{\nu + \|\Delta u_i(h-1)\|^2} \| + 2m,$$
(S6)

which is further organized as follows:

$$\begin{split} & \left\| \tilde{\mathbf{U}}_{i,j}(h-1) - \frac{\gamma \tilde{\mathbf{U}}_{i,j}(h-1)\Delta u_i(h-1)\Delta u_i^{\mathrm{T}}(h-1)}{\nu + \left\| \Delta u_i(h-1) \right\|^2} \right\|^2 \\ = & \left(-2 + \frac{\gamma \left\| \Delta u_i(h-1) \right\|}{\nu + \left\| \Delta u_i(h-1) \right\|^2} \right) \frac{\gamma \left\| \tilde{\mathbf{U}}_{i,j}(h-1)\Delta u_i(h-1) \right\|}{\nu + \left\| \Delta u_i(h-1) \right\|^2} + \left\| \tilde{\mathbf{U}}_{i,j}(h-1) \right\|^2. \end{split}$$
(S7)

In addition, it is not tricky to confirm that there exist $\gamma \in (0,1)$ and $\nu > 0$ such that

$$-2 + \frac{\gamma \|\Delta u_i(h-1)\|}{\nu + \|\Delta u_i(h-1)\|^2} < 0, \tag{S8}$$

which is further concluded that there exists a scalar $\rho \in (0,1)$ satisfying the following condition:

$$\left\| \tilde{\mathcal{O}}_{i,j}(h-1) - \frac{\gamma \tilde{\mathcal{O}}_{i,j}(h-1)\Delta u_i(h-1)\Delta u_i^{\mathrm{T}}(h-1)}{\nu + \|\Delta u_i(h-1)\|^2} \right\| \le \rho \|\tilde{\mathcal{O}}_{i,j}(h-1)\|.$$
 (S9)

Substituting inequality (S9) into inequality (S6) yields

$$\|\tilde{\mathbf{U}}_{i,j}(h)\| \le \rho \|\tilde{\mathbf{U}}_{i,j}(h-1)\| + 2m \le \dots \le \rho^{h-1} \|\tilde{\mathbf{U}}_{i,j}(1)\| + \frac{2m(1-\rho^{h-1})}{1-\rho},\tag{S10}$$

which implies that $\tilde{\mathcal{U}}_{i,j}(h)$ is bounded. Since $\|\mathcal{U}_i(h)\| \leq m$, it is readily seen from inequality (S10) that both $\tilde{\mathcal{U}}_i(h)$ and $\hat{\mathcal{U}}_i(h)$ are bounded. In addition, it is obvious that $\hat{\mathcal{U}}_i(h)$ remains unchanged over the interval $h \in (h_s^i, h_{s+1}^i)$. Thus, it can be calculated that $\hat{\mathcal{U}}_i(h)$ is bounded at all instants. Because both $\mathcal{U}_i(h)$ and $\hat{\mathcal{U}}_i(h)$ are bounded, one has that Q(h), A(h), and M(h) are bounded matrices. Thus, there exist Nn-dimensional matrices \bar{Q} , \bar{A} , and \bar{M} satisfying $Q^{\mathrm{T}}(h)Q(h) \leq \bar{Q}$, $A^{\mathrm{T}}(h)A(h) \leq \bar{A}$, and $M^{\mathrm{T}}(h)M(h) \leq \bar{M}$.

Step 2: consensus analysis

Construct the following Lyapunov function:

$$V_1(h) = \tilde{y}^{\mathrm{T}}(h)\tilde{y}(h). \tag{S11}$$

Along the trajectory of system (25), the difference of $V_1(h)$ can be evaluated as follows:

$$\Delta V_{1}(h+1) = V_{1}(h+1) - V_{1}(h)$$

$$= [M(h)\tilde{y}(h) + Q(h)\tilde{d}(h-1) + \eta(h+1) + A(h)\beta(h)e(h)]^{T}$$

$$\cdot [M(h)\tilde{y}(h) + Q(h)\tilde{d}(h-1) + \eta(h+1) + A(h)\beta(h)e(h)] - \tilde{y}^{T}(h)\tilde{y}(h)$$

$$= \tilde{y}^{T}(h)(M^{T}(h)M(h) - I + \tau)\tilde{y}(h) + \tilde{d}^{T}(h-1)Q^{T}(h)Q(h)\tilde{d}(h-1) + \eta^{T}(h+1)\eta(h+1)$$

$$+ \beta(h)e^{T}(h)A^{T}(h)A(h)\beta(h)e(h) + 2\tilde{d}^{T}(h-1)Q^{T}(h)M(h)\tilde{y}(h) + 2\eta^{T}(h+1)M(h)\tilde{y}(h)$$

$$+ 2\beta(h)e^{T}(h)A^{T}(h)M(h)\tilde{y}(h) + 2\eta^{T}(h+1)Q(h)\tilde{d}(h-1) + 2\beta(h)e^{T}(h)A^{T}(h)\eta(h+1)$$

$$+ 2\beta(h)e^{T}(h)A^{T}(h)Q(h)\tilde{d}(h-1) - \tau\tilde{y}^{T}(h)\tilde{y}(h).$$
(S12)

