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1 Neural Network Details 

A 2D U-Net based on [1] was used in our work. It was created using keras v2.2.4 in 

Python 3.6.8. The network was trained using a Quadro P6000 with 24GB of RAM. An 

Adam optimizer was used with a learning rate of 1E-5. The generalized dice coefficient 

was used as a loss function [2]. The ReLu activation function was used for every con-

volutional layer except the final, where softmax was used. L2 regularization was used 

in every layer except the final layer, where no regularization was used. Batch normali-

zation was used after every convolutional layer, and a dropout layer (0.5) was used in 

every block of convolutional layers within the U-Net, except the first block where a 

dropout layer (0.25) was used. See Fig. 1 for network details. 

The images being fed into the network were 256x256, 1 channel, and a batch size of 

16 was used. A total number of 8 classes were defined (external cerebrospinal fluid, 

grey matter, white matter, ventricles, deep grey matter, cerebellum, brain stem, back-

ground). The network was trained for 100 epochs, with early stopping in place if the 

model did not improve after 10 epochs. A testing size of 20% was chosen while train-

ing, shuffling the training and testing data each epoch. 

When transfer learning was occurring, the weights for all layers except the last Soft-

Max layer and last convolutional layer were initialized with the weights created in Net-

work 1 and frozen.  
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Fig. 1. Overview of the neural network (U-Net) used. The number underneath each block indi-

cates the number of channels. 
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