A Preliminaries

There are several preliminaries we will use in the following section. The first
one is a convergence result from [22, Lemma 2.2.2] of a special sequence which
appears in B.2.

Lemma 2. Let a, > 0 and let

ap+1 < (T+wvp)ap +C, vi >0, (>0,

ZVk<OO, ch<oo. (22)

keN keN
Then, ar, — A >0 for some A < +o0.

The following identity is called (cosine rule), which proves to be very useful.
2(a—byc—a)=|b—c|?* = la—=b|> - |la —c||* Va,b,ce X. (23)

Another inequality appears many times in B.2 is the characteristic property of
the proximal operator with respect to a symmetric positive definite matrix M:

& =prox)/(z) <= (@-7,y—2)) >9(T)—gly) YyeX. (24)

If M = I is an identity matrix, then (24) is the characteristic property of the
standard proximal operator. Assume (Z,%) is a saddle point which solves (1).
Then we obtain
Pig(r) = g(x) + h(z) — g(2) — h(@)+<K*ﬂ,w—i> >0 VreX,
Dig(y) = f*(y) = (@) - (K&,y—9) 20 VyeY,

where P; ;(x) and D; 4(y) are convex. Then G; 4(x,v) := P; 4(x)+Ds 4(y) is the
primal-dual gap. Without ambiguity, in the proofs, we may omit the subscript
in P and D.

(25)

B Collection of Proofs

B.1 Proof of Lemma 1
It is a similar argument with the one in [20].

(1)&(ii) oy is decreased by p € (0,1) and the inequality (6) is satisfied as long
as o < g = w where L = max{L, Lx}. We introduce a
notation g := o VA i (45a)/ﬁ+1 . Since B < B, we have g;, > o. We argument

by 1nduct10n We assume oo > /wo and o1 > poy,_, - For the case o, = oy,

thenak>(Bg Yog_1 >u(

, 0}, = p*~15), does not satlsfy (6). It follows o, > g;,. Thus, o}, = poy, >

MO 2 BT

(i) By o < op—14/1 + O0x—1, we get 0 < /1 + 0_1. Thus, 6, is bounded from

above. O

—1)a,_1 > pay, > pa. For the case o), = (‘G



B.2 Proof of Theorem 1

The following proof is adapted from [20]. Assume (Z,y) is a saddle point of
problem 1 and 8 = 3. By using (24), we obtain the following two inequalities:

W —yF —op K2t g — ) > o (£ (M) - £1(9)) (26)
(" — 2 i MUK 4+ M VR (), & - mk+l>Mk, > i (g(«* ) — g())
(21)
By using 11, = fog
1
<(mk+1 = 2¥) + ox M KT  + 0x M Vh(at), & — x’“+1>
B M (28)

> oy (g(a" ) — g(2))
Similarly, we apply (24) on y* and obtain

W=y oKty — ") 2o (W) - ffy) YyeY.  (29)

Setting y = y**! and y = y*~! respectively, we obtain

(W =yt = o Kb g — ) > o i () - 1Y) Yy ey, (30)
W =y — o Kby R > o (PN - ) vy e Y. (31)

We deduce from (30) x 0 and 0, = -Z=— that:

Ok—1

Orly” — ") — oK ™ — %) > o (F(°) = (™). (32)

By (31) x 6%, we also get:
Oy =y ") — o K2®, 0, (v = 7)) > on (O f* (") — 0k f* (V")) . (33)
Summing (32) and (33) together, by using 7% = y* + 05 (y* — y*~1), we obtain

(7 =y = onBa® g = g) > on(L+ 00 f* (") = Ouf (") = (™).
(34)
To sum up inequalties (26), (28) and (34) , we obtain

<yk+1 —yF — oKt — yk+1>

+ <;(xk+1 — )+ o, M KR 4 o, M VR(2R), & — xk+1>
+ (7" —yF — o KaF YT — )

> ok (f* (") = £4(9)) + on(g(@™) = g(@)) + o ((L+06) F* (4*) = 0 (")
- @),

My,

(35)



