
Appendix A. Architecture Details of CVMN
A.1. Encoder and Decoder Network
Table 1 shows the detailed configuration for each module of our CVMN. Specif-
ically, we list the parameters we used the hourglass module and the detailed
configurations for motion field decoder and visibility mask decoder.

We feed the three reference images separately into the hourglass encoder
and then concatenate the three 48-channel feature tensor to form a 144-channel
feature tensor. We then feed the feature tensor to four motion field decoders and
two visibility mask decoders. The spatial resolution of the input is 256 × 256
with three color channels.

Table 1: Configuration details for the encoder and decoder network. k/s/c stand
for kernel/stride/channel. The convolution layers are always followed by a ReLU
layer except for the last layer of motion decoder, and the last ReLU layer for
visibility decoder is explicitly listed for emphasis

Encoder Motion Field Decoder Visibility Mask Decoder
hourglass Type k s c Type k s c

stack 1 Input - - 144 Input - - 144
block 2 Conv 7 1 288 Conv 7 1 288
feature 104 MaxPool 3 2 288 Conv 3 1 576
inplanes 18 Conv 3 1 576 Conv 1 1 576
out channel 48 Conv 1 1 576 DeConv 3 1 288

DeConv 4 2 288 DeConv 3 1 144
DeConv 3 1 144 Conv 3 1 144
Conv 1 1 144 Deconv 3 1 24
DeConv 3 1 24 Conv 1 1 24
Conv 1 1 24 ReLU - - 24
Conv 1 1 24

A.2. Blending Network
The blending network contains no learnable parameters and is implemented as
a grid sampler module. It takes a reference image and a motion field tensor as
input and output the warped view. The motion fields are normalized to [−1, 1],
which is invariant w.r.t. the actual resolution of input views. We use the grid
sampler provided by PyTorch to calculate the derivative for back-propagation.
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Figure 1: Epipolar geometry between two views

Appendix B. Derivation of the Epipolar Constraint
We use the epipolar constraint Φ(ρ, p′) in our loss function. Here we show how
to derive this constraint under our cyclic rectification.

Given the rigid transformation R, t between the two views C1, C2 and their
intrinsics K1,K2, we first derive the epipolar line ρ of a pixel p. As shown in
Fig. 1, we first find p’s projection line in C2 and select two 3D points Xa, Xb ∼
K−1

2 p̃ on the projection line, where p̃ is the homogeneous coordinate of p. We
then project Xa, Xb into C1 as

[qa, qb] = π(K[R, t][X̃a, X̃b]) (1)

where π(·) is the projection function that maps a 3D point to 2D pixel. The
epipolar line ρ is thus defined by qa, qb. Specifically, we parameterize the epipolar
line with the 2D pixel q and a normalized direction vector k. Assume p′ is the
correspondence of p mapped by the motion field F . The distance between p′

and the epipolar line ρ is computed as

Φ(ρ, p′) = ∥(p′ − q)− ⟨p′ − q, k⟩ · k∥ (2)

where ⟨·, ·⟩ is the inner product. Φ is differentiable w.r.t. the motion field F .
We implement Φ using basic tensor operations in PyTorch, which automatically
calculate the derivative for back propagation.

Appendix C. Additional Results
C.1. Results by CVMN-I2 and CVMN-O3
Fig.2 shows the qualitative comparison results for the ablation studies. We
compare synthesized sample images by our CVMN with its two variants CVMN-
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Figure 2: Qualitative comparison results for the ablation study. From left to
right: we show the three input reference images, sample synthesized image by
CVMN, CVMN-I2, and CVMN-O3, and the ground truth view.

I2 and CVMN-O3. Our results obviously have less artifacts and are closer to the
ground truth. This indicates that our network design is optimal.

C.2. Results on SURREAL Dataset
Fig.3 shows several morphing sequences on the SURREAL dataset by our ap-
proach in comparison with the ground truth sequences. Our approach well pre-
serves the shape and texture of the object along a circular view path. We can
properly handle challenging cases with severe occlusions (e.g., arms and legs).

C.3. Results on ShapeNet Dataset
Fig.4 shows several morphing sequences on the ShapeNet dataset by our ap-
proach in comparison with the ground truth sequences. It demonstrates the
effectiveness of our approach on complex 3D object.
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Figure 3: Additional results on SURREAL Dataset. We show 8 samples out
of 24 images in our entire synthesized sequence in comparison with the ground
truth images. The boxed images are used as references for our approach.
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Figure 4: Additional results on ShapeNet Dataset (“car” and “chair”). We show
8 samples out of 24 images in our entire synthesized sequence in comparison
with the ground truth images. The boxed images are used as references for our
approach.
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