Supplemental material

Theorem 5. For any $p(y|x) \in [\epsilon, 1]$ and $T \ge 1$, the L_{ICCE} loss is bounded by:

$$0 \le L_{ICCE}(f(\boldsymbol{x}), y) \le B \tag{12}$$

where $B = (1 - \epsilon) \max(\frac{e^{T(\epsilon - 0.5)}}{\epsilon}, e^{0.5T})$ (The proof see Appendix).

Proof. Observe that, since the $\frac{e^{T(p(y|\boldsymbol{x})-0.5)}}{p(y|\boldsymbol{x})} > 0$ for all $p(y|\boldsymbol{x}) \in [\epsilon,1], L_{ICCE} \geq 0$ for all $p(y|\boldsymbol{x}) \in [\epsilon,1]$. Moreover, since

$$\max_{p(y|\boldsymbol{x}) \in [\epsilon,1]} \frac{e^{T(p(y|\boldsymbol{x}) - 0.5)}}{p(y|\boldsymbol{x})} = \max(\frac{e^{T(\epsilon - 0.5)}}{\epsilon}, e^{0.5T})$$

hence, we have

$$\begin{split} L_{ICCE}(f(\boldsymbol{x}), y) &= \int_{p(y|\boldsymbol{x})}^{1} \frac{e^{T(p(y|\boldsymbol{x}) - 0.5)}}{p(y|\boldsymbol{x})} dp(y|\boldsymbol{x}) \\ &\leq \int_{p(y|\boldsymbol{x})}^{1} \max(\frac{e^{T(\epsilon - 0.5)}}{\epsilon}, e^{0.5T}) \\ &= (1 - x) \max(\frac{e^{T(\epsilon - 0.5)}}{\epsilon}, e^{0.5T}) \\ &\leq (1 - \epsilon) \max(\frac{e^{T(\epsilon - 0.5)}}{\epsilon}, e^{0.5T}) \end{split}$$

Based on the Theorem 5, we will show the L_{ICCE} loss with respect to all classes is bounded under condition $p(y|x) \in [\epsilon, 1]$ and $T \geq 1$.