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Abstract. Automatic segmentation of medical images is a key step
for diagnostic and interventional tasks. However, achieving this requires
large amounts of annotated volumes, which can be tedious and time-
consuming task for expert annotators. In this paper, we introduce DeepEdit,
a deep learning-based method for volumetric medical image annota-
tion, that allows automatic and semi-automatic segmentation, and click-
based refinement. DeepEdit combines the power of two methods: a non-
interactive (i.e. automatic segmentation using nnU-Net, UNET or UN-
ETR) and an interactive segmentation method (i.e. DeepGrow), into a
single deep learning model. It allows easy integration of uncertainty-
based ranking strategies (i.e. aleatoric and epistemic uncertainty com-
putation) and active learning. We propose and implement a method for
training DeepEdit by using standard training combined with user inter-
action simulation. Once trained, DeepEdit allows clinicians to quickly
segment their datasets by using the algorithm in auto segmentation
mode or by providing clicks via a user interface (i.e. 3D Slicer, OHIF).
We show the value of DeepEdit through evaluation on the PROSTA-
TEx dataset for prostate/prostatic lesions and the Multi-Atlas Label-
ing Beyond the Cranial Vault (BTCV) dataset for abdominal CT seg-
mentation, using state-of-the-art network architectures as baseline for
comparison. DeepEdit could reduce the time and effort annotating 3D
medical images compared to DeepGrow alone. Source code is available
at https://github.com/Project-MONAI/MONAILabel
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1 Segmentation of Metastatic Spines

1.1 Clinical Motivation

In 2020, an estimated 1,806,590 new cancer cases will be diagnosed in the United
States, and 606,520 people will die from the disease. Vertebral bone metastases
are found in up to 70% of patients with advanced cancers [I], and for many pa-
tients, it is the first sign of malignancy [2]. Pathologic vertebral fractures (PVF)
occur in 15-30% of patients with spinal bone metastasis with up to 50% of the
patients suffering from severe neurological deficits, leading to shortened patient
survival with further complications that may be fatal. The associated morbidity
incurs an annual cost of USD 12 billion. However, in the absence of quantita-
tive fracture risk assessment, standard-of-care imaging modalities simply do not
provide precise estimates of fracture risk [3]. This limited ability to predict risk
of PVF has a profound, negative impact on the clinical care of these patients
[4]. Clinicians are thus forced to guess when deciding whether stabilizing surgery
should be offered or withheld, with interventions largely offered as reactive to
pain and new neurological deficits. This can be particularly tragic when surgery
or vertebral augmentation could have been offered before development of these
complications.

Invasion of the vertebral bone with metastatic tumors [5] destroys vertebral
anatomy, causes remarkable alteration or destruction of bone architecture, and
degrades bone material properties. PVF will occur when the culminated effect of
these changes renders the affected vertebra unable to withstand applied spinal
loading generated in daily activities. Computed tomography (CT) is the most
spatially accurate imaging modality to assess 3D osseous vertebral anatomy and
spatial bone morphology [6]. Computational analysis, derived from high reso-
lution [7] and clinical [8] CT, demonstrated that directly modeling the lesion’s
effect on the localized modulus and spatial distribution of the bone within the
pathologic vertebral volume predicts up to 78% of the variance in modulus and
strength of the affected vertebra, irrespective of the type of metastasis, or degree
of anatomical involvement. Establishing a clinical image-based, patient-specific
methodology for precisely predicting the effect of metastatic bone lesions on
vertebral strength as a contributor to fracture risk will provide actionable infor-
mation for the managing clinician addressing a critical gap in the management
of patients’ spine metastases [9].

1.2 Vertebral Segmentation

Accurate extraction of the vertebral geometry [10] and pathological alterations
to this anatomy from the CT data is the fundamental, first, task in apply-
ing computational analysis for assessing the effect of bone metastasis on the
affected vertebral strength. Human vertebrae exhibit complex, physically ex-
tended, multisegmented articulating anatomy, which varies significantly along
the spinal column with vertebral size affected by gender while varying across
populations. These articulating regions (ribs, posterior vertebral elements) pose
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a significant challenge for the segmentation as current clinical CT scanners suf-
fer from inherently insufficient resolution for separating the anatomical detail of
these articulating regions in the aging and disease spine. The resulting partial
volume effects yield image-based artifacts when separating similar anatomical
structures in close vicinity, for example, fusing the facet joints of two adjacent
vertebrae or between the vertebrae and ribs, all of which results in a highly
challenging segmentation process. See Fig. []
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Fig. 1. Thoraco-lumbar spine image illustrating the vertebral body (VB) and trans-
verse process (TP) are common to both lumbar and thoracic vertebrae with the
ribs connected to the thoracic vertebrae. Clinical CT limited resolution regarding the
anatomy of the spines posterior elements often in the “fusing” of the posterior element
is indicated [A].

