Massively Parallel Video Networks
Supplemental Material

Jodo Carreiral!, Viorica Pitraucean’ ', Laurent Mazare!,

Andrew Zisserman®?, Simon Osindero’

'DeepMind
?Department of Engineering Science, University of Oxford
{joaoluis, viorica, mazare, zisserman, osindero}@google.com
Tshared first author

1 Timing details with execution timelines

In this section we give more details on the timing measurements. Table 1 and
table 2 report the average throughput of Par-DenseNet and Par-Inception mod-
els. GPU measurements have been done using Nvidia K-40 GPUs. We include
the throughput in frames per second in these tables. These numbers are only
indicative as they depend on the implementation (which is why they were not
included in the original paper).

Model ‘# Par. Subnets‘ 48 cores ‘ 2 GPUs ‘ 4 GPUs ‘ 8 GPUs
without multi-rate clocks
sequential 1 4.9 (1.0x) [14.1 (1.0x)[14.1 (1.0x)| 14.1 (1.0%)
semi-parallel 2 6.4 (1.3x) [22.3 (1.6%)[23.9 (1.7x)] 23.9 (1.7x)
semi-parallel 4 8.8 (1.8x) [23.5 (1.7x)|35.7 (2.5x)[40.2 (2.9%)
semi-parallel 7 11.0 (2.2x)[22.3 (1.6%)[36.4 (2.6x)| 51.6 (3.7x)
parallel 14 12.5 (2.6%)|23.5 (1.7x)[37.7 (2.7x)| 53.8 (3.8%)
with multi-rate clocks

sequential 1 12.8 (2.6%)[48.1 (3.4x)[47.6 (3.4x)] 47.8 (3.4%)
semi-parallel 2 14.8 (3.0%)[55.1 (3 9x)[55.8 (4.0x)| 56.2 (4.0%)
semi-parallel 4 17.9 (3.6x)[63.3 (4.5%)[72.4 (5.1x)| 72.8 (5.2%)
semi-parallel 7 22.5 (4.6x)[64.0 (4.5%)|78.3 (5.6x)| 85.4 (6.1x)
parallel 14 25.2 (5.1x)]69.9 (5.0x)[87.8 (6.2x)[103.7 (7.4x)

Table 1. Throughput measurements in frames per second for Par-DenseNet models.

Figure 1 represents the usage of each of the GPUs when running a sequential,
a semi-parallel, and a fully-parallel Par-Inception model. The semi-parallel and
fully-parallel models run 2.6 times faster than the sequential one (the time axis
has been rescaled accordingly). Each inception block uses a different color.

We forced the sequential model to use all 8 GPUs but as expected each
inception block only gets executed after the previous one in this case. It is also
worth noting that the 4 branches of a given inception block are not executed in
parallel, although they could be — we tried this and did not see any noticeable

2 Carreira, Patraucean et al.

0 10000 20000 30000 40000 50000 60000 70000
time {us)

5000 10000 15000 20000 25000
time (us}

Fig. 1. Timeline for GPU usage for a sequential Par-Inception model on 8 GPUs at
the top, a semi-parallel Par-Inception model using 4 GPUs in the middle, and a fully
parallel model on 8 GPUs at the bottom. Each inception block is represented with a
different color. Operations outside of inception blocks are colored in grey. Note that
the timescale is different in the first picture compared to the two following ones.

speedup as one of the branches is far slower than the other three. The inter-GPU
communication overhead caused by using all 8 GPUs appears to be negligible:
the frame rate we measured did not depend on the number of GPUs being used.