Reorganizing the above inequality and using 74, = foj, we have

<yk+1 _ yk’? _ yk+1> + % <$k+1 — gk g xk+1>Mk + <gk _ yk’yk+1 _ ?k>
+

_O_kak+17g o yk+1>

> o (g(a" 1) — g(2)) + ok (14 0k) f* (") — Ouf* (1) — £7(9))
(36)

As in [20], we still have:
<—O'kK£L'k,yk+1 _ yk> + <_O,kak+17yA _ yk+1> + <J]€K*gk,.’i' _ $k+1>

= oy (Ka* — Ka"t gk — ") 4 03 (K2, 7% — §) — o (K*g, 2" — )
(37)

Adding oh(z¥*1) — o h(2) on both sides of (36), we obtain:

> ap(g(2" ) — g(@) + (1+ 00) (") = 0 f* (" 1) — F7(@) + h(z"h) — h(2)).

Combining (37) and (38), we have

<yk+1 _ yk7@ _ yk+1> + % <xk+1 _ xk,i‘ _ xk+1>Mk + <§k . yk7yk+1 o §k>

o (Ko — Kbt gh — gF ) 4 oy (K2, 5° — §) — oy (K*g, 2" — 1)

+ (0, Vh(z"), & — ") + oph(2F 1Y) — oh(2)

> o3 (g(x"h) — g(2) + (14 0) [* (") = Ouf* (") = £7(9) + h(="F1) = h(2)).
(39)

By the definition of D(y) (25) and g* = y* + 0, (v* — y*~1), we have

(L4 0u) (") = O f (") = £ (9) — (K&, 9" — )

= (L400)(F ") — @) — (K2,9" —9) — 0 (F* ") = £(9)
e (40)

—(Kz,y"' = 3))

= (1+6,)D(y*) — 0 D(y* ).



Using (40) and the definition of P(x), we deduce from (39) that

<yk+1 _ yk’? _ yk+1> + % <$k+1 — gk g xk:+1>Mk + <gk _ yk’yk+1 _ gk>

+ ok <ka — Kokt gh — yk+1> + <0th(xk),:% — xk+1>
+ oph(z*) — oph(2)
> o3, (P(«"*) + (1 + 0x) D(y*) — 6, D(y* ).

(41)
From the line search condition (6), we have
o (h(z*th) — h(z") — (Vh(zF), 25T — 2F))
0 1 (42)
< gplloth = Ry, - JoRIKaH - Ko,
Additionally, by the convexity of h(x), we also have
h(z*) — h(g) + (Vh(z"),2 — 2*) <0. (43)
Combining (42) and o x (43), we get
or(h(z") — h(#) — (Vh(2F), 2" — 7))
5 1 (44)
< ol Ry, — SRR - K.
Thus, it follows from (41) and (44) that
N 1 . _ _
(Et — gk g — yE ) 4 3 (zF 1 — ok 5 — xk+1>Mk (7" =yt g = )
0 1
+ o (Ko — Kabtl gk — g+ 4 %”Ikﬂ — k|2, — 5Uz”KIkH ~ Kab|?
> op(P(a") + (14 00)D(y") = 0Dy 1))
(45)
Using Cauchy-Schwarz inequality, we obtain
" 1 N _ _
(P — gk g — R + 3 (zh 1 — o 5 — xk+1>Mk + (g — b,y = b

1 —k k 6 k k
15" = "1 + 2™t — 2R3,

1
+§O']%||K{Ek—K$k+1”2+§ %

1
o §U]2€||K:Ek+1 _ ka||2

= Uk(P(xk+1) +(1+ Qk)D(yk) — ng(ykfl)) '
(46)



Applying (23), we deduce from (46) that

1 k ~112 1 k+1 k|2 1 ~ k+112
(I =17 = S+ = I = 2 - )
. 1 1.
+ (25 2% — &[|3,, — 2*||5'kar1 — "3 — ﬁ”x — "3
1, 1 _
( [ et T ] R A
]‘ k k+12 k+1 k12
4 = P e |
> o (P + (14 6,)D(y*) — 0. D(y* 1)) .