Manual vertebral segmentation and labeling remain the gold standard for
segmenting vertebrae. This process, however, is labor-intensive, subjective [11],
prone to errors, and is ill-suited for large-scale patient studies. Early methods
for unsupervised image-based segmentation of vertebrae included region growing
with boundary adjustment [I2], watershed [I3], graph-cut [14], level set [15] as
well as applied mathematical morphology and watershed approaches due to their
ability to handle the complex topological merging and breaking in the vertebrae.
Model-based approaches using geometric models [16], Markov random fields [17],
statistical shape models [I8], and active contours [I9] involve deforming shape
priors to the spine to match the given spine. However, these approaches’ deep de-
pendence on a priori information may limit their generalizability. In recent years,
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machine learning approaches allowed data-driven learning of the vertebral shape
using deep neural networks [20]. Continual improvement involving localization
of the spine, followed by U-Net multi-class [21], or 3D convolutional neural net-
works (CNN) [22] segmentation, was proposed to achieve vertebral segmenta-
tion from the lower-resolution masks. Able to utilize the increasing availability
of curated, public CT data with good-quality annotations established as part of
the computational spine imaging (CSI) workshops at MICCAT 2014-2020, these
models have shown high-performance spine segmentation when applied to the
Large Scale Vertebrae Segmentation challenge (VerSe) [23].

1.3 Segmentation of pathologic vertebrae

The effect of metastatic bone lesions on vertebral anatomy, bone structure, and
architecture [24] poses unique challenges for vertebral segmentation (See Fig.
2). Depending on the type and origin of the metastasis, vertebral anatomy may
present, singly or combined, extensive degradation and partial or extensive de-
struction of vertebral anatomy [24]. Vertebral fractures are common, yielding
markedly altered vertebral shape and loss of vertebral dimensions [9]. Notably,
the bone radiological appearance within the vertebral volume may undergo ex-
tensive alteration due to the metastases, resulting in a highly non-uniform dis-
tribution of HU values. For example, areas of markedly higher HU values due
to increased bone density in osteosclerotic (bone-building) lesions or markedly
diminished HU values In osteolytic (bone destroying) lesions. The latter signifi-
cantly reduces or completely obliterates the bone’s image and textural contrast
to other soft tissues [13]. The resulting low local contrast between the bone,
the marrow, and the surrounding soft tissues [25], yielding overlapping intensity
ranges between the bone and the soft tissues, i.e., fat, marrow, and the inter-
vertebral disc, further complicating the separation of functional and structural
skeletal tissues.

1.4 Clinical Data Set

Clinically, CT scanning is employed to assess osseous destruction or reactive scle-
rosis within the spinal column offering an isotropic spatial resolution of about
0.5mm and an in-plane acquisition matrix of 512 x 512, yielding at best a pixel
resolution of 0.3125mm in-plane. Image-based differentiation of musculoskele-
tal tissues is achieved by linearly transforming the distribution of the linear
attenuation coefficients to integer-valued Hounsfield units (HU). Typical muscu-
loskeletal values range from 20-80 HU for muscle and soft tissue, 150-300 HU for
the trabecular bone (foam-based bone structure comprising the majority of the
vertebral body), and 200-500 HU for the vertebral cortex (a thickened shell that
surrounds the trabecular bone) [26]. With an average of 1000-1300 axial slices
acquired for a complete thoraco-lumbar scan, the resulting volumetric data set
ranges from 0.8-1.3 GB. Our expected data sets comprise of up to 430 cancer
patients, with each patient scanned at radiation planning and four following
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Fig. 2. Human thoraco-lumbar spine afflicted with prostate metastatic spine disease:
VB stands for the vertebral body, TP for transverse process and Rib for the thoracic
ribs. The CT image illustrates a critical vertebral fracture [B] with associated loss of
neural canal space, which may result in compression of the neural cord, causing sig-
nificant morbidity and may be fatal. At the vertebral body, such fractures often are
radiologically displayed by spatial structural discontinuitywithin the VB cross-section
[F]. The non-uniform radiological presentation [C] and the degradation of vertebral
anatomy [D] manifest the metastasis effect on vertebral bone composition and archi-
tecture. Common is the destruction of vertebral structures a the TP [E] and Osteolytic
mediated destruction of the rib-vertebral joint [G] affects the mechanical stability of
the spine.

time points, i.e., 3,6,9 and 12 months post-therapy. In total, we are expecting to
analyze high-resolution 2150 CT volumes.

1.5 DeepEdit Results

Given these challenges, applying DeepEdit allows to perform automatic infer-
ence as using standard deep learning models while providing clinicians with
the ability to refine the predicted labels using clicks. In the absence of pub-
licly available curated data sets for metastatic spines, the model integration of
active learning strategies provides a highly adaptive mechanism to account for
the bone metastases mediated degradation of the vertebral anatomy. We aim
to develop an accurate method for automated segmentation of human spines
invariant to the effect of bone metastases on spinal anatomy. Such a robust seg-
mentation approach is critical to developing precise, patient-specific prediction
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of fracture risk in pathologic vertebral, addressing a critical gap in managing
patients’ spine metastases. We further see this approach as instrumental in cre-
ating labeled spine CT datasets for metastatic spines, necessary for developing
and optimizing machine learning approaches to segment pathological spines.

