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Abstract. This document provides supplementary information which
is not elaborated in our manuscript due to space limits. Section 1 gives
details about the implementation of our method. Section 2 describes the
datasets and evaluation metrics we use in our experiments. Section 3
presents additional experiment results. We also present a video demo
that includes additional results.

1 Implementation details

1.1 Human Detection Networks

Following [7], we discretize the overall motion space into L×W ×H voxels. In
our experiments, we set L = W = 80 and H = 20.

Inspired by [7], we adopt a similar Encoder-Decoder architecture in the Hu-
man Detection Networks. The key difference is that we replace all expensive 3D
convolutions with 2D and 1D convolutions. The basic components of our fully-
convolutional networks include vanilla convolutional block and residual convolu-
tion block. The former is comprised of one convolutional layer, one batch-norm
layer and ReLU while the latter consists of two consecutive basic convolutional
blocks with residual connection. At the initial stage, the feature volume is fed
into a 7×7 convolutional layer. In the subsequent Encoder structure, the fea-
ture representation is downsampled through three 3× 3 residual convolutional
blocks with maxpooling. The Decoder adopts a symmetric design, but with de-
convolution operations. Finally, the network generates the results through a 1×1
convolutional layer. Following [9], the outputs of 2D networks are fed into three
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branches to estimate the feature map, the local offset and the size of the bound-
ing box respectively. They share an identical design, which consists of a 3 × 3
convolution, ReLU and another 1 × 1 convolution.

The 1D convolutional network shares the same architecture with its 2D coun-
terpart except for two aspects: 1) all convolutional operations are replaced with
1D convolutions 2) we just maintain the branch for estimating feature maps
along the z-axis.

1.2 Joint Localization Networks

The architecture of Joint Localization Networks is essentially the same as one
2D CNN branch of HDN. The outputs of 2D estimators are further fed into a
shared confidence network, which consists of one convolutional layer, one global
average pooling layer plus a fully-connected layer.

1.3 Training

We train HDN and JLN jointly to convergence. On the CMU Panoptic dataset,
our model is trained 10 epochs with batch size 8. On the Shelf and Campus
datasets, we train our model for 30 epochs with the same batch size. The learning
rate is set to be α = 0.0001 using Adam [5] optimizer. The parameters above
are empirically determined.

In the bounding box regression branch of HDN, we add a safety margin
δ = 200mm to GT, as missing information of body joints will be fatal to the
subsequent prediction.

2 Experimental Details

2.1 Dataset

CMU Panoptic [4] This dataset captures multiple people engaging in social
activities in an indoor setting. It contains massive sequences in various scenarios.
We use the sequences captured by five HD cameras (3, 6, 12, 13, 23). The training
and testing split is identical with [6, 7].

Shelf [1] This dataset captures four people disassembling a shelf using five
cameras. We follow previous works [2,3,6,7] in evaluating only three of the four
persons on the test set frames 300-600 since one person is severely occluded.
Due to the lack of complete annotations of ground-truth poses, we train with
synthetic heatmaps following previous works [6–8].

Campus [1] This dataset captures multiple people interacting with each other
in an outdoor environment by three cameras. We follow previous works [2,3,6,7]
and perform evaluation on the test set frames 350-470, 650-750. Similar to the
Shelf dataset, we also conduct training on synthetic heatmaps.
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2.2 Evaluation Metrics

PCP For the Percentage of Correct Parts, we pair each GT pose with the closest
estimation and calculate the percentage of correct parts. Specifically, the match
is counted as correct if their distance is within a threshold T . Following [2,3,6,7],
we set T to be half of the corresponding limb length. Note that PCP does not
penalize false positive results.

APK In order to evaluate the results more comprehensively, we follow [6, 7]
to measure the Average Precision (within Kmm). Specifically, a predicted joint
is considered as correct if there is a corresponding GT joint within distance
threshold K.

MPJPE We first pair the nearest GT for each predicted joint, then calculate
the corresponding Mean Per Joint Position Error in millimeters.

3 Additional Results

Num. 1 2 3 4 5 6 7 8 9 10

HDN 18.27 17.90 17.71 18.22 18.28 18.50 17.37 17.86 18.30 18.45
JLN 13.16 13.67 14.22 15.03 16.72 18.40 20.70 21.22 24.01 25.88
Total 31.43 31.57 31.93 33.25 35.00 36.90 38.07 39.08 42.31 44.33

Table 1: Experiment of scalability. We measure the average inference time
cost of each module in milliseconds (ms) while varying the number of persons
present in the synthetic scene.

We study the influence of the number of persons on inference time. The results
are shown in Table. 1. The time increase is mainly on the feature construction
phase of JLN.

We present additional qualitative results in Fig. 1. Please refer to the attached
video for more results.
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𝑥𝑦-plane 𝑥𝑧-plane 𝑦𝑧-plane 3D pose

(a) Results on sequence Haggling.

𝑥𝑦-plane 𝑥𝑧-plane 𝑦𝑧-plane 3D pose

(b) Results on sequence Ian.

𝑥𝑦-plane 𝑥𝑧-plane 𝑦𝑧-plane 3D pose

(c) Results on sequence Band.

Fig. 1: Additional Results on the CMU Panoptic Dataset. We present
the results on three different action sequences of the test set. For each figure, the
first row illustrates the estimated root joints in HDN. The second row shows the
estimated 2D poses on the three orthogonal re-projection planes and the fused
3D pose in JLN. The last row shows the 2D back-projection of the estimated 3D
pose to each camera view.
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