Reorganizing the above inequalities, we obtain

1-6
2p

k+1 _

1 N
310 = 91P + 55lla* — a1, - "o I3s,

_ 1
+ ok0k D(y* ") — §||yk —y*|I?

1, . 1.
> op(P@h) + (14 06) DY) + 5119 = "7 + 55112 — 2",

2p

It follows from o, < /1 + 01, _10%,_1 that 01,0, < Uo’z < ok < (140k—1)0k—1-

k—1 — Ok—1
Thus,
1 k ~ 112 1 1- k+1
S =17 + 5t — 8, — T e - et
_ 1
+ o1 (L4 0e-1) D) = 5117 = oI
1. )
> o(1+0:)D(y") + §Hy —y" P+ =g — 2R,

Since (1 + ng) My, = M1, we can obtain the following key inequality:

1 PR ) 1-
Slly™ = all* + 5 lle™ = 2, - ||93

25 28
_ 1
+ or—1(1 4 6,—1)D(y* ) — §Ily’c —yF|?

k+1 _ka2

1, .
Zka(1+9k)D(yk)+§|\y*yk+1||2 m”x kH”Mk+1 .

Set A = 5[ly* —§I* +or—1(1+0k—1) D(Y* ") + 5
from (50) that

Apr1 < (1 +n,)Ax .

(49)

(50)

L ||z* — 2|2, . Then, we deduce
283 My,

(51)

By Lemma 2, Ay, is bounded from above by some constant C. Thus, ||y* — 9|
and ||z* — %||s, are both bounded. By the assumption that M}, is uniformly



bounded, ||z¥ — #|| is also bounded. As a result, we deduce from (50) that

1-46 1
Z (W\\xkﬂ - ~Tk||§ur,c + §|\Z7k - kaz) < Z (1 +me)Ax — Aks1)
* ) (52)

<CD i+ Ap < +00.
k

It implies that ||zFT! —2%| 3, — 0 and ||g* —y*|| — 0. So does ||zFT! —2*| — 0,
since (Mp)ren C Sa(X). Since o, > o for some ¢ which is shown in Lemma 1
and B > 0 is fixed,
k+1 E sk+l k+1
Yy _Y —Y —0 ask — 400,
Ok Ok+1
[l —2F|13,,

Tk

Y

(53)
—0 ask — +00.

Since (2*,y*)ren is bounded, we can extract a subsequence (z*i,y%);cn con-
verging to some cluster point (*,y*). As in [20], similarly, by using the lower
semi-continuity of functions g and f* and the continuity of function h, we can
pass the following two inequalities to the limit:

yhitl — yhi ki1 ki1 ki1
<ak_Kff”ay—yﬁ>>(f*(yi+)—f*(y)) Vyevy,

i

IkiJrl 7xki
< + M,;lK*g’“ + MEIVh(:Eki),x — xki+1>
Tk o o

i My, (54>

i

Tk,

i

M, (gFitl — ki
= < k(@ x ),x—xki+1> +<K*§ki —|—Vh(xki),x—x’“+1>

> (g(z* ) —g(z)) VreX.

Thus, (z*,y*) is the saddle point of (1). If, additionally, f*(y)ldom,. is con-

tinuous, then f*(y*) — f*(y*) and D(y*) — 0 as i — +oco. From (50), we

have WA}“ is monotone. Setting & = z* and § = y* in (50), by the
j=1 J

boundejdness of o1, and 0y, it follows that

A A Ap,

TR S Y. S . R T P

k—o0 Hi:l(l + 771’) k—o0 Hi:l(l + m) i—00 Hj;1(1 + 77j) i—00

(55)
Since 12, (1+1n;) < 400, we have limy_, ;o Ax — 0 which means z* — z* and
yF — y* as k — +o0. O

