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1 Highlight-Net structure

As mentioned in the paper, the structure of Highlight-Net is adopted from [9].
The network structure is exhibited in Figure 1.

Fig. 1. Structure of Highlight-Net.

2 Training data for pretraining and finetuning

As mentioned in the paper, for pretraining we rendered synthetic faces under
real HDR environment maps, consisting of 100 indoor scenes and 100 outdoor
scenes. Two examples of the environment maps are shown in Figure 2. Examples
of rendered diffuse and specular layers, as well as the composite renderings, are
displayed in Figure 3.

In finetuning, as mentioned in Section 6.1 of the main text, images from the
MS-celeb-1M dataset [2] are preprocessed by cropping and aligning based on
landmarks detected by [15], radiometric calibration by [5], and color histogram
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scaling factor = 1 scaling factor = 10−1

Fig. 2. Two example HDR environment maps for outdoor (top) and indoor (bottom)
scenes. Shown at different scalng factors for better visualization of the high dynamic
range.

Fig. 3. Examples of rendered synthetic faces. The top row shows rendered diffuse
components; the middle row displays rendered specular components; and the bottom
row are composite renderings that combine the diffuse and specular layers.
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transfer to align illumination colors for each celebrity, performed by transferring
the color histograms from one photo of each celebrity to the other photos of the
same celebrity. Examples of preprocessed data are shown in Figure 4.

Fig. 4. Examples of preprocessed photos for four celebrities.

3 Additional results on highlight removal

Highlight-Net can work for grayscale photos, unlike most previous methods
which are based on color analysis. For a grayscale image, we input a color im-
age whose three channels are equal to those of the grayscale photo. Then with
the output, we average the values of the three channels to obtain the result.
Although we do not train Highlight-Net on grayscale images, it nevertheless can
produce reasonable results as shown in Figure 11 and Figure 12, where RMSE
and SSIM [13] are marked in the figures for each example. RMSE represents ab-
solute intensity errors, while SSIM measures structural similarity. Over all of the
30 real images that we captured together with cross-polarized ground truth, the
mean SSIM and RMSE are 0.891 and 8.13, respectively. Like for the quantitative
evaluation on color images, the RMSE and SSIM are computed on the highlight
layer, because input images and ground truth matte images may already have a
high structural similarity. Finetuning the net with grayscale training examples
should lead to improvements in performance.

We also provide additional comparisons of highlight removal on laboratory
images with ground truth, shown in Figure 13 and Figure 14, with RMSE and
SSIM values given in the figures. Our method mostly outperforms the previous
techniques, which generally have difficulty in dealing with the saturated pixels
that commonly appear in highlight regions. Comparisons on a subset of the
synthetic data used in the quantitative evaluation are shown in Figure 15. It can
be seen that our method generates results similar to the diffuse renderings. The
error histograms for quantitative evaluation on 100 synthetic faces and 30 real
faces are shown in Table 1 in the main paper and Figure 5.

To show the robustness of Highlight-Net, we tested hard examples like non-
neutral expressions, with occluders like glasses or beard, and various ages or
skin tones, we provide additional results in Figure 10, which indicate reasonable
performance.
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Fig. 5. Quantitative comparisons on highlight removal for 100 synthetic faces and 30
real faces in terms of RMSE and SSIM histograms (larger SSIM is better).

4 Additional results on illumination estimation and
virtual object insertion

As mentioned in the main text, the methods in [1, 3] are trained on images
that do not contain people and that have a broader view of the scene. So in the
experiments, we provide these methods with different input images that fit these
characteristics, as shown in Figure 9. Specifically, the person is removed, and a
wider angle of the scene is captured.

Also described in the main text, for our quantitative evaluation on illumi-
nation estimation with synthetic data for our method, [7] and [4], we provided
synthetic faces rendered under the ground truth environment maps as input im-
ages. We used 50 indoor and 50 outdoor environment maps in the quantitative
evaluation, and 5 synthetic faces under each environment map as input images.
In total, 500 synthetic faces are tested for the evaluation. For [3] and [1], we
provided LDR photos cropped from the center of the ground truth environment
maps as input images. For each of them, 50 outdoor/indoor LDR crops are tested
for the evaluation.

