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1 Training details for Flow Estimation Networks

It is difficult and expensive to manually obtain two ground-truth flow fields
between the profile I and the ground-truth image Igt. Instead, we introduce the
landmark loss [4], sampling correctness loss [6] and the regularization term [6] to
pretrain the bi-directional flow estimation networks (the forward flow estimation
network F and the reverse flow estimation network F ′). For landmark loss, we
use the dense landmark detection method1 to detect 1000 facial landmarks for
I and Igt. We then move face contour landmarks in the vertical and horizontal
directions and mark new landmarks and correspondences in the above areas
between I and Igt. In this way, we can deform the additional face areas (e.g.,
hair, neck and ears). In our experiments, we pretrain the F and the F ′ for 4
epochs and then all networks are trained in an end-to-end manner.

2 Additional Qualitative Results

Fig. 1 shows the face synthesized results on Multi-PIE within ±90◦ at 12 different
poses (except 0◦). It is obvious that our model can synthesize photo-realistic
images with delicate details across all pose variations.

More synthesized results on the LFW dataset under large poses are given
in Fig. 2. It can be seen that our method exhibits satisfying generalization to
in-the-wild face images, and the frontalization results are consistent with the
profile face images.

To better understand the Warp Attention Module (WAM), we visualize the
learned flow fields, warped images, and attention maps in the Fig. 4. For optical
flow visualization, we use the color coding of Butler et al. [1]. The color coding
1 https://www.faceplusplus.com/dense-facial-landmarks/
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Figure 1: Synthesis results by our model under different poses of the Multi-PIE
dataset. From top to down, the poses are ±15◦,±30◦,±45◦,±60◦,±75◦,±90◦.
The ground-truth frontal images are provided at the last row.

scheme is illustrated in Fig. 3. Hue represents the direction of the displacement
vector, while the intensity of the color represents its magnitude. White color
corresponds to no motion. As shown in Fig. 4, face frontalization can be viewed
as the horizontal rotation of the face (the learned flow fields are mainly blue and
red which represent horizontal rotation). Using learned forward flows field can
warp the profile to the frontal view. And the learned attention maps can help
focus on the critical parts of the warped features.

3 Additional Quantitative Results

Tab. 1 shows the Rank-1 recognition rates of different methods under Multi-PIE
Setting 1. The recognition rates of all methods drop as pose degree increases.
Missing more facial appearance information leads to the difficulty of synthesis
task with pose rotation angle increases. As shown in Tab. 1, our model achieves
the best performance across all poses, which demonstrates that our model can
synthesize frontal images while preserving the identity information.
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Figure 2: Additional synthesis results of the LFW dataset by our model. Each
pair presents the profile (left) and the synthesized frontal face (right).

Figure 3: Flow field color coding used in this paper. The displacement of every
pixel in this illustration is the vector from the center of the square to this pixel.
The central pixel does not move.

Table 1: Rank-1 recognition rates (%) across poses under Setting 1 of the Multi-
PIE. The best two results are highlighted by bold and underline respectively.

Method ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ Avg
Light CNN [7] 99.78 99.80 97.45 73.30 32.35 9.00 68.61
TP-GAN [3] 99.78 99.85 98.58 92.93 84.10 64.03 89.88
CAPG-GAN [2] 99.95 99.37 98.28 93.74 87.40 77.10 92.64
PIM [8] 99.80 99.40 98.30 97.70 91.20 75.00 93.57
3D-PIM [9] 99.83 99.47 99.34 98.84 94.34 76.12 94.66
FNM [5] 99.90 99.50 98.20 93.70 81.30 55.80 88.07
Ours 100.00 100.00 100.00 98.86 96.54 88.55 97.33
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Figure 4: The visualization of learned flow fields, warped images, and attention
maps. AttMap and AttMap’ represent the attention map of warped feature and
its flip, respectively
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