B.3 Proof of Theorem 2
We adapt the corresponding proof in [20]. Let €, := o (P(z* ™)+ (146)) D (y*)—
0xD(y*~1)). Then we obtain the following inequality from (47),

k+1 k+1

. 1
_xH%\4k_§||Z/k—ka2 > €k -
(56)

1 k ~112 1 ~112 1 k 112 1



By the assumption 1, we get

1 | R 1 f=* =23
5Hykfy||2*§lly"’“fy||2+

ez, LM T AWM Lk e s
(57)
Since (1 + n) > 1, it follows
N k1 _ A
Log e Ll — g2 k 1 =" =2y,
Syt — 2 -3, - s — (58
sl =il = 3 2B e 13, - g 2 (59)

Let both sides of the above inequality be divided by ITF7'(1 + ;) and it is

common to assume that an empty product yields identity i.e. IIY_;(1+mn;) =1
Thus,

N N - k+1
L 1 O 7t 1 R S ot PP
20 (M 4my)  2M (L +mi) 2B 115 (1+ ;)
>k
I (1 +m)

—xHMk+1
28 mE (14 )

(59)
Summing up (59) for k =1,--- , N, we obtain
1 N N
Sl =l 4 ol a2 Y0 =Y (o)
2 28 1 k:1H111+7h le
Here, we used the C'= 37, (1 + ) < 400.
The following steps are similar with the ones in [20].
N N
Z e =on(1+0n)D +Z [(1+ Op—1)ok—1 — Okow] D(y* )
k=1 k=2
N (61)
— 910’1D -l— ZUkP k+1)
k=1
Since D is convex,
N
on(1+0N)D +Z (1 + 60k—1)ok—1 — Oror] D(y* 1)
k=2
o114 00)y' + 30, ong
> 0 D =
> (0161 + sn)D( P I ) (62)
N —k
o101y’ + > kY
= (061 + sny)D
(Jk ! N) ( 0101 + sn )

> syD(Y™Y),



where sy = Z,ivzl ok Similarly,

N k41
D k=1 OkT *

N

> P ) > sy P( ) =snyP(XV). (63)
SN
k=1
As a result,
_ _ C 1 R 1 N

GXN, YY) = P(XM)+D(YN) < g(ﬁllwl—w\\%ﬁ+§|Iy1—yH2+0191D(y°)) :
(64)
O

B.4 Proof of Theorem 3

The proof is also adapted from [20]. From the update formula of S, it follows
that (B is decreasing. First, we are going to prove that 6 is bounded from
above. It is not difficult but tedious. We know that if there exists a C' € R} s.t

0k < C+/1+ 01 then 0 is bounded. From this, it is sufficient to prove that

b E;l is uniformly bounded from above by some Cy. According to

Br—1

min{l + =-fx_105-1,Co}’

Br =

VkeN, and f[y>0, (65)

we have that % = min{1 + &Bk,lak,l, Cy} < Cy.
Second part, we are going to show the convergence rate. Since g is strongly

convex, we obtain:

gkl _ ok
< + M K+ M VR(2R), & - xk+1>
Tk Mj, (66)
N vy N
> (g(a™h) = g(@)) + S ™ = 2|
From Assumption 1, it follows that for any k € N,
i . 2 N
T+t = alP 2 o2t i, (67

Following the same way in which we got equation (48), by equation (66) and
the assumption that (1 + ng) My = M1, we obtain

LTI PSS SR S R Lok a2 1—0, k41 k(2
S0 =3I = 51 =312 + ot = aly, — e ot
1" _@”?WH L e k|2 VOk K
el 5 2 M | Pyl > e+ Bk 42
S gl Iz e TR

(68)



In order to obtain the following inequality, it is sufficient to assume ¢ < 1.
Thus,