The evaluation is done by rendering a diffuse and a glossy Stanford bunny
under ground truth and estimated environment maps, and computing the RMSE
between these renderings. We use Keyshot [8] as the rendering engine, and for
the diffuse bunny we set the diffuse reflectance as white and the specular re-
flectance as black (all zeros). For the glossy bunny, we choose “hard shiny white
plastic” as the material and set the specular reflectance as white, the roughness
factor to 0.004, and the refraction index to 1.362. Due to different scaling factors
between HDR environment maps estimated by different methods, each diffuse
rendering is normalized by its maximum value before computing the error, and
the corresponding scaling factors of each environment map are also used for the
glossy renderings. The relighting errors are shown in Table 2 in the main paper
and Figure 7.

Comparisons on rendered diffuse bunnies under outdoor/indoor illuminations
are shown in Figure 16-17 (outdoor), and Figure 18-19 (indoor). Comparisons on
rendered glossy bunnies under outdoor/indoor illuminations are shown in Figure
20-21 (outdoor), and Figure 22-23 (indoor). Comparisons on environment maps
are displayed in Figure 24 for indoor scenes, and in Figure 25 for outdoor scenes.
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To evaluate direction localization, we conducted an experiment on sun posi-
tions for outdoor scenes in Figure 6, we computed the centroid of the predicted
environment maps as the sun position, in terms of cumulative distribution of
images w.r.t. error level as done in [3], where the marked points indicate the
error levels over more than 75% of the testing data.

Fig. 6. Evaluation of sun position estimation on outdoor testing data.

Normalized RMSE Ours [3] [1] [7] [4]

Mean (outdoor) 0.143 0.163 \ 0.154 0.245
Mean (indoor) 0.045 \ 0.050 0.083 0.286

Table 1. Errors in estimating environment maps from real data.

For comparisons on real data, face images and their HDR environment maps
are captured for 15 real scenes (7 indoor and 8 outdoor), with background images
having faces excluded and a larger field of view for [3] and [1]. Errors with
respect to the captured ground truths are presented in Table 1 in terms of
RMSE normalized by the difference of the maximum and minimum intensity of
the estimated environment map, which is commonly used to facilitate comparison
between data with different scales, such as those from the intensity scaling factor
of environment maps estimated by different methods. Visual comparisons on
estimated environment maps are shown in Figure 26 and 27. The methods in [3]
and [1] are applicable only to outdoor and indoor scenes, respectively. They were
found to be generally less precise in estimating light source directions when light
sources are out-of-view in background images, though they provide reasonable
approximations. As seen in (e), the method in [7] may be relatively sensitive
to imprecise geometry and surface textures. In (f), estimates of a low-order SH
model are seen to lack detail. Our results in (b) most closely match the ground
truth, with some error due partly to inexact estimation of face geometry.

Additional comparisons on virtual object insertion are presented in Figure
8, where an outdoor scene is at the top and an indoor scene is at the bottom.

All codes will be publicly available shortly.
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Fig. 7. Relighting RMSE histograms of a diffuse/glossy Stanford bunny lit by illumi-
nation estimated by (a) our method, (b) [3] (for outdoor scenes), (c) [1] (for indoor
scenes), (d) [7] and (e) [4] (spherical harmonics representation). Visual comparisons of
the relighted diffuse/glossy bunnies are available in the supplement.