However when using the parallel model, all the inception blocks are able to
run at the same time. The bottleneck when running with 8 GPUs is that the
first three convolution layers represent roughly a third of the computation and
in our model they are executed sequentially. The same bottleneck applies to the
semi-parallel model, but the GPU usage is much more balanced in this case as
each of the other GPUs have at least two inception blocks to compute. A simple

Massively Parallel Video Networks 3

Model ‘# Par. Subnets‘ 48 cores ‘ 2 GPUs ‘ 4 GPUs ‘ 8 GPUs
without multi-rate clocks
sequential 1 6.0 (1.0x) |18.6 (1.0x)|18.0 (1.0x)|18.1 (1.0x)
semi-parallel 5 7.9 (1.3x) [33.8 (1.8x)[48.7 (2.7x)|49.2 (2.7x)
parallel 10 7.8 (1.3%) [33.2 (1.8x)[46.4 (2.6x)|48.1 (2.6%)
with multi-rate clocks
sequential 1 14.3 (2.4%)]48.2 (2.6x)|47.1 (2.6x)[47.1 (2.6x)
semi-parallel 5 18.1 (3.0%)[63.9 (3.4x)[90.9 (5.0x)[90.3 (5.0%)
parallel 10 18.1 (3.0%)[63.7 (3.4x)|88.6 (4.9%)|90.7 (5.0%)

Table 2. Throughput measurements in frames per second for Par-Inception models.

workaround would be to run these three convolutional layers in parallel branches
— we plan on doing so in future work.

In order to visualise the trade-off between efficiency improvements and per-
formance degradation, figure 2 plots model performance with respect to efficiency
for the Par-DenseNet and Par-Inception models with clocks. Round markers rep-
resent the accuracy on the action task, normalized by the accuracy obtained by
the sequential model. Square markers represent the inverse of the loss on the
pose estimation task, again normalized by the loss obtained by the sequential
model.

1.0 a
20 10
D]‘
08 2 b 353 QO baseline Sequential Par-Inception action
o 4 [0 baseline Sequential Par-Inception pose est.
% QO baseline Sequential Par-DenseNet action
£ 0.6 [0 baseline Sequential Par-DenseNet pose est.
% O 1 Semi-parallel Par-Inception action
; o4 [1 1 Semi-parallel Par-Inception pose est.
o O 2 Semi-parallel Par-DenseNet action
% [J 2 Semi-parallel Par-DenseNet pose est.
O 3 Parallel Par-Inception action
02 [0 3 Parallel Par-Inception pose est.
4 Parallel Par-DenseNet action
00 4 Parallel Par-DenseNet pose est.
0.8 1.0 1.2 1.4 1.6 1.8 2.0

frame per second throughput as a multiplicative factor w.r.t. sequential models
Fig. 2. Performance/efficiency trade-off introduced by depth-parallelising models with

multi-rate clocks on 4 GPUs. Note that the baseline models use multi-rate clocks hence
the smaller speedups compared to tables 1 and 2.

2 Pseudocode for predictive depth-parallelism

Using the toy example in the figure below, we illustrate the construction of
the TensorFlow graph for the proposed predictive depth-parallel models with

4 Carreira, Patraucean et al.

multi-rate clocks in Algorithm 20. The model here has n = 6 layers and a final
classifier, and it is unrolled over 5 time steps. The model outputs predictions y;
at the same rate as the rate at which frames I; arrive. The layers are distributed
into 2 parallel subnetworks, with k& = 3 sequential layers in each subnetwork,
and uses a clock rate of 1 for the first subnetwork and clock rate of 2 for the
second one.

This has three implications: (1) when we break the sequence path between
subnetworks, the output layer of subnetwork 1 should cache its activations for
one time step, when they can be processed by the second subnetwork; (2) but
because the second subnetwork ticks only every two time steps, the last layer
of subnetwork 1 must actually cache its activations for two time steps, and (3)
in every other time steps, the output classifier makes predictions based on stale
inputs. The model is unrolled over time (line 5), similar to an RNN, and main-
tains its state, more precisely maintains two steps of computation as mentioned
in observation (2) above.

