
Supplementary material: Descending, lifting or
smoothing:

Secrets of robust cost optimization

Christopher Zach1 and Guillaume Bourmaud2

1 Toshiba Research Europe, Cambridge, United Kingdom
2 University of Bordeaux, Bordeaux, France

1 Supplementary material of Sec. 5: The first order
expansion of (γ′(w))2/γ(w) at w = 1

Using l’Hospital’s rule we obtain

lim
w→1

w(γ′)2

γ
:= lim

w→1

N(w)

D(w)
= lim
w→1

N ′(w)

D′(w)

= lim
w→1

(γ′)2 + 2wγ′γ′′

γ′
= lim
w→1

γ′ + 2wγ′′ = 2γ′′(1).

By applying the quotient rule we have to calculate (omitting the argument w)

lim
w→1

(
(γ′)2

γ

)′
= lim
w→1

γ′(2γ′′γ − (γ′)2)

γ2

= lim
w→1

γ′′(2γ′′γ − (γ′)2) + γ′(2γγ′′′ + 2γ′γ′′ − 2γ′γ′′)

2γ′γ

= lim
w→1

γ′′(2γ′′γ − (γ′)2) + 2γγ′γ′′′

2γ′γ

= lim
w→1

γ′′(2γγ′′ − (γ′)2)

2γγ′
+ γ′′′(1) =: A+ γ′′′(1). (1)

We cannot separate the numerator in the first term, as it is of indeterminate
“∞−∞” form. We call the first term A and continue to apply l’Hospital’s rule,

A = lim
w→1

γ′′′(2γγ′′ − (γ′)2) + γ′′(2γ′γ′′ + 2γγ′′′ − 2γ′γ′′)

2((γ′)2 + γγ′′)

= lim
w→1

γ′′′(2γγ′′ − (γ′)2) + 2γγ′′γ′′′

2((γ′)2 + γγ′′)
=
γ′′′(1)

2
lim
w→1

4γγ′′ − (γ′)2

(γ′)2 + γγ′′

=
γ′′′(1)

2
lim
w→1

4γ′γ′′ + 4γγ′′′ − 2γ′γ′′

2γ′γ′′ + γ′γ′′ + γγ′′′
= γ′′′(1) lim

w→1

γ′γ′′ + 2γγ′′′

3γ′γ′′ + γγ′′′

=
γ′′′(1)

3
lim
w→1

3γ′γ′′ + 6γγ′′′

3γ′γ′′ + γγ′′′
=
γ′′′(1)

3

(
1 + lim

w→1

5γγ′′′

3γ′γ′′ + γγ′′′

)



2 C. Zach and G. Bourmaud

=
γ′′′(1)

3

(
1 + lim

w→1

5(γ′γ′′′ + γγ′′′′)

3(γ′′)2 + 3γ′γ′′′ + γ′γ′′′ + γγ′′′′

)
=
γ′′′(1)

3

(
1 +

5 · 0
3(γ′′(1))2 + 0

)
=
γ′′′(1)

3
, (2)

as the denominator is non-zero. Overall we obtain

lim
w→1

(
(γ′)2

γ

)′
= γ′′′(1) +A =

4

3
γ′′′(1) (3)

and the first order expansion of w 7→ (γ′(w))2/γ(w) at w = 1 is given by

(γ′(1 +∆v))2

γ(1 +∆v)
≈ 2γ′′(1) + 4

3γ
′′′(1)∆v. (4)

The first order expansion of the mapping u 7→ (w′(u))2/w(u) around 0 is derived
analogously.

2 Supplementary material of Sec. 6: Proof of Lemma 2

We restate the lemma for convenience: let η ∈ (0, 1). If ρkΨ ≥ η+1
2η > 0 or

ρkΨ ≤ η−1
2η < 0 then ρk∆ ≤ η.

The first case: ρkΨ ≥ η+1
2η > 0: Expanding and rearranging we terms read

(η + 1)
(
∆k
≤ −∆k

>

)
≤ 2η

(
∆k−1
≤ −∆k−1

>

)
≤ 2η

(
∆k
≤ −∆k−1

>

)
≤ 2η∆k

≤,

where we used Lemma 1 and that ∆k−1
> ≥ 0. Consequently,

(η + 1)∆k
≤ − (η + 1)∆k

> ≤ 2η∆k
≤

or

∆k
≤ −∆k

> ≤ η
(
∆k
≤ +∆k

>

)
, (5)

therefore ρk∆ ≤ η. The second case is similar: ρkΨ ≤ η−1
2η < 0 means that

(η − 1)
(
∆k
≤ −∆k

>

)
≥ 2η

(
∆k−1
≤ −∆k−1

>

)
≥ 2η

(
∆k
≤ −∆k

>

)
≥ −2η∆k

>

(again using Lemma 1 and ∆k
≤ ≥ 0), i.e.

−∆k
≤ +∆k

> ≥ −η(∆k
≤ +∆k

>) (6)

and therefore ρkΨ ≤ η−1
2η .
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3 Details on the weak membrane energy and visual
results

The starting point of our weak membrane energy is the following objective: let
u ∈ [0, 1]|V| be a given observed image (with normalized image intensities), then

ΨMembrane(θ;u) = λ
2

∑
i∈V

min{ν, (θi − ui)2}+
∑

(i,j)∈E
min{µ, (θi − θj)2}.

(7)

We replace the hard truncated quadratic costs by an arbitrary robust kernel ψ
with bound range as described below. We set λ = 1, ν = 1/5 and µ = 1/200 for
the results below.