(a) (b) (c) (d) (e)

Fig. 8. Comparisons of object insertion results for outdoor (top) and indoor (bottom)
scenes. (a) Photos containing the real object; (b) our method; (c) outdoor result by [3]
and indoor result by [1]; (d) [7]; (e) [4].
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Fig. 9. Images used as input to [1] (indoor scenes) and [3] (outdoor scenes). For each
example, the left is the face image used as input for the other illumination estimation
algorithms, and the right is the corresponding background photos used as input for [1]
and [3].
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Fig. 10. Evaluation of highlight removal on testing data with non-neutral expressions,
occluders and various ages/skin tones. Input images are shown on the first and third
rows, corresponding highlight removal results are shown on the second and fourth rows.
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Fig. 11. Highlight removal in grayscale images by Highlight-Net. For each example,
the input image, ground truth diffuse image, and our result are displayed from left
to right. RMSE is given at the top-right of our results, and SSIM are shown at the
bottom-right.
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Fig. 12. Highlight removal in grayscale images by Highlight-Net. For each example,
the input image, ground truth diffuse image, and our result are displayed from left
to right. RMSE is given at the top-right of our results, and SSIM are shown at the
bottom-right.
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Fig. 13. Additional highlight removal comparisons on laboratory images with ground
truth. Face regions are cropped out automatically by landmark detection [15]. (a) Input
photo. (b) Ground truth captured by cross-polarization for lab data. (c-h) Highlight re-
moval results by (c) our finetuned Highlight-Net, (d) Highlight-Net without finetuning,
(e) [11], (f) [6], (g) [10], (h) [14], and (i) [12]. RMSE values are given at the top-right,
and SSIM at the bottom-right. RMSE and SSIM are computed on highlight layers.



12 R. Yi et al.

9.62 11.63 9.62 15.28 14.17 27.4512.39

9.62 11.63 9.62 15.28 14.17 27.4512.39

5.86 4.34 4.25 11.82 14.17 26.069.91

0.94 0.93 0.94 0.91 0.91 0.900.93

9.62 11.63 9.62 15.28 14.17 27.4512.39

9.62 11.63 9.62 15.28 14.17 27.4512.39

9.77 11.15 10.42 17.45 19.08 33.2411.65

0.92 0.88 0.89 0.87 0.89 0.880.93

5.81 7.33 6.77 15.94 17.59 30.5010.76

0.95 0.92 0.93 0.92 0.93 0.910.95

7.70 10.35 8.78 15.22 12.04 27.6810.03

0.90 0.86 0.87 0.85 0.88 0.860.91

9.62 11.63 9.62 15.28 14.17 27.4512.39

9.62 11.63 9.62 15.28 14.17 27.4512.39

9.62 11.63 9.62 15.28 14.17 27.4512.39

9.62 11.63 9.62 15.28 14.17 27.4512.39

9.74 11.84 9.27 14.36 12.37 24.8610.62

0.89 0.85 0.87 0.85 0.87 0.860.90

9.61 10.24 8.52 13.69 10.32 23.3510.10

0.86 0.84 0.88 0.82 0.85 0.850.86

10.39 11.62 12.07 10.82 16.52 19.9913.08

0.80 0.79 0.82 0.79 0.85 0.860.87

5.38 5.69 12.95 4.49 7.36 9.387.14

0.90 0.90 0.91 0.91 0.94 0.930.94

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 14. Additional highlight removal comparisons on laboratory images with ground
truth. Face regions are cropped out automatically by landmark detection [15]. (a) Input
photo. (b) Ground truth captured by cross-polarization for lab data. (c-h) Highlight re-
moval results by (c) our finetuned Highlight-Net, (d) Highlight-Net without finetuning,
(e) [11], (f) [6], (g) [10], (h) [14], and (i) [12]. RMSE values are given at the top-right,
and SSIM at the bottom-right. RMSE and SSIM are computed on highlight layers.
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Fig. 15. Highlight removal comparisons on a subset of the synthetic images. (a) Input
photo. (b) Diffuse rendering under the same illumination. (c-h) Highlight removal re-
sults by (c) our method, (d) our pretrained net, (e) [11], (f) [6], (g) [10], (h) [14], and
(i) [12]. RMSE values are given at the top-right, and SSIM at the bottom-right. RMSE
and SSIM are computed on highlight layers.
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Fig. 16. Comparisons of diffuse Stanford bunny relit by estimated outdoor illumi-
nations. (a) Input photo. (b) Bunnies under ground truth environment maps. (c-f)
Bunnies relit by environment maps estimated by (c) our method, (d) [3], (e) [7] and
(f) [4].
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Fig. 17. Comparisons of diffuse Stanford bunny relit by estimated outdoor illumi-
nations. (a) Input photo. (b) Bunnies under ground truth environment maps. (c-f)
Bunnies relit by environment maps estimated by (c) our method, (d) [3], (e) [7] and
(f) [4].
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Fig. 18. Comparisons of diffuse Stanford bunny relit by estimated indoor illuminations.
(a) Input photo. (b) Bunnies under ground truth environment maps. (c-f) Bunnies relit
by environment maps estimated by (c) our method, (d) [1], (e) [7] and (f) [4].