At the first time step, the state is initialised to 0 (line 3). In every unroll
step, the outputs of the network are first initialised from the state (line 6), and
the current frame is appended to state (line 7) to be processed by the first layer.
Then the computation traverses the network in depth (line 8). If the clock of a
layer did not reach its tick time (line 9), then the layer is simply not connected
in the graph for this time step (line 10), and its output will carry over a copy
of the state to the next time step. If the clock does tick, we then need to check
if the layer is to be connected in sequence (line 12) — inputs are taken from the
last output of the previous layer as in standard models (line 15) — or in parallel
— inputs are taken only from the state (line 13), using the two last entries in
state, since the second subnetwork ticks slower. Eventually, the state is updated
with the current outputs (line 18) and the loop is repeated for the remaining
frames. The output predictions of the network are extracted from the last layer,
by applying (in sequence) a classifier (line 19).

3 Additional details on training setups

We used randomly extracted subsequences of 32 frames for pose and 64 frames
for action in training; the evaluation was done on the full sequences, that have
up to 250 frames — 10 seconds of video. The spatial resolution of the input frames
at both training and evaluation time is 224 x 224, obtained by random cropping
at training time and central cropping for evaluation. We also randomly flipped
the videos horizontally during training.

For the task of keypoint localisation, we generate dense per-frame labels by
convolving the binary joint maps with a gaussian filter and obtain 17D heatmaps.
Note that there can be multiple people in a single image and although this is a
state-of-the-art system the labels are slightly noisy since they were automatically
extracted and not verified by human experts. Also, for simplicity, we do not
consider the problem of person detection, just direct keypoint localization. As a

Massively Parallel Video Networks 5

input : video frames {I}
input : number of sequential layers k
output: predictions {y} Vo vi v ys o va

1 n < len{layers}

2 clock rates + [1,1,1,2,2,2]

3 state + [0]

1y« []

5 for ¢ < 0 to len{/} do

6 |outputs <+ state.copy()

7 |state.append(I[t])

8 |for d + 0 ton do

9 | |if ¢ mod clock_rates[d]! = 0 then
10 | continue
11 | |end
12 | |if d mod k==0 then l
13 | outputs[d].append(layer|[d](state[d — 1][-2:]))
14 | |else

15 | outputs[d].append(layer|[d](outputs[d — 1][-1]))

16 | |end

17 |end

18 |state < outputs ol de e
19 |y.append(classifier(outputs|-1]))

20 end

Fig. 3. Graph construction for predictive depth-parallel models, with multi-rate clocks.

consequence of these aspects of our setup, one predicted heatmap can contain
several joints of the same type belonging to different individuals.

All our models were trained using SGD with momentum 0.9. For both tasks,
the Par-Inception models were trained with initial learning rate of 0.1, and batch
size of 4. For keypoint localisation, the learning rate was decreased by a factor
of 10 after 35k and 55k iterations of training, whereas for action classification, it
was decreased after 50k and 60k iterations. For both tasks, we ran 70k iterations
of training.

The Par-DenseNet models were more memory intensive so we used a smaller
batch size, 1 for keypoint localization, and 2 for classification. We trained the
models with learning rate 1.0 for keypoints and 0.1 for actions, for a total of
150k iterations, lowering the learning rate by a factor of 10 at 100k iterations.

4 Architecture details

In this section, we explain how the proposed principles were applied on two
popular image classification models: DenseNet [1] and Inception [2].

DenseNet model. DenseNet [1] is a state-of-the-art model for image classifi-
cation. It consists of densely-connected blocks, each composed of b miniblocks.
These blocks are densely connected such that every miniblock sends its activa-

