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A Proof of Proposition 1

Before we prove that the matrix W is symmetric, we need to show the following
results.

Proposition 1 Let P ∈ R(n+k)×(n+k), and suppose (In+k −αP )−1 exists. Then
P 2(In+k − αP )−1 = (In+k − αP )−1P 2.

Proof. It always holds that

P 2(In+k − αP ) = (In+k − αP )P 2 = P 2 − αP 3. (S1)

Since (In+k−αP )−1 exists, we multiply (In+k−αP )−1 on both sides of equation
(S1) to get

(In+k − αP )−1P 2 = P 2(In+k − αP )−1. (S2)

The proof is completed.

Lemma 1. Let P = Γ−1Q be given by (26). The eigenvalues of P are real, and
lie in [−1, 1].

Proof. By definition, we have P ≥ 0 and P1n+k = 1n+k. So, all elements in P
are between 0 and 1. The row sums of P is 1. The characteristic polynomial of P
is

det(λIn+k − P ) = det
(
Γ−

1
2

(
λIn+k − Γ−

1
2QΓ−

1
2

)
Γ

1
2

)
.

The eigenvalues of P are the same as the eigenvalues of matrix Γ−
1
2QΓ−

1
2 . Matrix

Γ−
1
2QΓ−

1
2 is symmetric, so its eigenvalues are real, i.e., the eigenvalues of P are

real. By the Gershgorin circle theorem [1], we conclude all the eigenvalues of P
lie in [−1, 1].
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Now, we are ready to prove Proposition 1. Note Q = QT , P = Γ−1Q, PT =
QΓ−1 = ΓPΓ−1. Since P 2(In+k − αP )−1 = (In+k − αP )−1P 2 by Proposition 1,
we have

(P 2(I − αP )−1)T = (In+k − αPT )−1(PT )2

= (In+k − αΓPΓ−1)−1ΓP 2Γ−1

=
(
Γ (In+k − αP )Γ−1

)−1
ΓP 2Γ−1

= Γ (In+k − αP )−1P 2Γ−1

= ΓP 2(In+k − αP )−1Γ−1.

On the other hand, by (25) and (26), we get

(P 2(I − αP )−1)T =

[
W A1

A2 A3

]T
=

[
WT AT

2

AT
1 AT

3

]
, (S3)

and

ΓP 2(I − αP )−1Γ−1 =

[
In 0
0 E

] [
W A1

A2 A3

] [
In 0
0 E−1

]
=

[
W A1E

−1

EA2 EA3E
−1

]
. (S4)

Comparing these two matrices in (S3) and (S4), we have W = WT , i.e., W is
symmetric.

Since the spectrum of P lies in [−1, 1], and α ∈ (0, 1), we have (In+k−αP )−1 =
∞∑
t=0

(αP )t, i.e., the right side matrix series converges. Then

P 2(In+k − αP )−1 = P 2 + αP 3 + α2P 4 + · · · . (S5)

Since P ≥ 0, every term on the right hand side is nonnegative, and W ≥ 0. The
proof is completed.

B Proof of Proposition 2

If either η = 0 or G = 0, we have

P = diag
([

0n×n Z
ZT 0k×k

]
1n+k

)−1 [0n×n Z
ZT 0k×k

]
= diag

([
Z1k

ZT1n

])−1 [0n×n Z
ZT 0k×k

]
= diag

([
1n

ZT1n

])−1 [0n×n Z
ZT 0k×k

]
=

[
In×n 0n×k
0k×n Λ−1

] [
0n×n Z
ZT 0k×k

]
=

[
0n×n Z
Λ−1ZT 0k×k

]
,
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and

P 2=

[
0n×n Z
Λ−1ZT 0k×k

] [
0n×n Z
Λ−1ZT 0k×k

]
=

[
ZΛ−1ZT 0n×k

0k×n Λ−1ZTZ

]
,

where Λ = diag(ZT1n). Since α = 0 and by definition, we have

W = ZΛ−1ZT ,

which is the same as W in AGR for a given Z.

C Proof of Proposition 3

Lemma 2. For α ∈ (0, 1), the eigenvalues of matrix

P̃ = αηE−1G+ α2E−1ZTZ (S6)

are real and lie in (−1, 1).

Proof. By the definition of E, G, Z, we have P̃ ≥ 0. The characteristic polynomial
of P̃ is

det(λIk − P̃ )

=det
(
E−

1
2

(
λIk − E−

1
2 (αηG+ α2ZTZ)E−

1
2

)
E

1
2

)
.

The eigenvalues of P̃ are the same as the eigenvalues of E−
1
2 (αηG+α2ZTZ)E−

1
2 .

Since matrix E−
1
2 (αηG+ α2ZTZ)E−

1
2 is symmetric, all its eigenvalues are real,

i.e. the matrix P̃ has only real eigenvalues. Now let us prove the row sums of P̃
are bounded by 1.

P̃1k = αηE−1G1k + α2E−1ZTZ1k

= αηE−1G1k + α2E−1ZT1n

≤ αE−1(ηG1k + ZT1n) (since α ∈ (0, 1))

= α1k < 1k.

By the Gershgorin circle theorem [1], we have the eigenvalues of P̃ lie in (−1, 1).
The proof is completed.

By the definition of matrix P and matrix inversion in a 2× 2 block form, we
have the following equations:

(In+k − αP )−1 =

[
In −αZ

−αE−1ZT Ik − αηE−1G

]−1
=

[
L11 L12

L21 L22

]
, (S7)
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where

L11 = In + α2Z(Ik − αηE−1G− α2E−1ZTZ)−1E−1ZT ,

L12 = αZ(Ik − αηE−1G− α2E−1ZTZ)−1,

L21 = α(Ik − αηE−1G− α2E−1ZTZ)−1E−1ZT ,

L22 = (Ik − αηE−1G− α2E−1ZTZ)−1.

It is worth noting that (S7) holds in the condition that matrix Ik − αηE−1G−
α2E−1ZTZ must be invertible. The inversion is guaranteed by Lemma 2.

According to Lemma 2, it is clear that Ik − P̃ has eigenvalues in (0, 2), so
(S7) holds for all α ∈ (0, 1). Accordingly, the right hand side of (8) is:

P 2(In+k − αP )−1 =

[
W A1

A2 A3

]
, (S8)

where

W = ZE−1ZTL11 + ηZE−1GL21, (S9)

A1 = ZE−1ZTL12 + ηZE−1GL22,

A2 = ηE−1GE−1ZTL11 +
(
E−1ZTZ + η2(E−1G)2

)
L21,

A3 = ηE−1GE−1ZTL12 +
(
E−1ZTZ + η2(E−1G)2

)
L22.

Substituting L11 and L21 into (S9), we achieve the goal.
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