Supplementary Material: Faces as Lighting Probes 17

(a) (b) (c) (d) (e) (f)

Fig. 19. Comparisons of diffuse Stanford bunny relit by estimated indoor illuminations.
(a) Input photo. (b) Bunnies under ground truth environment maps. (c-f) Bunnies relit
by environment maps estimated by (c) our method, (d) [1], (e) [7] and (f) [4].
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(a) (b) (c) (d) (e) (f)

Fig. 20. Comparisons of glossy Stanford bunny relit by estimated outdoor illumina-
tions. (a) Input photo. (b) Bunnies under ground truth environment maps. (c-f) Bun-
nies relit by environment maps estimated by (c) our method, (d) [3], (e) [7] and (f) [4].
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(a) (b) (c) (d) (e) (f)

Fig. 21. Comparisons of glossy Stanford bunny relit by estimated outdoor illumina-
tions. (a) Input photo. (b) Bunnies under ground truth environment maps. (c-f) Bun-
nies relit by environment maps estimated by (c) our method, (d) [3], (e) [7] and (f) [4].
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(a) (b) (c) (d) (e) (f)

Fig. 22. Comparisons of glossy Stanford bunny relit by estimated indoor illuminations.
(a) Input photo. (b) Bunnies under ground truth environment maps. (c-f) Bunnies relit
by environment maps estimated by (c) our method, (d) [1], (e) [7] and (f) [4].
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(a) (b) (c) (d) (e) (f)

Fig. 23. Comparisons of glossy Stanford bunny relit by estimated indoor illuminations.
(a) Input photo. (b) Bunnies under ground truth environment maps. (c-f) Bunnies relit
by environment maps estimated by (c) our method, (d) [1], (e) [7] and (f) [4].
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(a) (b) (c) (d) (e)

Fig. 24. Comparisons of selected indoor data used in quantitative evaluation of illumi-
nation estimation. (a) Ground truth indoor environment maps, (b-e) indoor environ-
ment maps estimated by (b) our method, (c) [1], (d) [7] and (e) [4]. Total intensities
of all environment maps are normalized to be the same.
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(a) (b) (c) (d) (e)

Fig. 25. Comparisons of selected outdoor data used in quantitative evaluation of illu-
mination estimation. (a) Ground truth indoor environment maps, (b-e) indoor envi-
ronment maps estimated by (b) our method, (c) [1], (d) [7] and (e) [4]. Total intensities
of all environment maps are normalized to be the same.
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Fig. 26. Comparisons of illumination estimation on real data. The faces on the left
are input face photos. (a) Ground truth indoor environment maps, (b-f) indoor envi-
ronment maps estimated by (b) our method, (c) [3], (d) [1], (e) [7] and (f) [4]. Input
background photos for [1] and [3] are shown at top right of the input photos, and the
input face normals for our method, [7] and [4] are shown at bottom right.
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Fig. 27. Comparisons of illumination estimation on real data. The faces on the left
are input face photos. (a) Ground truth indoor environment maps, (b-f) indoor envi-
ronment maps estimated by (b) our method, (c) [3], (d) [1], (e) [7] and (f) [4]. Input
background photos for [1] and [3] are shown at bottom right of the input photos, and
the input face normals for our method, [7] and [4] are shown at top right.
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