6 Carreira, Patraucean et al.

tions to all the subsequent miniblocks in the same block. The model has growth-
rate as a hyperparameter to control how many new features are added by each
layer. Pooling layers are interleaved between the blocks. We used 4 blocks with
average pooling operators in between, and growth-rate of 64. The blocks have
4, 8, 8, and 6 miniblocks (each with a 1x1 convolution followed by a 3x3 con-
volution). The model starts with a 7x7 convolutional layer and ends with a 3x3
heatmap prediction head for dense predictions tasks. The input to this head is
a stack of skip-connections (upsampled feature maps, 56x56, from the end of
each block plus the first convolutional layer). For classification tasks the head
is replaced by a fully connected layer. We experimented with this model both
with and without variable clock rates and temporal kernels (kernel dimension 2
along time for all layers but the first convolutional layer, where the model inputs
a single image at a time). We also experimented with versions with and with-
out feedback. When using feedback, the heatmaps predictions from the previous
frame are stacked with the output of the first convolutional layer for the current
frame. We trained the resulting models in all cases recurrently, restricting inputs
to past frames so it behaves causally.

Inception model. The Inception architecture [2] is a directed graph that be-
gins with 3 convolutional layers, followed by 9 inception blocks. Each inception
block is composed of 4 parallel branches. For this model we experimented only
with a version with temporal filters and variable clock rates, similar to the 3D
ConvNet for action classification from the literature, I3D [3], but transformed
into a causal recurrent-style network. Masked 3D convolutions can be used for
this (or, equivalently, shifting along the time dimension, as mentioned in [4], sec.
2.1), but we prefer the unrolling since we are interested in frame-by-frame oper-
ation. The parameters between time steps are shared, the unrolling in this case
being equivalent to shifting the convolutional kernel over the time dimension
when applying a 3D convolution. The variable temporal strides of I3D are incor-
porated by removing blocks from the unrolling graph at time steps when there
is a stride gap. Similar to DenseNet model, for per-frame prediction tasks, we
introduce skip-connections (upsampling the activations of each inception block
and passing them through a prediction head to produce spatial heatmaps).

Discussion.

In terms of model capacity, the two models are comparable, the temporal
version of Inception has 12M parameters, and the temporal version of DenseNet
has 10M parameters. The length of the longest sequential path for the Inception-
based model is only 22 (counted as convolutional layers), whereas for DenseNet
it is 54. Hence there are more possible options for breaking down this path into
parallel subnetworks for DenseNet than for Inception. The information latency is
however shorter for DenseNet because of its dense connectivity. The next section
gives speedups for the two architectures, for different levels of parallelism.

We specify here the architectures trained for keypoint localisation or action,
giving the layer structure (kernel shapes, number of channels, strides) and num-
ber of weights. ReLU and batch normalization layers are not shown, to reduce
clutter, but are used as in the original image architectures.

Massively Parallel Video Networks 7

4.1 DenseNet: table 3

4.2 Inception: tables 4 - 5
References

1. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer
Society (2017) 2261-2269

2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D.; Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, IEEE Computer Society (2015) 1-9

3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the
kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer Society
(2017) 47244733

4. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N.; Senior, A.W., Kavukcuoglu, K.: Wavenet: A generative model
for raw audio. CoRR abs/1609.03499 (2016)

8 Carreira, Patraucean et al.

Layer name Type |# channels|Kernel shape|Strides

Conv3d_1la_7x7| conv3d 64 1x7x7 1,2, 2

MaxPool3d_sp jmaxpool3d - 1x3x3 1,2, 2

MaxPool3d_t |maxpool3d - 2x1x1 2, 1,1

Block_1
bottleneck_1.0 | conv3d 256 1x1x1 1,1, 1
conv_1_0 conv3d 64 1x3x3 1, 1,1
bottleneck_1_1 | conv3d 256 1x1x1 1,1, 1
conv_1_1 conv3d 64 1x3x3 1,1,1
bottleneck 1.2 | conv3d 256 Ix1x1 1,1, 1
conv_1_2 conv3d 64 1x3x3 1,1,1
bottleneck_ 1.3 | conv3d 256 Ix1x1 1,1, 1
conv_1_3 conv3d 64 1x3x3 1,1, 1
skip_1 conv3d 16 1x1x1 1,1,1
bottleneck 1.4 | conv3d 168 1x1x1 1,1, 1
AvgPool 1 conv3dd - 1x2x2 1,2,2
output = skip_1, AvgPool_1