As a first step to address this clinical problem, we trained DeepEdit on the
VerSe’'19 dataset [23]. For this we used 80% (80 volumes) for training and 20%
(20 volumes) for validation. Best, average and low quality segmentations are
shown in Fig 3}

(b) (0

Fig. 3. Results obtained on the VerSe’19 dataset: DeepEdit applied to segment
vertebra on the VerSe’l9 dataset. Different quality of the obtained results from the
DeepEdit in automatic segmentation mode: (a) best result, (b) average result, and (c)
low quality result.

2 Treatment Planning in Reconstructive Periodontal
Surgery

2.1 Clinical Motivation

Periodontitis is an infectious disease, as a result complex periodontal- and/or
alveolar bone defects may develop that jeopardize general health in the oral cav-
ity. During the complex multi-staged surgical — prosthetic rehabilitation of ad-
vanced periodontal cases, the primary determining local factor in the selection of
the best possible surgical approach and regenerative strategy is the morphology
of the bone defect. Standard radiographic diagnosis processes (intraoral radio-
graphs, orthopantomograms) provide provide 2D images, in which overlapping
anatomical structures make it difficult to determine the true defect morphol-
ogy. Consequently, the applied surgical technique may not be sufficient for the
successful treatment of the selected defect morphology. For this reason vari-
ous authors have suggested the application of cone-beam coputed tomography
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(CBCT) scans for diagnostic purposes in periodontology, however mostly planar
images or 3D renders reconstructed with global thresholding methods were uti-
lized which do not provide an accurate visualization of defect morphologies (Fig.
4.). To overcome these limitations Palkovics et al. [27] utilized a semi-automatic
segmentation method for the 3D reconstruction of CBCT scans for diagnosis
and treatment planning of periodontal- and alveolar bone defects. In their de-
scribed method alveolar bone and teeth were segmented separately to acquire a
more realistic virtual model of the clinical sitation. A notable drawback of this
method, however is the lengthy duration and repetitive nature of the segmen-
tation process. Other segmentation methods in utilized in dento-maxillofacial
radiology (DMFR) include: (i) local thresholding methods, (ii) region growing,
(iii) watershed and more recently (iv) Al-based segmentation methods [28§].

Fig. 4. CBCT image of a periodontally compromised patient, demonstrating horizontal
and vertical periodontal bone defects (BL: bone loss; MB: marginal bone).

To reduce the timeframe of model acquisition process, an Al-based segmen-
tation method could be developed for this purpose. Current trends in scientific
research are geared towards the development of convolutional neural networks
(CNN) for CBCT segmentation [28]. Few articles describe the segmentation of
CBCT dataset using CNNs for the detection of periapical pathologies [29], or
the localization of anatomical landmarks for the digital planning of orthodon-
tic/orthognathic treatments [30]. This is most likely due to the fact that these
applications are the least effected by the limitations of CNNs, which is the
heterogeneity of sample databases [28]. Due to the morphological diversity of
periodontal- and alveolar ridge defects, there is no available literature data on a
reliable CNN or other Al-based method available for this application.

Hence, our aim is to develop an accurate and reliable method for fully auto-
matic segmentation of CBCT datasets to acquire realistic 3D models of dental
and alveolar structures for diagnostic and treatment planning purposes.

2.2 Clinical Data Set

In the current investigation 20 anonymized CBCT datasets of real patients,
previously diagnosed with periodontitis have been prepared for training. Slice
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interval was set to 0.2 mm in all directions (x,y,z) for all datasets. Based on
literature data this is the lowest image resolution that is still feasible for surgical
planning. For the preliminary testing it was selected to reduce processing time.
Image sizes varied between 8.18cm x 8.18cm x 5.12e¢m (409 x 409 x 256 slices)
and 16cm x 16em x 16em (800 x 800 x 800 slices).

Semi-automatic segmentation of the mandible and teeth have been carried
out in 3D Slicer utilizing region growing. Separate binary labelmaps were gener-
ated for the alveolar bone and the teeth during the process (Fig. 5.). Based on
the number of remaining teeth, label numbers varied between 4 and 16. After
segmentation a custom terminology was created to ensure standardized labeling
between the datasets.

Fig. 5. Labels used to train DeepEdit on teeth segmentation: Multilabel ap-
plication for teeth and alveolar bone segmentation.

2.3 DeepEdit Results

DeepEdit is a feasible tool for both automatic segmentation and label refine-
ment of CBCT datasets in the field of periodontology and reconstructive dento-
alveolar surgery. As DeepEdit allows easy integration of active learning strate-
gies, the obtained model could be robust enough for such a difficult task. Other
deep learning applications can only provide automatic inference or only semi-
automatic inference (at least one click is needed), which makes the segmentation
task less flexible for the clinician to annotate teeth and alveolar bone. Prelim-
inary results of using DeepEdit on the CBCT dataset (16 volumes for training
and 4 for validation) are presented in Fig |6



DeepEdit: Deep Editable Learning 9
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Fig. 6. Obtained results from DeepEdit on automatic inference mode: Dif-
ferent quality of the obtained results from the DeepEdit in automatic segmentation
mode: (a) best result, (b) average result, and (c) low quality result.
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