By means of Assumption 3, one has $\|\tilde{d}_i(h)\| \leq \alpha(h)d$. With Lemma 4, Eq. (S12) is further manipulated

as follows:

$$\Delta V_{1}(h+1)$$

$$\leq \tilde{y}^{T}(h) (\check{\ell}_{1}M^{T}(h)M(h) - (1-\tau)I)\tilde{y}(h) + \check{\ell}_{2}\tilde{d}^{T}(h-1)Q^{T}(h)Q(h)\tilde{d}(h-1)$$

$$+ \check{\ell}_{3}\eta^{T}(h+1)\eta(h+1) + \check{\ell}_{4}\beta(h)e^{T}(h)A^{T}(h)A(h)\beta(h)e(h)$$

$$\leq \tilde{y}^{T}(h) (\check{\ell}_{1}\bar{M} - (1-\tau)I)\tilde{y}(h) + \check{\ell}_{2}\tilde{d}^{T}(h-1)\bar{Q}\tilde{d}(h-1)$$

$$+ \check{\ell}_{3}\eta^{T}(h+1)\eta(h+1) + \check{\ell}_{4}\beta(h)e^{T}(h)\bar{A}\beta(h)e(h)$$

$$- \varepsilon_{1}\tilde{d}^{T}(h-1)\tilde{d}(h-1) + \varepsilon_{1}\alpha^{2}(h-1)d^{2}$$

$$- \varepsilon_{2}\eta^{T}(h+1)\eta(h+1) + \varepsilon_{2}\eta^{T}(h+1)\eta(h+1)$$

$$+ \varepsilon_{3}\beta^{2}(h) \left(\sum_{i=1}^{N} \theta_{i} - e^{T}(h)e(h)\right) - \tau\tilde{y}^{T}(h)\tilde{y}(h)$$

$$= \Omega_{1}^{T}(h)\Pi_{1}\Omega_{1}(h) - \tau\tilde{y}^{T}(h)\tilde{y}(h) + \Upsilon_{1}(h),$$
(S13)

where $\Omega_1(h) \triangleq [\tilde{y}^{\mathrm{T}}(h) \ \tilde{d}^{\mathrm{T}}(h-1) \ \eta^{\mathrm{T}}(h+1) \ \beta(h)e^{\mathrm{T}}(h)]^{\mathrm{T}}$ and $\Upsilon_1(h) \triangleq \varepsilon_1\alpha^2(h-1)d^2 + \varepsilon_2\eta^{\mathrm{T}}(h+1)\eta(h+1) + \varepsilon_3\beta^2(h) \sum_{i=1}^N \theta_i$ with $\varepsilon_1-\varepsilon_3$ and $\ell_1-\ell_6$ being positive constants.

It follows from inequality (S13) that

$$V_1(h+1) \le (1-\tau)V_1(h) + \Upsilon_1(h). \tag{S14}$$

Noting that $0 < \tau < 1$, $\sum_{h=0}^{\infty} \tau = \infty$, and $\lim_{h\to\infty} \frac{\gamma_1(h)}{\tau} = 0$, it is simple to deduce from Lemma 2 that $\lim_{h\to\infty} V_1(h) = 0$. Thus, we can draw the conclusion that $\lim_{h\to\infty} \|\bar{y}(h) - y_i(h)\| = 0$. The proof is complete.

Proof S2 Proof of Theorem 2

Construct a Lyapunov function as follows:

$$V_2(h) = \hat{y}^{\mathrm{T}}(h)\hat{y}(h).$$
 (S15)