Block_2
bottleneck 2.0 | conv3d 256 1x1x1 1,1, 1
conv_2_0 conv3d 64 1x3x3 1,1,1
conv_2_7 conv3d 64 1x3x3 1,1, 1
bottleneck 2.7 | conv3d 256 Ix1x1 1,1, 1
skip_2 conv3d 16 1x1x1 1,1, 1
bottleneck 2.8 | conv3d 340 1x1x1 1, 1,1
AvgPool 2 conv3dd - 2x2x2 2,2,2
output = skip-2, AvgPool_2

Block_3
bottleneck 3.0 | conv3d 256 1x1x1 1,1,1
conv_3_0 conv3d 64 1x3x3 1,1, 1
conv_3_7 conv3d 64 1x3x3 1,1, 1
bottleneck 2.7 | conv3d 256 1x1x1 1,1,1
skip_3 conv3d 16 Ix1x1 1, 1,1
bottleneck_3_-8 | conv3d 426 1x1x1 1,1, 1
AvgPool 3 conv3d - 2x2x2 2,2, 2
output = skip_3, AvgPool 3

Block 4
bottleneck 4.0 | conv3d 256 Ix1x1 1,1, 1
conv_4.0 conv3d 64 1x3x3 1,1,1
conv_4.5 conv3dd 64 1x3x3 1,1,1
skip_4 conv3d 16 Ix1x1 1,1,1
output = skip_4

Upsample and concat(MaxPool3d_sp, skip_1...4)

Logits ‘ conv3d ‘ n_keypoints ‘ 1x3x3 ‘ 1, 1,1

Total number of weights: 10,843,464

Table 3. Parameters of Par-DenseNet models for human keypoint localization. This
version has multi-rate clocks and temporal filters but no feedback — in the version with
feedback the input to ”Logits” is fed back and concatenated with ”MaxPool3d_sp”.
The classification version does not use the ”skip” layers and instead has a classification
head with inputs from just block 4.

Massively Parallel Video Networks

Layer name Type |# channels/Kernel shape|Strides
Conv3d_la 7x7 conv3d 64 TXTX7 2,2,2
MaxPool3d_2a_3x3|maxpool3d - 1x3x3 1,22
Conv3d_2b_1x1 conv3d 64 1x1x1 1,1, 1
Conv3d_2c_3x3 conv3d 192 3x3x3 1,1,1
MaxPool3d_3a_3x3|maxpool3d - 1x3x3 1,22
Mixed_3b
branch0 conv3d 64 Ix1x1 1,1, 1
branch1-0 conv3d 96 Ix1x1 1,1, 1
branchl_1 conv3d 128 3x3x3 1,1,1
branch2_0 conv3d 16 1x1x1 1,1,1
branch2_1 conv3d 32 3x3x3 1,1, 1
branch3_0 maxpool3d - 3x3x3 1,1, 1
branch3_1 conv3d 32 Ix1x1 1,1,1
output = concat(branch0, branchl, branch2, branch3)
Mixed_3c
branch0 conv3d 128 1x1x1 1,1,1
branch1_0 conv3d 128 Ix1x1 1,1,1
branchl_1 conv3d 192 3x3x3 1,1, 1
branch2_0 conv3d 32 1x1x1 1,1, 1
branch2_1 conv3d 96 3x3x3 1,1,1
branch3_0 maxpool3d - 3x3x3 1,1,1
branch3_1 conv3d 64 1x1x1 1,1,1

output = concat(branch0, branchl, branch2, branch3)
MaxPool3d_4a_3x3|maxpool3d - 3x3x3 2,2,2