Fitting a robust kernel to a truncated quadratic cost: Let ψ̂(x) = min{η, |x|}2/2 =
min{η2, x2}/2 and ψ be a bounded kernel with ψ∞ := limx→∞ ψ(x) < ∞. We

want to rescale ψ to obtain ψ̃ such that ψ̃∞ = ψ̂∞ = η2/2 and ψ̃′′(0) = 1. ψ̃ is
modeled as ψ̃(x) = αψ(x/τ) for parameters α and τ to be determined. We have

ψ̃′′(0) = (ψ̃(x))′′|x=0 =
α

τ2
ψ′′(x/τ)|x=0 =

α

τ2
!
= 1

ψ̃∞ = lim
x→∞

αψ(x/τ) = αψ∞
!
= η2/2,

from which we deduce that α = η2/(2ψ∞) and τ2 = α = η2/(2ψ∞). Hence, ψ̃ is
given by

ψ̃(x) =
η2

2ψ∞
ψ

(√
2ψ∞x

η

)
= τ2ψ

(x
τ

)
= ψτ (x),

with τ = η/
√

2ψ∞.

3.1 Visual results for the weak membrane energy

In Figs. 1 and 2 we visualize the solutions returned by the various methods. The
input image is the clean image with 10% of pixels replaced by uniformly sam-
pled intensity values from [0, 1]. The initial point θ0 is an image with uniformly
sampled intensity values. As expected, IRLS performs very poorly, and all other
methods yield very similar results. Interestingly, the lifted Gauss-Newton ap-
proach keeps a few noisy pixels (although the reached objective is not falling
behind), which suggests that there are different biases in the methods, that de-
termines which of the essentially equivalent solutions are actually returned.

Further, Fig. 3 illustrates the evolution of objectives for the “Marilyn” image
and is therefore analogous to Fig. 3 in the main text.
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(a) Noisy input (b) IRLS (c) l-G-N (d) l-Newton (e) GOM+

Fig. 1: Visual results for the “Lena” image.

(a) Noisy input (b) IRLS (c) l-G-N (d) l-Newton (e) GOM+

Fig. 2: Visual results for the “Marilyn” image.

4 Datasets used for robust bundle adjustment

The datasets are in particular ladybug-318, ladybug-598, trafalgar-138,
trafalgar-257, dubrovnik-150, dubrovnik-356, venice-245, venice-427, final-93
and final-394.

5 Variational stereo and the limits of half-quadratic
lifting

Since the lifted methods (such as lifted Gauss-Newton) are very competitive for
a weak membrane model, we use a similar formulation for dense disparity esti-
mation. We use a 3×3 ZNCC matching cost to obtain a cost profile, from which
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Fig. 3: Evolution of ΨMembrane w.r.t. the number of iterations for the “Marilyn”
image. We plot the target cost Ψ and lifted one Ψ̃ for the lifting based methods.
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Ki (at most 5) local minima per pixel i in the reference image are extracted.
di,k denotes the disparity of the k-th local minimum (sorted w.r.t. the matching
cost). Similar to the weak membrane model the underlying cost contains robust
data and smoothness terms:

ΨStereo(θ;d) =
λ

2

∑
i∈V

Ki∑
k=1

ψdata(θi − di,k) +
∑

(i,j)∈E
ψsmooth(θi − θj). (8)

The robust optimization methods are initialized with the best cost (local match-
ing) solution (depicted in Fig. 4(a) and (d)). In this application lifting-based
approaches perform poorly, where the estimated solution stays very close to its
initialization (as seen in Figs. 4(b,e)). Graduated optimization (using the GOM+
variant) leads to sensible (although not entirely perfect) solutions. The evolution
of robust costs w.r.t. the number of solver iterations is shown in Fig. 5. Although
the objective ΨStereo has a structure very similar to the weak membrane cost
ΨMembrane, the lifting-based methods perform only slightly better than IRLS in
the stereo example (i.e. both IRLS and lifting methods are essentially stuck near
the initial solution).

In order to investigate the poor performance of half-quadratic lifting, we
successively adapted the setting to match the weak membrane case: (i) using a
random initialization (instead of the best cost solution), or (ii) setting Ki = 1
for all i (thus reducing the number of local minima in the objective). The lifted
approach becomes competitive again (and far superior to IRLS) once (i) and (ii)
are active (see Figs. 6 and 7). Characterizing the set of problem instances, where
a particular method for robust cost minimization performs well (or is likely to
fail), is therefore a challenging direction for future research.
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(a) Best cost (b) l-G-N (c) GOM+

(d) Best cost (e) l-G-N (f) GOM+

Fig. 4: Visual results for the “variational stereo” approach using best cost ini-
tialization and Ki = 5.
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Fig. 5: Evolution of Ψ stereo w.r.t. the number of iterations for the “teddy” and
“cones” stereo image pair. We plot the target cost Ψ and lifted one Ψ̃ for the
lifting Gauss-Newton method.
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(a) Best cost (b) l-G-N (c) GOM+

(d) Best cost (e) l-G-N (f) GOM+

Fig. 6: Visual results for the “variational stereo” approach using random initial-
ization and Ki = 1.
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Fig. 7: Evolution of Ψ stereo w.r.t. the number of iterations for the “teddy” and
“cones” stereo image pair (random initialization and Ki = 1). We plot the target
cost Ψ and lifted one Ψ̃ for the lifting Gauss-Newton method.


