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A Proof of Proposition 1
Before we prove that the matrix W is symmetric, we need to show the following
results.
Proposition 1 Let P € ROHRIX(H8) - and suppose (14 — aP)~" exists. Then
P?(Ii —aP) ' = (I — aP)"1P2,
Proof. Tt always holds that

P%*(I i1 — aP) = (I, x — aP)P? = P? — aP>. (S1)
Since (I, —aP)~! exists, we multiply (I,, 1 —aP)~! on both sides of equation
(S1) to get

(Intr — aP)™'P? = P*(I,, 1), — aP)™ L. (S2)

The proof is completed.
Lemma 1. Let P = I'"1Q be given by (26). The eigenvalues of P are real, and
lie in [-1,1].

Proof. By definition, we have P > 0 and P1l,4; = 1,4%. So, all elements in P
are between 0 and 1. The row sums of P is 1. The characteristic polynomial of P
is

det(Myp — P) = det (r*% (AIn+k - F*%QF*%) F%) .

The eigenvalues of P are the same as the eigenvalues of matrix F*%Qf’%. Matrix
1 1

I'"2QI'~ = is symmetric, so its eigenvalues are real, i.e., the eigenvalues of P are

real. By the Gershgorin circle theorem [1], we conclude all the eigenvalues of P

lie in [—1,1].
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Now, we are ready to prove Proposition 1. Note Q@ = QT, P = I'"'Q, PT =
QI =rpPr—1 Since P?(I,,4r —aP)™ = (1,41 — aP)~1P? by Proposition 1,
we have

(Inyr —aPT)~H(PT)?
(Insx —al PO Y~ trp2p—t
(F(Iix —aP)I Y~ TP?r
I'(Ip —aP)" P21

=I'P* (I —aP) ' %
On the other hand, by (25) and (26), we get

(P(I - aP)™ )T =

T
_ W A wT AT
e e I i 11 (59)
and
2 iy [LO][W AT [L 0
ro-anrre- 59 [4] .2
. w AlE_l

Comparing these two matrices in (S3) and (S4), we have W = W71 ie., W is
symmetric.
Since the spectrum of P lies in [—1,1], and « € (0, 1), we have (I, 1 —aP)™1 =

(o)
S~ (aP)t, i.e., the right side matrix series converges. Then
=0

P*(I,i —aP) ' = P? 4 aP? 4+ o?P* 4 - - - . (S5)

Since P > 0, every term on the right hand side is nonnegative, and W > 0. The
proof is completed.

B Proof of Proposition 2

If either n = 0 or G = 0, we have
- -1
0 A 0 A
P — dia nxn 1n nxn
g(_ zr 0k><k:| +k) { z" kak:|

- 4\ —1

T Z]-k Onxn Z

= diag ( 1271, | ) [ ZT Opxk

- 1N =1
R T ]-n 0n><n VA
= diag ( 1271, | > [ zT kak]

— Inxn Onxk 0n><n Z
Opxn A7 | | Z7 Opxs

o Onxn Z ]
AT ZT O]
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and

P2* On><n Z On><n Z
AT zZT Ok wk A= ZT Orxk

B ZA-1ZT 0,k
| Opxn ATYZTZ)
where A = diag(Z71,,). Since a = 0 and by definition, we have
W=2A"127,

which is the same as W in AGR for a given Z.

C Proof of Proposition 3

Lemma 2. For a € (0,1), the eigenvalues of matrix
P=anE'G+a*E"'Z"Z (S6)
are real and lie in (—1,1).

Proof. By the definition of E, G, Z, we have P > 0. The characteristic polynomial
of P is

det(AI, — P)
= det (E—% ()\Ik — B~ ¥ (anG + ORZTZ)E—%) E%) .

The eigenvalues of P are the same as the eigenvalues of E-2 (anG + aQZTZ)E_%.
Since matrix E~2 (anG + o2ZT Z)E~2 is symmetric, all its eigenvalues are real,

i.e. the matrix P has only real eigenvalues. Now let us prove the row sums of P
are bounded by 1.
Pl, = anE~'G1, + o*E~ 27 71,
= omEille +ao?E" 1271,
<aE '(nGl, + Z71,) (since a € (0,1))
=al, < 1.

By the Gershgorin circle theorem [1], we have the eigenvalues of P lie in (—1,1).
The proof is completed.

By the definition of matrix P and matrix inversion in a 2 x 2 block form, we
have the following equations:

I —aZ -t

_ —1 — n
(It — aP) [—aElZT I, — anE~1G

| L11 Lo
B [Lm L22} ’ (87)
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where

Li=I,+?Z(Iy —anE~'G - o*E~'Z " 2)'E~1 27,

Liy =aZ(Iy —anE~'G — o?E~1 2T 72)7!,

Loy = a(l, —anE~'G - ?E~ 2T 2)*E~ 127,

Lyo = (I —anE~'G — *E~1 2T 7)71.
It is worth noting that (S7) holds in the condition that matrix I — anE~1G —
a?E~'Z" Z must be invertible. The inversion is guaranteed by Lemma 2.

According to Lemma 2, it is clear that I — P has eigenvalues in (0, 2), so
(S7) holds for all a € (0,1). Accordingly, the right hand side of (8) is:

_ W A
P2(Iyey —aP) ' = [ v A;], (58)

where
W =2ZE'Z"L1, + nZE G Loy, (S9)
Ay = ZEZ " Liy + nZE7 G Ly,
Ay =nE'GE'Z"Lu+ (E7'Z"Z +n*(E7'G)?) Lay,
A3 =nE 'GE'Z"Liy+ (E7'Z"Z + n*(E7'G)?) Los.

Substituting L1; and Lo; into (S9), we achieve the goal.
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