Mixed_4b
branch0 conv3d 192 1x1x1 1, 1,1
branch1_0 conv3d 96 1x1x1 1,1,1
branchl1_1 conv3d 208 3x3x3 1,1, 1
branch2_0 conv3d 16 1x1x1 1,1, 1
branch2_1 conv3d 48 3x3x3 1,1,1
branch3_0 maxpool3d - 3x3x3 1,1, 1
branch3_1 conv3d 64 Ix1x1 1,1, 1
output = concat(branch0, branchl, branch2, branch3)

Mixed_4c
branch0 conv3d 160 Ix1x1 1,1, 1
branchl_0 conv3d 112 Ix1x1 1,1,1
branchl_1 conv3dd 224 3x3x3 1,1, 1
branch2_0 conv3d 24 1x1x1 1,1, 1
branch2_1 conv3d 64 3x3x3 1,1,1
branch3_0 maxpool3d - 3x3x3 1,1,1
branch3_1 conv3d 64 Ix1x1 1,1, 1
output = concat(branch0, branchl, branch2, branch3)

Mixed_4d
branch0 conv3d 128 1x1x1 1,1,1
branchl1_0 conv3d 128 1x1x1 1,1,1
branchl_1 conv3d 256 3x3x3 1,1, 1
branch2_0 conv3d 24 Ix1x1 1,1, 1
branch2_1 conv3d 64 3x3x3 1,1, 1
branch3_0 maxpool3d - 3x3x3 1,1,1
branch3_1 conv3d 64 1x1x1 1,1,1

output = concat(branch0, branchl, branch2, branch3)
cont. on next page

Table 4. Parameters of Par-Inception models.

10

Carreira, Patraucean et al.

Layer name Type |# channels|Kernel shape|Strides

Mixed_4e
branch0 conv3d 128 1x1x1 1,1,1
branch1_0 conv3d 144 1x1x1 1,1, 1
branchl_1 conv3d 288 3x3x3 1,1, 1
branch2_0 conv3d 32 Ix1x1 1,1, 1
branch2_1 conv3dd 64 3x3x3 1,1, 1
branch3_0 maxpool3d - 3x3x3 1,1,1
branch3_1 conv3d 64 1x1x1 1,1,1
output = concat(branch0, branchl, branch2, branch3)

Mixed _4f
branch0 conv3dd 256 1x1x1 1,1, 1
branch1_0 conv3d 160 1x1x1 1,1,1
branch1_1 conv3d 320 3x3x3 1,1, 1
branch2_0 conv3d 32 1x1x1 1,1,1
branch2_1 conv3d 128 3x3x3 1,1,1
branch3_0 maxpool3d - 3x3x3 1,1, 1
branch3_1 conv3d 128 1x1x1 1,1, 1
output = concat(branch0, branchl, branch2, branch3)

MaxPool3d_5a_3x3|maxpool3d - 2x2x2 2,2,2

Mixed_5b
branch0 conv3d 256 1x1x1 1,1,1
branch1_0 conv3d 160 Ix1x1 1,1,1
branchl_1 conv3d 320 3x3x3 1,1, 1
branch2_0 conv3d 32 1x1x1 1,1, 1
branch2_1 conv3d 128 3x3x3 1,1,1
branch3_0 maxpool3d - 3x3x3 1,1,1
branch3_1 conv3d 128 1x1x1 1,1, 1
output = concat(branch0, branchl, branch2, branch3)

Mixed_5c
branch0 conv3d 384 1x1x1 1,1,1
branch1_0 conv3d 192 1x1x1 1,1,1
branchl_1 conv3d 384 3x3x3 1,1,1
branch2_0 conv3d 48 Ix1x1 1,1, 1
branch2_1 conv3d 128 3x3x3 1,1, 1
branch3_0 maxpool3d - 3x3x3 1,1, 1
branch3_1 conv3d 128 1x1x1 1,1,1
output = concat(branch0, branchl, branch2, branch3)

AvgPool3d avgpool3d - 2x7x7 1,1,1

Logits conv3d | num_classes 1x1x1 1,1,1

Total number of weights: 12,501,056

Table 5. (cont.) Parameters of Par-Inception models.