Then, calculating the difference of $V_2(h)$ results in

$$\Delta V_{2}(h+1) = V_{2}(h+1) - V_{2}(h)
= [M(h)\hat{y}(h) + Q(h)\tilde{d}(h-1) + A(h)\beta(h)\delta(h) + A(h)\beta(h)e(h)]^{T}
\cdot [M(h)\hat{y}(h) + Q(h)\tilde{d}(h-1) + A(h)\beta(h)\delta(h) + A(h)\beta(h)e(h)] - \hat{y}^{T}(h)\hat{y}(h)
= \hat{y}^{T}(h)(M^{T}(h)M(h) - I)\hat{y}(h) + \tilde{d}^{T}(h-1)Q^{T}(h)Q(h)\tilde{d}(h-1)
+ \beta(h)\delta^{T}(h)A^{T}(h)A(h)\beta(h)\delta(h) + \beta(h)e^{T}(h)A^{T}(h)A(h)\beta(h)e(h)
+ 2\tilde{d}^{T}(h-1)Q^{T}(h)M(h)\hat{y}(h) + 2\beta(h)\delta^{T}(h)A^{T}(h)M(h)\hat{y}(h)
+ 2\beta(h)e^{T}(h)A^{T}(h)M(h)\hat{y}(h) + 2\beta(h)\delta^{T}(h)A^{T}(h)Q(h)\tilde{d}(h-1)
+ 2\beta(h)e^{T}(h)A^{T}(h)A(h)\beta(h)\delta(h) + 2\beta(h)e^{T}(h)A^{T}(h)Q(h)\tilde{d}(h-1) - \hat{y}^{T}(h)\hat{y}(h),$$

which further implies that

$$\Delta V_{2}(h+1)
\leq \hat{y}^{T}(h) (\check{\ell}_{5}M^{T}(h)M(h) - I)\hat{y}(h) + \check{\ell}_{6}\tilde{d}^{T}(h-1)Q^{T}(h)Q(h)\tilde{d}(h-1)
+ \check{\ell}_{7}\beta(h)\delta^{T}(h)A^{T}(h)A(h)\beta(h)\delta(h) + \check{\ell}_{8}\beta(h)e^{T}(h)A^{T}(h)A(h)\beta(h)e(h)
\leq \hat{y}^{T}(h) (\check{\ell}_{5}\bar{M} - I)\hat{y}(h) + \check{\ell}_{6}\tilde{d}^{T}(h-1)\bar{Q}\tilde{d}(h-1) + \check{\ell}_{7}\beta(h)\delta^{T}(h)\bar{A}\beta(h)\delta(h)
+ \check{\ell}_{8}\beta(h)e^{T}(h)\bar{A}\beta(h)e(h) - \omega_{1}\tilde{d}^{T}(h-1)\tilde{d}(h-1) + \omega_{1}\alpha^{2}(h-1)d^{2}
- \omega_{2}\beta(h)\delta^{T}(h)\beta(h)\delta(h) + \omega_{2}\beta^{2}(h)l^{2} + \omega_{3}\beta^{2}(h) \left(\sum_{i=1}^{N}\theta_{i} - e^{T}(h)e(h)\right)
= \Omega_{2}^{T}(h)\Pi_{2}\Omega_{2}(h) + \Upsilon_{2}(h),$$
(S17)

where $\Omega_2(h) \triangleq [\hat{y}^{\mathrm{T}}(h) \quad \tilde{d}^{\mathrm{T}}(h-1) \quad \beta(h)\delta^{\mathrm{T}}(h) \quad \beta(h)e^{\mathrm{T}}(h)]^{\mathrm{T}} \text{ and } \Upsilon_2(h) \triangleq \omega_1 \alpha^2(h-1)d^2 + \omega_2 \beta^2(h)l^2 + \omega_3 \beta^2(h) \sum_{i=1}^N \theta_i$ with $\omega_1 - \omega_3$ and $\ell_7 - \ell_{12}$ being positive constants. Then, we can reasonably calculate that

$$\Omega_2^{\mathrm{T}}(h)\Pi_2\Omega_2(h) \le -\hbar\Omega_2^{\mathrm{T}}(h)\Omega_2(h),\tag{S18}$$

where $\hbar \triangleq \rho_{\min}\{-\Pi_2\} > 0$. Taking inequality (S17) into account, we can obtain

$$V_2(h+1) \le V_2(h) - \hbar\Omega_2^{\mathrm{T}}(h)\Omega_2(h) + \Upsilon_2(h).$$
 (S19)

Note that $\lim_{h\to\infty} \Upsilon_2(h) = 0$ and that $\Upsilon_2(h)$ is bounded, which indicates that $\sum_{h=0}^{\infty} \Upsilon_2(h) < \infty$. It can be lightly derived from Lemma 3 that V(h) converges to 0. Hence, we arrive at $\lim_{h\to\infty} V_2(h) = 0$ and $\lim_{h\to\infty} \|y^* - y_i(h)\| = 0$. According to the definition of limit, it can be shown that the limits of $y_i(h)$ and $\bar{y}(h)$ exist. Since the limit point of the sequence $\bar{y}(h)$ is unique, based on Theorem 1, one can deduce that $\lim_{h\to\infty} y_i(h) = \bar{y}(h)$. Thus, we have $\lim_{h\to\infty} \bar{y}(h) = y^*$. The proof of Theorem 2 is complete.