1 R 1. . . 1 .
Slly™ = all* = Sly™ " = gl* + Tmllm’“ — 2|3,
1 ka+1 7:%“?\/1;64& 1 k kN2 YOk &k
oo T Metr . Tk R > 17k +1_A2_
(69)
Since § < 1, by dividing the above inequality with ok, we have
1
Lk A2 kL a2 ot ik a2
o = 01 = Gl =P + 5l — i
k41 _ 42
1 ||z — 2|3 1 .
S LB e L e e S Ty e
27 (1 +n ) 207 oL 2
(70)

where, we used 7, = Boy. By using (67), from the above inequality, we obtain
that

E+1 _ a2
Lok a2 Rl a2 b ka2 12" =23y,
Lok k)2 < €k g k+1 42
_ _ >F oy T _ .
2o,klly (V[ T [k &0, sy
(71)
It follows from the above inequality that
Lok a2 E+1 _ ~p2 Lok a2 Lo k2
2Uklly gl 2Uk\ly 90" + QTka (|3, 2Uklly yell
> €k 1+ (1 + ﬂk)TkW’/CM ”karl N :i’||2
ok 2Tk(1 +77k) Mi4a 2
Lok a2 Lokt a2 Lok a2 Lo k2
o = 1P = Gl = 1P + 5l aly, — 5o~ o]
> Ek " Ti+1 (1 + 77/Cur) [ 9E||?\4k+1
= ok T 27k41(1 + 1)
(72)

For convenience, we set 4 = /Cys. From the update step of Sy, it follows that

Ter1 (L+37) o e min{Cy, (L +97%)} _ ok

= 73
Tk - Tk Ok ( )
Set Bk = i“l‘k — jH?VIk + ﬁ”yk - ZJH2 and Bk = % From (72)3
we have:
S/ L P (74)
O'k(l-i-??k) + or 20,



By dividing the above inequality by ITF7'(1 4 ;) > 1, we obtain

~ €k ~ 1 I
Byy1+————<Br— - lg" — 4"l (75)
e oIS () 203 1T (14 17,)

By multiplying o on both sides, we have

~ €k 5 1 ke k2
Or1Bryr + = < oBy — ———— 7" —y"[I". (76)
Hik:11(1 + i) 2Hik:11(1 + i)
By Assumption 1, C' = IT;en(1 + ;) < 400, we have
o €k P | k2
B — < 0By — — — . 7
Ok+1Dk+1 + o = OkbE 20”1/ v (77)
Summing up (77) from k =1,--- , N, we obtain
N 1N
- k 5 —k k|2
B + — < 01B; — — - ) 78
ON+1DN+1 1; c =S 0157 QC;Hy v (78)

Since oy, is bounded by some o for any k € N, By, is bounded from above. Since
C = Hien(14 ;) < 400, By, is also bounded from above. So, y* is also bounded
with limy,_, o ||7* — y*||?> = 0. Thus, using the similar argument and notations in
the proof B.2, we retrieve the same key inequality as the one in [20]:

R C
GXN,vN) < §(0131 + 6101 P(2?)),

Cryoa (79)
_ £||?MN+1 < o (0141 + 917’1P(x0)) =CBNy1,
+1

”xNJrl

Using the same argument from [20], we know from B.1 that o} is bounded by

paoy, = “(W) where L = max{L, Lx}. We claim that there exists

a constant Cg such that, B = Cs(1/k?).
i Ifad/(Br) <1, by o > poy, > po, we have
Br < B
min{Cy, 1 +FBxor} ~ min{Cy,1 + pocday}"

In this case, By decreases linearly. Thus, Bx11 < Cs/(k+1)? for k sufficiently
large.

Br+1 = (80)

ii If ad/(Bk) = 1, then oy > poy, > %= ‘;—‘Z Therefore, for k large enough, we

have
Br+1 = B < B = Br
mln{Cg, 1 + ’Yﬂkok} min{ca7 1 + 'U‘T\/?Y\/ﬁik} 1 + N\g?’)’\/ﬁik

(81)
In this case, by induction [; < % for some constant Cg > 0.

From o > po,, > po, we have sy = Y20 op > Son_ o > Son_, O(k) ~ N2
since B < Cg/k? for k sufficiently large. Then, we conclude the results. O



